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Fig. 1. Our method improves image synthesis performance by utilizing multi-scale
information. It can be applied to many models and get better results.

Abstract. Semantic image synthesis aims to translate semantic label
masks to photo-realistic images. Previous methods have limitations that
extract semantic features with limited convolutional kernels and ignores
some crucial information, such as relative positions of pixels. To address
these issues, we propose MUSH, a novel semantic image synthesis model
that utilizes multi-scale information. In the generative network stage, a
multi-scale hierarchical architecture is proposed for feature extraction
and merged successfully with guided sampling operation to enhance se-
mantic image synthesis. Meanwhile, in the discriminative network stage,
the model contains two different modules for feature extraction of seman-
tic masks and real images, respectively, which helps use semantic masks
information more effectively. Furthermore, our proposed model achieves
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the state-of-the-art qualitative evaluation and quantitative metrics on
some challenging datasets. Experimental results show that our method
can be generalized to various models for semantic image synthesis. Our
code is available at https://github.com/WangZC525/MUSH.

Keywords: Image synthesis · Semantic information · Multi-scale hier-
archical architecture.

1 Introduction

The progress of generative adversarial network (GAN) [7] has promoted the de-
velopment of image generation technology. However, it is still challenging to gen-
erate photorealistic images from input data. In this paper, we focus on semantic
image synthesis, which aims to translate semantic label masks to photo-realistic
images.

Previous methods [13, 39] directly feed the semantic label masks to an encoder-
decoder network. Inspired by AdaIN [10], SPADE [27] uses spatially-adaptive
normalization to make semantic information control the generation in normal-
ization layers. This method achieved great success in semantic image synthesis
and has been further improved by many recent methods [35, 4, 14, 50, 38, 26, 22].

Fig. 2. An example of consequences of restricted receptive fields in SPADE-based mod-
els. We take a semantic label map downsampled to 64x64 in the figure for example.
The SPADE-based models have a receptive field of 5x5 (marked with green frame) for
feature extraction of semantic layouts. Then in the layout of the building, all pixels
inside each blue frame have exactly the same value after convolution, and the model
cannot distinguish the relative positions of these pixels in the corresponding objects,
leading to bad performance of image synthesis.

However, the receptive fields for semantic feature extraction in these meth-
ods are limited, which fails to effectively capture multi-scale information and is
unable to distinguish the relative position of each pixel inside its category area,
leading to bad performance especially on classes with large areas. CLADE [34, 35]
gets similar performance by replacing the semantic feature extraction module of
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SPADE by directly mapping each label of the semantic map to the corresponding
parameters, which further proves that the semantic feature extraction module
in SPADE cannot effectively extract the multi-scale spatial information of the
relative positions of pixels inside their categories(see Fig.2).

In addition, the discriminator in previous work [14, 50, 38, 26, 22] takes the
concatenation of the image and the semantic label map in channel direction
as the input. However, the features of them are added after the first layer of
convolution, which can no longer be separated. Moreover, the label map is input
only at the beginning of the network in the way of channel concatenation, so
that its information can be easily lost in normalization layers, the above problems
make it difficult for the network to work according to the label map.

To address above issues, in this paper, we propose a model that utilizes
multi-scale hierarchical architecture to extract semantic features, named MUSH.
The architecture is used in both the generator and the discriminator. In the
generator, it helps capture specific features of each pixel according to its relative
position to improve the performance on classes with large areas. Meanwhile, we
merge a method in which semantic features are extracted by using individual
parameters for each class with it, so as to achieve good performance on classes
with small areas. In the discriminator, we use two different networks to extract
semantic mask features and real images respectively. Thus, the discriminator
can make better use of the semantic information to distinguish between real and
generated images. Because of these strategies, the quality of generated images is
significantly improved (see Fig.1).

The contributions of this paper are summarized as follows: (1) We apply a
network that can effectively extract the multi-scale features of the semantic map
to the generator, so that the generator can recognize the relative positions of all
pixels in each object and refine the structure of the generated objects. (2) We
propose a novel approach to merge two methods of semantic feature extraction
in the generator. (3) We propose a discriminator that extracts the features of
the semantic map and the image separately, so as to better discriminate between
real and generated images according to the semantic map. (4) With the proposed
MUSH, we have achieved better experimental results than the state-of-the-art
methods. And we apply our method to GroupDNet and INADE to verify that
it can be generalized to various models and improve their performance.

2 Related Work

Generative adversarial networks (GANs) [7] have achieved great success
in image generation. It contains two parts: generator and discriminator, which
are respectively used to generate images and distinguish between real and fake
images. CGAN [23] is proposed based on GAN. It generates images according to
restricted input. Our work focuses on CGANs that do semantic image synthesis,
where the input is the semantic label map.
Semantic image synthesis takes semantic label maps as inputs, and synthe-
size photorealistic images according to the maps. Many GAN-based semantic
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image synthesis models [11, 16, 17, 20, 44, 47, 48] have been proposed recently.
Pix2pix [13] and pix2pixHD [39] used an encoder-decoder generator and took
semantic maps as inputs directly. CRN [4] refined the output image by a deep
cascaded network. SPADE [27] replaced batch normalization [12] in pix2pixHD
with spatially adaptive normalization, which has achieved great success in se-
mantic image synthesis. Many approaches have been proposed based on SPADE,
such as GroupDNet [50], LGGAN [38], TSIT [14], SEAN [49], INADE [33], OA-
SIS [30], SESAME [26] etc. GroupDNet used group convolution in the generator
to implement semantically multi-modal image synthesis. LGGAN proposed a
network to generate areas of each category separately. TSIT used a stream to
extract features of semantic label maps. SEAN found a better way to insert style
information to the network based on SPADE. INADE made the model be adap-
tive to instances. OASIS trained the network with only adversarial supervision.
SESAME helped add, manipulate or erase objects. Different from the above
models, our work focuses on the extension of the receptive field for semantic lay-
out feature extraction. Compared with problems that the above models targeted
on, the limitation of the receptive field for semantic feature extraction is more
serious and easy to be ignored.
Encoder-decoder is a popular structure for deep learning in recent years. It
has been applied to many tasks of computer vision. Our semantic map feature
extraction network is based on U-Net [29], which is a special encoder-decoder
network. Feature maps in its decoder concatenate those the same size as them in
encoder by channel, so that the decoder does not forget the encoding information.
In addition, due to the basic structure of the encoder-decoder, decoded feature
maps contain multi-scale features. The above advantages are what we need for
semantic feature extraction. So we propose a semantic feature extraction network
based on U-Net.

3 Method

We propose a novel semantic image synthesis model, MUSH. The model is
trained adversarially and contains modules with multi-scale hierarchical architec-
tures for semantic feature extraction. In the generator, the module helps image
synthesis according to semantic features in various scales. A method using indi-
vidual parameters for each class is merged to it. In the discriminator, the module
helps distinguish between real and generated images according to semantic maps.

3.1 Overall structure of MUSH generator

The generator takes noise as input, and transforms it into an image by convo-
lution, normalization and upsampling. Semantic information are added in the
normalization layers. To avoid the limitation of the receptive field for semantic
feature extraction and get better feature extraction abilities especially for classes
with large areas, we propose a multi-scale hierarchical semantic feature extrac-
tion network and multi-scale feature adaptive normalizations (MSFA-Norm). We
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Fig. 3. The overall framework of MUSH generator. The network transforms noise into
an image through MSFA-Norm residual blocks. In MSFA residual blocks, semantic in-
formation controls the procedure of image generation. The semantic feature extraction
network is built based on encoder-decoder structure. Feature maps in the decoder will
be input into MSFA residual blocks.

adopt the architecture of resnet blocks [8], pack convolution layers and MSFA-
Norm layers into MSFA residual blocks as the main components of the generator
(see Fig.3).

The multi-scale hierarchical architecture for semantic feature extraction is
based on U-Net, which is an encoder-decoder structure. In encoding stage, the
network uses multiple convolutional layers and downsampling layers to get a
small-sized encoded feature map, which makes each pixel in the map contain
information of a large area. In decoding stage, the network takes the encoded map
as input, and outputs multi-scale feature maps from different layers. Therefore
the network contains different levels. Each level processes feature maps in a
specific size, which builds a multi-scale hierarchical architecture. Additionally,
feature maps in the encoder are concatenated to those at the corresponding
locations in the decoder with the same channel number to retain the encoding
information. Feature maps of each level in the decoder are fed to MSFA-Norm.

3.2 MSFA residual block and MSFA-Norm

The generator uses MSFA residual blocks (see Fig.4 (a)) and upsampling alter-
natively to transform noise into image. MSFA-Norms in MSFA residual blocks
do normalization and control image generation with semantic information, so ap-
propriate form of semantic information should be input here. Since feature maps
obtained from the feature extraction network already contains the information
of the semantic label map, it seems reasonable to input them into MSFA-Norms
without the semantic label map itself. However, although the encoder-decoder
extracts features with large receptive fields to achieve good feature extraction
results on semantic categories with large areas, it can hardly perform well on
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Fig. 4. The illustration diagrams of the MSFA residual block (a) and the guided sam-
pling operation (b) we use in the block. MSFA residual blocks contains MSFA-Norms,
ReLU layers and convolutional layers. In addition to the output of the last layer, the
MSFA-Norm also takes the semantic label map and the feature map from the semantic
feature extraction network as input. The guided sampling module contains a trainable
parameter bank to store a corresponding vector for each label. It replaces each pixel in
the semantic label map with the vector corresponding to it during calculation.

semantic categories with small areas. Because of the imbalance of sample quan-
tities for different classes, the network training will be dominated by semantic
classes with large areas, leading to classes with small areas being ignored.

Therefore, in the MSFA-Norm (see Fig.5), we add another method to extract
semantic features by using individual parameters for each class and combine it
to the above mentioned method. Referring to the guided sampling (see Fig.4
(b)) operation in CLADE [34], we maintain a parameter bank which contains a
trainable vector for each category. To do the guided sampling operation, we map
each category in the semantic label map to the corresponding vector to get the
feature map of the input so that the operation is adaptive to different semantic
categories. In this approach, we obtain features by individual parameters for
each class and avoid training perference for classes with large areas.

However, how to combine these two feature extraction methods? We propose
a novel method based on attention values to solve this problem. We obtain a
weighted average of the two methods by taking the calculated attention values
as the weights of them. For the calculation of the attention values, since per-
formance of these methods on each pixel mainly depends on the category the
pixel belongs to, we also use guided sampling to map the semantic layouts to get
the attention maps of the two methods. These two maps contains all attention
values of the two methods on all pixels. Attention values of different categories
vary on these maps.

For the ways in which the two methods influence the input data, we use
affine transformation. The multi-scale semantic feature extraction results will
be convoluted twice to obtain γ1 and β1, which are multiplied and added to the
input respectively. For the other method, γ2 and β2 are obtained through guided
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Fig. 5. Structure of MSFA-Norm. GS refers to the guided sampling operation in Fig.4
(b). The feature map in part 1 refers to features obtained from the feature extraction
network. Part 1 illustrates how multi-scale features influence the input, and part 2
illustrates how semantic features obtained by guided sampling influence the input.
Part 3 shows the process of mergence of results from part 1 and part 2.

sampling, and the affine transformation calculation is the same as above. In
addition, before all of these, the input of MSFA-Norms will be batch normalized
first.

Let W , H, C and N be the width, height, the number of channels of the
feature map to be fed into a MSFA-Norm and the batch size respectively. Value
at pixel pn,c,w,h (n ∈ N, c ∈ C,w ∈ W,h ∈ H) of the feature map will be
transformed into p′n,c,w,h after MSFA-Norms, which is expressed as follows:

p′n,c,w,h = attn,w,h
1 ·

(
γn,c,w,h
1 · p

n,c,w,h − µc

σc
+ βn,c,w,h

1

)
+

attn,w,h
2 ·

(
γn,c,w,h
2 · p

n,c,w,h − µc

σc
+ βn,c,w,h

2

) (1)

Where µc and σc are the mean and standard deviation of the values in channel
c. They are used for batch normalization and expressed as:

µc =
1

NHW

∑
nhw

pn,c,w,h, (2)

σc =

√
1

NHW

∑
nhw

(pn,c,w,h)
2 − (µc)

2
. (3)
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att1 and att2 refer to attention maps of the multi-scale feature extraction method
and the guided sampling method respectively.

Overall, In MSFA-Norm, we use the multi-scale feature extraction results
which perform well on semantic classes with large areas. At the same time, the
features obtained by guided sampling are added, which has better results on
classes with small areas. The two methods are combined through the attention
mechanism to achieve good performance on categories in various sizes of areas.

3.3 MUSH discriminator

Previous works [39, 27] use multi-scale PatchGAN discriminator. The image and
the semantic layout are concatenated by channel and directly input into the
discriminator. But it is hard to distinguish whether information is from images
or semantic layouts after the convolutional operation. In addition, the images
and the semantic layouts have different scales, which causes calculation deviation
after normalization and makes the network lose some semantic information. So
in fact, the discriminator ignores much semantic information. To enable the
discriminator to separate and extract features of the image and the semantic
map while retaining the semantic information in the deep network, we propose
a new discriminator.

Fig. 6. Structure of MUSH discriminator. The semantic label map and image are input
separately into the discriminator. We use a network similar to the semantic feature
extraction network in the generator here to produce multi-scale feature maps. The
decoded semantic features of each layer are concatenated to the features at all levels
of the image, so that input of all convolution layers for images also contains features
of the semantic label map.
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The discriminator no longer uses the concatenation of image and condition as
input like CGAN, but extracts the features of the semantic map separately(see
Fig.6). The extracted features at different levels are concatenated to the fea-
ture maps at the corresponding levels of image feature extraction, so that each
convolutional layer of the discriminator takes both image features and seman-
tic features as input. Therefore the deep network will not forget or discard the
semantic information. Finally, the discriminative result will be more related to
the semantic information.

The feature extraction network of semantic map in the discriminator is sim-
ilar to the network described in 3.1. But it uses fewer layers and convolutional
channels.

3.4 Training scheme and loss functions

Similar to the original GAN training, we train the discriminator and generator
alternately. For the discriminator, we use hinge loss [19, 43] to train referring to
previous works [27]. For the generator, most previous works [27, 21, 38, 49, 50]
use adversarial loss, GAN feature matching loss and perceptual loss for train-
ing. The loss function we use in generator is similar to the above, but the GAN
feature matching loss is removed. GAN feature matching loss sets the difference
between features of the generated image and the real image as the loss. However,
our generator uses multi-scale hierarchical architecture for semantic feature ex-
traction to generate images with finer details, while the detailed representation
of each object is diverse and not unique. Training by feature difference may make
the model parameters vibrate among different samples, so that the model can
be difficult to converge. The training loss functions for the discriminator LD and
for the generator LG are as follows,

LD = −E[min(−1 +D(x), 0)]− E[min(−1−D(G(z,m)), 0)], (4)

LG = −E[D(G(z,m))] + λpLp(G(z,m), x) (5)

Where m, x and z refer to the semantic label map, a real image and the
input noise of generator respectively. G(z,m) denotes the image synthesized
by the generator with noise z and the semantic map as input. Lp(G(z,m), x)
denotes the perceptual loss [15], which is used to minimize the VGG19 [32]
feature difference between the generated image and the real image. λp refers to
the weight of perceptual loss.

4 Experiments

4.1 Implementation details

We apply the spectral norm [24] to layers in both generator and discriminator.
The learning rates of generator and discriminator are 0.0001 and 0.0004 respec-
tively. We adopt Adam optimizer [18] with β1 = 0 and β2 = 0.999. We train
our model on V100 GPUs. The weight of perceptual loss λp in the loss function
is 10.
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4.2 Datasets and metrics

We conduct experiements on COCO-Stuff [2], ADE20K [45], ADE20K-outdoor
and Cityscapes [5]. Many previous works [36, 4, 47, 1, 37, 28, 26, 6, 22] have ex-
periemented on these datasets. COCO-Stuff has 182 semantic categories, con-
taining 118,000 training images and 5,000 validation images. Its huge and diverse
content makes it very challenging. ADE20K contains 20,210 training images and
2,000 validation images, 150 categories in total. It is a challenging dataset, too.
ADE20K-outdoor is a subset of ADE20K. Cityscapes is a dataset of street scene
images. Its training set and validation set contain 3,000 and 500 images respec-
tively. All images are in high resolution, which makes it suitable for testing high
resolution image synthesis of models. We use the Fréchet Inception Distance
(FID) [9, 31] to measure the distribution distance between the model generated
images and the real images. Additionally, we use mean Intersection-over-Union
(mIOU) and pixel accuracy (accu) measured by the state-of-the-art image seg-
mentation networks for each dataset: DeepLabV2 [3, 25] for COCO-Stuff, Uper-
Net101 [46, 40] for ADE20K, and DRN-D-105 [42, 41] for Cityscapes.

4.3 Qualitative results

Fig. 7. Comparison of MUSH with other methods on ADE20K

As shown in Fig.7, we compare our results with the state-of-the-art approach
SPADE and two popular SPADE-based approaches LGGAN and INADE. Ours
have finer details, clearer eages and less generation failure (For example, the
furniture in the first row has straight edges. The building in the second and the
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fourth row are less blurred. The wall in the third row is more clear). In addi-
tion, the model is able to consider the internal representation differentiation of
different locations of complex objects, which makes the objects better generated
in all parts.

4.4 Quantitative results

We use popular semantic image synthesis models in recent years as baselines,
including CRN, pix2pixHD, SPADE, GroupDNet, LGGAN, TSIT and INADE.
SPADE is the state-of-the-art approach.

Table 1. Quantitative comparison of MUSH with other methods. Bold denotes the
best performance. For the mIoU and accu, higher is better. For the FID, lower is
better. Results of GroupDNet, LGGAN, TSIT and INADE are collected by running
the evaluation on our machine.

ADE20K ADE20K-outdoor Cityscapes COCO-Stuff
mIoU Accu FID mIoU Accu FID mIoU Accu FID mIoU Accu FID

CRN 22.4 68.8 73.3 16.5 68.6 99.0 52.4 77.1 104.7 23.7 40.4 70.4
pix2pixHD 20.3 69.2 81.8 17.4 71.6 97.8 58.3 81.4 95.0 14.6 45.8 111.5
SPADE 38.5 79.9 33.9 30.8 82.9 63.3 62.3 81.9 71.8 37.4 67.9 22.6

GroupDNet 28.3 74.7 42.0 n/a n/a n/a 62.5 82.2 50.2 n/a n/a n/a
LGGAN 38.8 80.6 32.2 n/a n/a n/a 64.4 82.9 55.8 n/a n/a n/a
TSIT 37.2 80.3 33.4 n/a n/a n/a 64.0 83.7 55.5 n/a n/a n/a
INADE 37.7 79.9 33.5 n/a n/a n/a 61.2 81.9 49.9 n/a n/a n/a
OASIS 45.0 83.6 30.7 36.2 85.8 55.5 67.7 86.3 49.3 44.5 71.4 16.8

SESAME 45.7 84.9 31.4 n/a n/a n/a 65.8 84.2 51.6 n/a n/a n/a
Ours 39.0 82.5 30.3 33.7 86.7 55.2 66.3 87.2 48.0 36.7 69.3 21.6

As shown in Table 1, our method outperforms most baselines expect OASIS
and SESAME in almost all metrics on each dataset. It achieves great results
especially on small datasets such as Cityscapes and ADE20K-outdoor. However,
it does not get better results than OASIS and SESAME on COCO-Stuff or
ADE20K. Because we used a relatively lightweight semantic feature extraction
network in the experiment so that for big datasets, it does not have sufficient
parameters to extract all global features of semantic label maps with so many
categories. An increase in its scale can help achieve better results. In spite of
these, our model in this scale gets best FID on most datasets except COCO-
Stuff and is still competitive with these models. In addition, we use SPADE as
the backbone of our method in the experiment. A better backbone will help
improve the performance.

4.5 Generalization ability to SPADE-Based methods

We also carried out the improvement experiments of our methods on recent se-
mantic image synthesis models with other functions. We choose two representa-
tive method: GroupDNet [50] and INADE [33]. GroupDNet replaces convolution
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Fig. 8. After being applied to other models, our method can inherit their functions.
MUSH has great performance on multi-modal image synthesis (first row, various sofas
can be synthesized) by being applied to GroupDNet, and can implement instance-level
multi-model image synthesis (second row) by being applied to INADE.

layers in SPADE encoder and generator with group convolution layers, so as to
implement semantically multi-modal image synthesis. INADE uses random val-
ues from parametric probability distributions in denormalization to implement
instance-level multi-model image synthesis. Both of them achieve good perfor-
mance and implement new functions.

Table 2. Generalization ability test of MUSH on GroupDNet and INADE. Bold de-
notes the best performance. All results are collected by running the evaluation on our
machine.

ADE20K Cityscapes
mIoU↑ Accu↑ FID↓ mIoU↑ Accu↑ FID↓

GroupDNet 28.3 74.7 42.0 62.5 82.2 50.2
GroupDNet-MUSH 36.7 78.8 34.8 63.0 82.7 49.0

INADE 37.7 79.9 33.5 61.2 81.9 49.9
INADE-MUSH 38.6 81.5 30.9 64.5 85.3 49.5

We apply MUSH’s multi-scale hierarchical semantic feature extraction mod-
ules to GroupDNet and INADE. Similar to what is described in section 3.2, we
use guided sampling to calculate attention values of multi-scale feature extrac-
tion methods and their original denormalization methods to obtain the output of
normalization layers. The new models not only inherit their functions (see Fig.8),
but also achieve better performance (see Table 2), especially for GroupDNet on
ADE20K. The results show that our method has great generalization ability.
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4.6 Ablations

We conduct the ablation experiments on ADE20K and Cityscapes. These are
ablation configurations on generator architecture and discriminator architecture.
The experimental results and our analysis are as follows.

Table 3. Ablation on generator architecture. Bold denotes the best performance.

ADE20K Cityscapes
Generator architecture mIoU↑ FID↓ mIoU↑ FID↓
MUSH 39.0 30.3 66.3 48.0
MUSH w/o guided sampling 37.0 30.9 63.4 49.5
SPADE 37.2 32.5 62.8 58.6

Ablation on the generator architecture. We train some alternative genera-
tors. The results are shown in Table 3. Compared to SPADE generator, MUSH
generator performs better on both mIoU and FID. We also train a generator
without guided sampling, which means that the guided sampling part for se-
mantic feature extraction and the attention calculation part are eliminated, so
that the MSFA controls image generation only by multi-scale semantic features.
We find that the network performs worse, especially on mIoU. This shows that
the multi-scale hierarchical architecture fails to extract features of classes with
small areas because mIoU calculates the average results of all classes, while most
classes have small areas in images of both two datasets, leading to low mIoU of
its results on them. This also verifies that the method of guided sampling and
the approach we add it here improve the performance.

Table 4. Ablation on discriminator architecture. Bold denotes the best performance.

ADE20K Cityscapes
discriminator architecture mIoU↑ FID↓ mIoU↑ FID↓
MUSH 39.0 30.3 66.3 48.0
MUSH w/ GAN feature match loss 38.0 31.4 63.2 52.7
MUSH w/o VGG loss 33.2 40.5 59.3 63.4
SPADE 38.5 31.2 64.7 52.1

Ablation on the discriminator architecture. As shown in Table 4, com-
pared to the MUSH generator, MUSH discriminator improves less performance
but still performs better than SPADE discriminator. The experimental results
also show that the GAN feature matching loss in MUSH will degrade the per-
formance. When GAN feature matching loss is used, different samples of images
with diversity will make the generator network converge in different directions

4138



14 Z. Wang et al.

in training, resulting in difficulty in model convergence and blurred areas in gen-
erated images. We also get the results that VGG loss is essential in our network.
It is difficult to generate so complex images with adversarial training only, so it
is reasonable that we use features from a pretrained model to guide learning.

5 Conclusions

In this paper, we propose MUSH, a semantic image synthesis method that ex-
tracts semantic features with a multi-scale hierarchical architecture. The feature
extraction network for semantic label maps can calculate an unique value for
each pixel, which benefits generation of classes with large areas. We also merge
a semantic feature extraction method in which individual parameters are used
for each class with it in order to get better results on classes with small ar-
eas. Because of these, MUSH generator performs well on various classes. The
MUSH discriminator extracts features of the semantic label map and the im-
age separately, which makes it better discriminate between real and fake images
according to the semantic label map. MUSH achieves better results than the
state-of-the-art approaches and can be generalized to various models to improve
their performance. However, for large datasets like COCO-Stuff, it is hard for
the proposed network to extract all features of semantic maps. We believe this
is a promising research area.
Acknowledgements This work was supported by the National Key Research
and Development Program of China under Grant 2018YFB2100801.
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