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Abstract. Single image dehazing is a challenging problem in computer
vision. Previous work has mostly focused on designing new encoder and
decoder in common network architectures, while neglecting the connec-
tion between the two. In this paper, we propose a multi scale feature
fusion dehazing network based on dense connection, MSF2DN. The de-
sign principle of this network is to make full use of dense connection
to achieve efficient reuse of features. On the one hand, we use a dense
connection inside the base module of the encoder-decoder to fuse the
features of different convolutional layers several times, and on the other
hand, we design a simple multi-stream feature fusion module which fuses
the features of different stages after uniform scaling and feeds them into
the base module of the decoder for enhancement. Numerous experiments
have demonstrated that our network outperforms the existing state-of-
the-art networks.

Keywords: Image dehazing · Feature fusion · Dense connection.

1 Introduction

In computer vision and computer graphics, high-quality images are the basis for
advanced vision tasks, so obtaining clear image from hazy image has received
a great deal of attention in the last two decades. Fig.1 shows an example of
dehazing.

To describe the haze, an atmospheric scattering model [29, 30] was proposed,
which has the following equation:

I(x) = t(x)J(x) +A(1− t(x)) (1)

where I is the hazy image received by the camera, J denotes a clear scene
radiance, A represents the global atmospheric light, which is usually a constant,
and t is a transmission map, which can be expressed as t = e−βd(x), d is the
distance from the camera to the scene radiation, β is the atmospheric scattering
coefficient, x describes the pixel position.

It is clear that this is an ill-posed problem, and in order to get a haze-free
image, many statistical priors [5, 18, 19, 28, 37, 44] appear. These priors can solve
this problem to some extent, but unfortunately, the robustness of these hand-
designed priors is not strong and can’t work in complex scenarios.
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To avoid the limitations of prior methods, data-driven deep learning has been
applied to dehazing with quite good result. Early researchers used convolutional
neural networks(CNNs) [6, 34, 40, 41] to estimate the exact transmission map and
atmospheric value, however, obtaining the transmission map and atmospheric
value from a single hazy image is not an easy task, and the atmospheric scattering
model itself does not fully describe the cause of haze, so such a strategy has
been gradually abandoned in recent years. Later researchers preferred to build
a trainable end-to-end CNNs [7, 10, 11, 16, 24–27, 33, 39, 43] to obtain haze-free
image directly from hazy image, and such a strategy achieved better result.
In continuous development, we found that simply stacking convolutional layers
does not solve the dehazing problem well, so past work tends to develop a new
network structure, such as Dilated Network [7], U-Net [10], Grid Network [25],
and CycleGAN [35], or build a new enhancement module [10, 31] to solve this
problem, these algorithms do solve this problem well, but they all almost ignore
the full use of features. MSBDN [10] is aware of this problem and uses the
dense feature fusion module(DFF) to exploit features, but it is limited to the
exploitation of features inside the encoder and decoder, ignoring the connection
of features between the two.

In this work, we propose a multi scale feature fusion dehazing network based
on dense connection, MSF2DN. Our core principle is to make full use of the dense
connection to achieve full utilization of the features in the U-shaped network
architecture. In the base module of the encoder, we design a generic feature
extraction module, MLFF, which incorporates shallow features into deep features
to enhance feature delivery as well as reuse. In the base module of the decoder,
in order to be able to apply dense connection to get fully enhanced features, we
extend the base module of FFANet [31] and design a new enhancement module,
DFFD. In each base module of the encoder and decoder, we add a pixel attention
module and channel attention module [31] to enhance the performance of CNNs.
At the network architecture level, the features at different scales are upsampled
or downsampled to unify to the same scale, feeding into the multi stream feature
fusion module(MSFF) we designed for simple processing and then feeding into
the decoder base module for enhancement. We embed residual groups in the
network to allow the model to learn to bypass unimportant information and
focus the main performance on the dense haze region. Extensive experiments
have shown that the performance of our method outperforms the state-of-the-
art network. The contributions of this paper are summarized as follows:

– A base module, MLFF, based on dense connection and attention mecha-
nisms, is designed for feature passing and reuse, ensuring a diversity of deep
features.

– An effective feature enhancement module, DFFD, is extended to enable the
network to adaptively assign more weights to important features using the
channel attention module and the pixel attention module.

– A multi scale feature fusion network based on dense connection is designed
to realize the effective utilization of features in the existing network archi-
tecture, and excellent experimental results are obtained.
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(a) Input (b) DCP [18] (c) FFANet [31]

(d) LDN [39] (e) Ours (f) GT

Fig. 1. Haze removal.

2 Related Work

2.1 Single image dehazing

Image dehazing is an important research topic in computer vision, aiming to
obtain a haze-free image from a hazy image. Current dehazing methods can be
divided into two categories: prior-based image dehazing [5, 18, 19, 28, 37, 44] and
learning-based image dehazing [6, 7, 10, 11, 16, 24–27, 33, 34, 39–41, 43].

Prior-based Image Dehazing A priori-based dehazing methods rely on the
atmospheric scattering model [29, 30], which is an ill-posed problem, so re-
searchers have solved this problem by mathematical statistics to obtain common
features of hazy images or clear images, forming a prior or hypotheses. Tan [38]
gets a clear image by maximizing local contrast, He et al. [18] design the dark
channel prior by counting the clear image features, and obtaining the clear image
based on this prior. Berman et al. [5] distribute the image pixels in the RGB
color space and obtain the clustering relationship between clear image pixels
and hazy image pixels to develop a non-local dehazing algorithm. Kim et al. [19]
further develops dark channel prior [18] and use different functions to enhance
image saturation to obtain clear images. Unfortunately, all these methods can
only be used for a certain class of scenes, and they are all less robust in complex
scenes, for example, dark channel prior [18] is ineffective in the sky.

Learning-based Image Dehazing With the rise of CNNs in the high-level
vision task, such as object detection, recognition and related tasks [12, 13, 32],
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CNNs are also subsequently used in image dehazing. Early CNN-based dehazing
networks [6, 34, 40, 41] still adopt a multi-stage strategy, using CNNs to accu-
rately estimate the transmission map and atmospheric value, and then substitute
into an atmospheric scattering model to obtain the scene radiation. However, if
the transmission map is not properly estimated, high-quality dehazing results
will not be obtained. Therefore, the mainstream dehazing networks nowadays
are end-to-end networks [7, 10, 11, 16, 24–27, 33, 39, 43] that do not require the
estimation of transmission maps and atmospheric value, these networks are di-
rectly from the hazy image to get a clear image. Such strategy often yields better
results in synthetic atlases, but due to the lack of a theoretical basis, they can
still be applied to reality with unnatural results, therefore, RefineNet [43] and
PSDNet [8], which combine the prior and CNNs have emerged, but such methods
still have much room for improvement as of now.

2.2 Dense connection

As the network deepens, the network suffers from gradient vanishing/explosion
problems as well as degradation problems. To solve this problem, many works,
such as ResNet [15], Highway Network [36], FractalNets [21], have been pro-
posed. All these works reveal the principle that creating a short path from lower
to higher levels is beneficial to solving the degradation problem. Inspired by the
above work, DenseNet [17] was proposed, which connects the network layers di-
rectly to ensure maximum information flow between the network layers. For each
layer, the feature maps of all previous layers are its input, and its output feature
maps are the input of all subsequent layers. Following such simple connection
rules, DenseNet [17] naturally integrates the properties of identity mappings,
deep supervision, and diversified depth, and it can be a good feature extractor.

2.3 Multi scale feature fusion

Many CNNs used to solve vision tasks often use downsampling operations to
reduce the number of parameters, but bring the problem of feature loss. In order
to allow the network to get enough features, feature fusion(feature concatenation
[42], dense connection [16, 17]) is often adopted in the network design process.
However, it is not enough to simply fuse the features to extract valid information.
To exploit features between adjacent layers, Liu et al. [25] design grid-Net, but
the portability of such a design is too weak. Dong et al. [10] design the DFF,
which effectively fuses features from multiple scales, but this work only pays
attention to the connection within the encoder and decoder.

3 Proposed Method

We propose a multi-scale feature fusion dehazing network with dense connec-
tion, MSF2DN, which is extended from a U-shaped network and is end-to-end
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trainable. There are three major components: the multi-level feature fusion mod-
ule(MLFF), the double feature fusion dehazing module(DFFD), and the multi-
stream feature fusion module(MSFF). The specific network structure is shown
in Fig.2.
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Fig. 2. Overall architecture of MSF2DN.

3.1 Multi-level Feature Fusion Module

Previous work has usually used dense connections between base modules, but
this approach still results in feature loss. In order to reduce the feature loss, we
apply the dense connection inside the base module and thus design a multi-level
feature fusion module(MLFF). As shown in Fig.3, it consists of 4 convolutional
layers, 2 attention modules, 1 activation function, and dense connections. Dense
connections allow the network to skip unimportant information, such as thin
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haze or even clear areas, allowing most of the network’s weights to be focused on
the hard-to-solve dence haze areas. Our encoder consists of five MLFF modules,
each stage of which downsamples features with a convolutional layer with a stride
of 2.

Experiments have proven that adding dense connections within the base mod-
ule of the encoder can indeed improve the performance of the network.

Conv 1×1Conv 1×1 Conv 1×1Conv 1×1Conv 1×1 Conv 1×1

Conv k×kConv k×k

Conv 3×3

PReluPixel Attention

Channel Attention

Conv block

Multi-Stream Feature Fusion Module

Double Feature Fusion Dehaze Module

Multi-Level Feature Fusion Module

Conv 1×1 Conv 1×1

Conv k×k

Conv 3×3

PReluPixel Attention

Channel Attention

Conv block

Multi-Stream Feature Fusion Module

Double Feature Fusion Dehaze Module

Multi-Level Feature Fusion Module

Fig. 3. Schematic diagram of the important module of MSF2DN.

3.2 Double Feature Fusion Dehazing Module

FFANet’s [31] base module has relatively powerful enhancements to features,
but FFANet [31] does not make good use of the module, stacking too many base
blocks. We extend a double feature fusion dehazing module(DFFD) in order to
allow the combination of the base block and the dense connection, as shown in
Fig.3, which consists of 6 convolutional layers, 2 attention modules, 1 activation
function, and the dense connection, which allows the network to focus on the
important information while augmenting the features.

The decoder consists of five DFFD modules, each stage of which upsamples
features with a deconvolutional layer with a stride of 2.

3.3 Multi-stream Feature Fusion Module

There is a very large amount of work in the field of image dehazing that involves
skipping connection, but it is relatively simple to send features from the encoder
base module to the corresponding decoder base module, ignoring the connection
of features between the two stages. Referring to the connection of NBNet [9] ar-
chitecture, we redesigned a simple multi-stream feature fusion module to process
the features after upsampling and downsampling, aiming to obtain the features
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under different sense fields and fuse the features of the encoder base module and
decoder base module. Our aim is to fuse the features of both phases and let
the features obtained by the encoder base module guide the same-size decoder
base module to reconstruct the image structure information. The specific detail
is shown in Fig.3.

3.4 Implementations Details

As shown in Fig.2, in the encoder, each base block contains MLFF, Residual
group, and downsample, and in the decoder, each base block contains Residual
group, DFFD, and upsample, where the residual group contains 4 residual blocks
[15] to deepen the network. The activation function is PRelu [14] and not every
convolution function is connected after the activation function, as configured in
Fig.3. The convolution radius of the first convolutional layer of the network is set
to 11. In addition, different sizes of convolutional kernels, 11, 9, 7, 5, and 3, are
set at each stage of the network according to the feature map size of each layer
in order to expect that a larger perceptual field can alleviate the localization of
convolution, and the radius of the convolutional kernels of all other convolutional
layers is 3.

We choose Mean Square Error(MSE) as the loss function, written as:

L(G, x, y) = ||x−G(y)||2 (2)

where G(·), x, and y represent MSF2DN, clear image, and hazy image, respec-
tively.

The overall training process includes 100 epochs, and the batch size is 16.
the optimizer is ADAM [20], β1 is 0.9, β2 is 0.999. The initial learning rate is set
to 10−4, and the learning rate is multiplied by 0.1 for every 25 epochs. All the
experiments are conducted on one NVIDIA V100 GPU.Our code and trained
model is available at https://github.com/Bruce-WangGF/MSFFDN.

4 Experimental Results

4.1 Datasets

We compare our method with state-of-the-art(SOTA) methods in two categories:
synthetic [23] and real-world datasets [1–4].

Sythetic Datasets. RESIDE [23] was proposed by Li, B. et al. There are five
subsets, where Indoor Training Set(ITS), Outdoor Training Set(OTS), Synthetic
Objective Testing Set(SOTS) are synthetic sets, Real World task-driven Testing
Set(RTTS) is the real-world dataset and Hybrid Subjective Testing Set(HSTS)
includes both real-world and synthetic set. The datasets include a variety of
indoor and outdoor scenes under daylight. In order to maintain the generalization
ability of the model, we selected 22,000 images from ITS and OTS, of which
15,000 were randomly selected from ITS and 7,000 were randomly selected from
OTS. The SOTS includes 500 indoor images and 500 outdoor hazy images and
their corresponding clear images, which we choose as the testing set.
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Real-world Datasets To demonstrate the superiority of our method in the
real world, we chose four real-world datasets: Dense HAZE [1], NH-HAZE [2],
O-HAZE [3], I-HAZE [4]. They are from the NTIRE image dehazing challenge.
Due to the small number of images, for each dataset, we choose 5 images as a
validation set, 5 images as a testing set, and the rest of the images are expanded
to 10,000 by cropping.

(a) Input (b) DCP [18] (c) ADN [22] (d) GDN [25] (e) FFANet [31]

(f) MSBDN [10] (g) LDN [39] (h) RDN [43] (i) Ours (j) GT

Fig. 4. Visual results comparison on SOTS [23] dataset. The green and pink window
indicate the visible difference between each method.

4.2 Evaluation metrics and comparisons

In the field of image dehazing, Peak Signal to Noise Ratio(PSNR) and Structural
Similarity index(SSIM) are often used as image quality evaluation metrics, we
also adopt these two metrics.
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Table 1. Quantitative evaluations on the benchmark dehazing datasets. Red texts and
blue texts indicate the best and the second-best performance respectively.

Matrix DCP[18] AodNet[22] GDN[25] FFANet[31] MSBDN[10] LDN[39] RDN[43] Ours

SOTS PSNR 18.58 20.10 24.46 24.39 27.08 21.27 24.12 27.17
SSIM 0.818 0.828 0.886 0.879 0.915 0.832 0.933 0.915

I-HAZE PSNR 13.66 19.66 18.83 19.65 22.05 19.76 13.96 24.52
SSIM 0.688 0.855 0.826 0.872 0.869 0.860 0.741 0.909

O-HAZE PSNR 17.54 20.00 23.86 24.31 24.15 20.53 16.92 25.19
SSIM 0.761 0.798 0.804 0.809 0.822 0.794 0.740 0.858

NH PSNR 14.91 16.50 19.55 20.42 20.95 16.93 12.37 22.04
SSIM 0.674 0.633 0.767 0.794 0.796 0.656 0.539 0.803

Dence PSNR 14.15 15.50 15.82 18.46 18.27 15.67 12.15 18.37
SSIM 0.552 0.498 0.576 0.629 0.603 0.506 0.426 0.622

4.3 Performance Analysis

We will analyze the advantages and disadvantages of our algorithm with other
SOTA algorithms [10, 18, 22, 25, 31, 39, 43] on a synthetic dataset and four real-
world datasets in both quantitative and qualitative aspects.

Analysis on synthetic datasets As shown in Table 1, under the same train-
ing environment and training method, our method obtained the highest PSNR
and the second-highest SSIM compared to other SOTA methods. Compared to
MSBDN [10], our method has a 0.09 dB improvement in PSNR. Note that we
downloaded two versions of SOTS from Github, our model and MSBDN [10]
reach 34.21dB PSNR and 34.00dB PSNR respectively in the other version. We
also give the qualitative analysis of our method and other SOTA methods, as
shown in Fig.4. We can observe that the DCP [18] performs relatively well, but
the overall image is dark, and the RDN [43] with fused DCP [18] and CNNs
has the same problem. The ADN [22], LDN [39], and MSBDN [10] all have the
problem of incomplete dehazing at the green window. The GDN [25] has better
results compared to the above methods, but the haze still appears in the lower
right corner of the green window. Our method has a natural style for this image,
and it is similar to the real image in both high and low-frequency regions. In the
pink box, our model and FFANet [31] have the most natural result in the sky.

Analysis on real-world datasets The advantage of our method over its per-
formance on synthetic datasets is mainly in real-world datasets, where we divide
four real datasets into two categories: thin datasets(O-HAZE [3], I-HAZE [4])
and thick datasets(NH-HAZE [2], Dence HAZE [1]). As shown in Table 1, our
method obtains the best performance on O-HAZE [3] and I-HAZE [4].

We also present the dehazing results for both datasets in Fig.5. We can
observe that for the I-HAZE [4] example, the results of DCP [18], and RDN
[43] are very dark and lose a lot of details. The performance of ADN [22], and
LDN [39] is poor and the images appear gray. The results of GDN [25] have
incongruent image tones and appear noisy. FFANet [31] has a halo effect at the
green window. MSBDN [10] has a brighter image compared to GT as a whole,
and the color saturation of the color palette is low as seen in the blue window.
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Our method is also brighter compared to GT, but better than MSBDN [10], and
the overall style is more natural and similar to GT.

(a) Input (b) DCP [18] (c) ADN [22] (d) GDN [25] (e) FFANet [31]

(f) MSBDN [10] (g) LDN [39] (h) RDN [43] (i) Ours (j) GT

Fig. 5. Haze removal in I-HAZE [4] and O-HAZE [3].

In the case image of O-HAZE [3], all previous methods also present roughly
the same problems as I-HAZE [4], and we give the main differences in the yellow
window. As you can see, except for ADN [22], FFANet [31], LDN [39], and our
method, none of the other methods can get the haze inside the window nowhere.
FFANet [31] is also not as good as our method for the scenery at the yellow
window.

How to dehaze dense hazy images in the real world has been a very tricky
problem, and existing work does not yield a better performance due to the very
small number of samples. Our method makes further progress on the dense hazy
dataset. As shown in Table 1, our method obtains the best performance on
NH-HAZE [2] with its PSNR and SSIM of 22.04 dB, 0.803, and the second-
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best MSBDN [10] with its PSNR and SSIM of 20.95dB and 0.796, respectively.
On the Dence HAZE [1] dataset, both of our methods obtain the second-best
performance with PSNR and SSIM lagging behind FFANet [31] by 0.09dB and
0.007, respectively.

(a) Input (b) DCP [18] (c) ADN [22] (d) GDN [25] (e) FFANet [31]

(f) MSBDN [10] (g) LDN [39] (h) RDN [43] (i) Ours (j) GT

Fig. 6. Haze removal in NH-HAZE [2] and Dence HAZE [1].

Fig.6 shows the results of SOTA methods and our method in NH-HAZE [2]
and Dence HAZE [1], and it can be seen that both the DCP [18] and the RDN
[43] results combining DCP [18] and CNNs are very poor and show severe color
bias. All methods show different degrees of dehazing incompleteness, especially
ADN [22], LDN [39] is the most serious. We can observe that although FFANet
[31] obtains a high matrix performance, it has a very poor visual effect. For the
scenes in the red and orange window, the visual effect of the result obtained by
our method completely surpasses that of the previous SOTA methods.
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Although the four real-world datasets can simulate haze formation to a large
extent, they are ultimately not obtained in a naturally occurring haze environ-
ment and therefore do not fully represent the formation of haze in the real world.
We have taken several images of naturally occurring haze in the real world to
compare our method with the SOTA methods. As you can see, our method still
works, especially in the first image, where our method clearly surpasses the other
SOTA methods in terms of sensory processing of the sky.

(a) Input (b) DCP [18] (c) ADN [22] (d) GDN [25] (e) FFANet [31]

(f) MSBDN [10] (g) PSDNet [8] (h) LDN [39] (i) RDN [43] (j) Ours

Fig. 7. Haze removal in real-world.

4.4 Model complexity and inference time

We give the number of parameters of the model, the inference time for different
image sizes, and the FLOPs of the model to measure the complexity of the model
(input image size 512×512×3) in Table 2, using an RTX 3090 GPU. × in the
table indicates that the model requires more than 24GB of video memory.

Compared to the suboptimal MSBDN [10], the number of parameters and
FLOPs of our network are about 1

4 and 1
3 respectively, and the inference time

is reduced accordingly. It can be seen that for 2048×2048 resolution image, our
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model can still inference normally, which indicates that our network uses less
memory than MSBDN [10], FFANet [31], and GDN [25].

Table 2. Comparison of the number of parameters, FLOPs, and inference time.

ADN[22] GDN[25] FFANet[31] MSBDN[10] LDN[39] RDN[43] Ours
Param(MB) 0.002 0.960 4.680 31.35 0.030 68.56 7.670
FLOPs(GB) 0.460 0.45 1.46 97.77 7.890 238.1 31.46
128×128(s) 0.004 0.073 0.267 0.304 0.006 − 0.110
256×256(s) 0.006 0.076 0.307 0.313 0.008 0.206 0.118
512×512(s) 0.014 0.100 0.486 0.333 0.019 0.216 0.140

1024×1024(s) 0.042 0.216 × 0.422 0.056 0.420 0.245
2048×2048(s) 0.204 × × × 0.245 1.236 0.736

4.5 Ablation Study

To demonstrate the effectiveness of our method, we perform ablation experiments
to analyze each module, including MLFF, DFFD, MSFF, residual group, and
dense connection.

As shown in Table 3, Xmeans that the module has been used, × means that
the module has been removed directly, and − means that a simple module has
been used instead of the module. In this section, we use the Conv block replacing
MLFF and the FFA module [31] replacing DFFD.

The training configuration of the above network is consistent with section 3.4,
and the training and testing sets used for the ablation experiments are I-HAZE
[4], the performance of the above model is shown in Table 3.

Effect of MLFF MLFF is a general-purpose feature extractor that enables
feature reuse and forwards pass without adding additional parameters, compared
to simple stacked convolutional layers, using only dense connections. As can
be seen in Table 3, our proposed MLFF improves the PSNR and SSIM from
23.92dB, 0.904 to 24.52dB, 0.909.

Effect of DFFD The FFA module [31] has already achieved greater success
in dehazing task, and we inherited this idea and further enhanced its capability
by proposing the DFFD to make it a more effective dehazing module. As can
be seen from Table 3, we have obtained an improvement of 1.13dB PSNR and
0.008 SSIM using the DFFD to replace the FFA module [31], which is sufficient
proof that our proposed DFFD module is effective.

Effect of MSFF As opposed to simply feeding features to the decoder, we
propose a simple multi-stream processing module to fully fuse features from
different sources and let the network select the important features, and our
strategy is experimentally proven to be effective.
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Effect of residual group Previous experience tells us that sufficiently deep
networks generally give better performance, so we add the residual group. Ex-
periments have proven this to be effective. As shown in Table 3, the network
obtains a PSNR, SSIM improvement of 1.03dB and 0.045.

Effect of dense connection As shown in Table 3, the PSNR and SSIM of the
model without dense connection is only 21.31 dB and 0.853 respectively. After
adding dense connections to each base module, PSNR and SSIM reach the best,
which shows that dense connections do allow the network features to be passed
on effectively and can make the encoder a good feature extractor.

Table 3. Ablation experiments on the effectiveness of each module.

MLFF MSFF DFFD Dense Connection Residual group PSNR SSIM
− X X X X 23.92 0.904
X × X X X 23.86 0.905
X X − X X 23.39 0.901
X X X × X 21.31 0.853
X X X X × 23.49 0.864
X X X X X 24.52 0.909

5 Conclusion

In this paper, we propose a novel MSF2DN for single image dehazing, which
consists of a multi level feature fusion module(MLFF), a double feature fusion
dehazing module(DFFD), extended from an FFA block using a dense connection
and attention mechanism, and a multi stream feature fusion module to deal with
the features from different stages. Dense connections allow the network to skip
relatively unimportant features such as thin haze or even clear areas, focusing the
main performance of the network on dense haze areas. The ablation experiments
prove that our proposed module is helpful for the improvement of network per-
formance. We evaluate MSF2DN on a synthetic dataset and real-world datasets
and demonstrate that MSF2DN outperforms existing SOTA methods.
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