
MatchFormer: Interleaving Attention in
Transformers for Feature Matching

Qing Wang∗, Jiaming Zhang∗, Kailun Yang†,
Kunyu Peng, and Rainer Stiefelhagen

Karlsruhe Institute of Technology, Germany
https://github.com/jamycheung/MatchFormer

Abstract. Local feature matching is a computationally intensive task
at the subpixel level. While detector-based methods coupled with feature
descriptors struggle in low-texture scenes, CNN-based methods with a
sequential extract-to-match pipeline, fail to make use of the matching ca-
pacity of the encoder and tend to overburden the decoder for matching. In
contrast, we propose a novel hierarchical extract-and-match transformer,
termed as MatchFormer. Inside each stage of the hierarchical encoder,
we interleave self-attention for feature extraction and cross-attention for
feature matching, yielding a human-intuitive extract-and-match scheme.
Such a match-aware encoder releases the overloaded decoder and makes
the model highly efficient. Further, combining self- and cross-attention
on multi-scale features in a hierarchical architecture improves matching
robustness, particularly in low-texture indoor scenes or with less outdoor
training data. Thanks to such a strategy, MatchFormer is a multi-win
solution in efficiency, robustness, and precision. Compared to the previ-
ous best method in indoor pose estimation, our lite MatchFormer has
only 45% GFLOPs, yet achieves a +1.3% precision gain and a 41% run-
ning speed boost. The large MatchFormer reaches state-of-the-art on four
different benchmarks, including indoor pose estimation (ScanNet), out-
door pose estimation (MegaDepth), homography estimation and image
matching (HPatch), and visual localization (InLoc).

Keywords: Feature Matching · Vision Transformers

1 Introduction

Matching two or more views of a scene is the core of many basic computer vi-
sion tasks, e.g ., Structure-from-Motion (SfM) [19,24], Simultaneous Localization
and Mapping (SLAM) [4,11], relative pose estimation [16], and visual localiza-
tion [31,37,46], etc. For vision-based matching, classical detector-based meth-
ods (see Fig. 1(a)), coupled with hand-crafted local features [10,30], are com-
putationally intensive due to the high dimensionality of local features [31,55].
Recent works [22,27,42] based on deep learning focus on learning detectors
∗ Equal contribution
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2746

https://github.com/jamycheung/MatchFormer


2 Q. Wang et al.

(a) Detector-based

(c) Extract-and-match

C
N

N

D
ecoder

Im
age pair Im

age pair

M
atch-aw

are Tranform
er

D
etector 

  

(b) Extract-to-match

C
N

N

D
ecoder

Im
age pair

Feature M
ap 

  

D
ecoder

Fig. 1. Feature matching pipelines. While (a) detector-based methods coupled
with feature descriptors, (b) extract-to-match methods fail to make use of the matching
capacity of the encoder. Self- and cross-attention are interleaved inside each stage of
the match-aware transformer to perform a novel (c) extract-and-match pipeline.

and local descriptors using Convolutional Neural Networks (CNNs). Some par-
tial transformer-based methods [36,14] only design an attention-based decoder
and remain the extract-to-match pipeline (see Fig. 1(b)). For instance, while
COTR [14] feeds CNN-extracted features into a transformer-based decoder, Su-
perGlue [32] and LoFTR [36] only apply attention modules atop the decoder.
Overburdening the decoder, yet neglecting the matching capacity of the encoder,
makes the whole model computationally inefficient.

Rethinking local feature matching, in reality, one can perform feature ex-
traction and matching simultaneously by using a pure transformer. We propose
an extract-and-match pipeline shown in Fig. 1(c). Compared to the detector-
based methods and the extract-to-match pipeline, our new scheme is more in
line with human intuition, which learns more respective features of image pairs
while paying attention to their similarities [53]. To this end, a novel transformer
termed MatchFormer is proposed, which helps to achieve multi-wins in preci-
sion, efficiency, and robustness of feature matching. For example, compared to
LoFTR [36] in Fig. 2, MatchFormer with lower GFLOPs is more robust in low-
textured scenes and achieves higher matching number, speed, and accuracy.

More specifically, for improving computational efficiency and the robustness
in matching low-texture scenes, we put forward interleaving self- and cross-
attention in MatchFormer to build a matching-aware encoder. In this way, the
local features of the image itself and the similarities of its paired images can
be learned simultaneously, so called extract-and-match, which relieves the over-
weight decoder and makes the whole model efficient. The cross-attention ar-
ranged in earlier stages of the encoder robustifies feature matching, particu-
larly, in low-texture indoor scenarios or with less training samples outdoors,
which makes MatchFormer more suitable for real-world applications where large-
scale data collection and annotation are infeasible. To extract continuous patch
information and embed location information, a novel positional patch embed-
ding (PosPE) method is designed in the matching-aware encoder, which can
enhance the detection of low-level features. Additionally, the lite and large ver-
sions w.r.t. feature resolutions, each with two efficient attention modules [34,43],
are fully investigated to overcome the massive calculations in transformers when
dealing with fine features. Furthermore, MatchFormer, with a hierarchical trans-
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Fig. 2. Comparison between MatchFormer and LoFTR. With 45% GFLOPs of
LoFTR, our efficient MatchFormer boosts the running speed by 41%, while delivering
more robust matches and a higher matching precision on such a low-texture indoor
scenario. Green color in the figure refers to correct matches and red color to mismatches.

former, conducts multi-level feature extraction in the encoder and multi-scale
feature fusion in the decoder, which contribute to the robustness of matching. Fi-
nally, for the precision, extensive experiments prove that MatchFormer achieves
state-of-the-art performances of indoor location estimation on ScanNet [7], out-
door location estimation on MegaDepth [18], image matching and homography
estimation on HPatches [1], and visual localization on InLoc [37].

In summary, the contributions of this paper include:
– We rethink local feature matching and propose a new extract-and-match

pipeline, which enables synchronization of feature extraction and feature
matching. The optimal combination path is delivered when interleaving self-
and cross-attention modules within each stage of the hierarchical structure
to enhance multi-scale features.

– We propose a novel vision transformer, i.e., MatchFormer, equipped with a
robust hierarchical transformer encoder and a lightweight decoder. Including
lite and large versions and two attention modules, four variants of Match-
Former are investigated.

– We introduce a simple and effective positional patch embedding method, i.e.,
PosPE, which can extract continuous patch information and embed location
information, as well as enhances the detection of low level features.

– MatchFormer achieves state-of-the-art scores on matching low-texture in-
door images and is superior to previous detector-based and extract-to-match
methods in pose estimation, homography estimation, and visual localization.

2 Related Work

Local Feature Matching. Detector-based methods [10,6,13,23] usually include
five steps: detecting interest points, calculating visual descriptors, searching for
nearest neighbor matches, rejecting incorrect matches, and estimating geomet-
ric transformations. In extract-to-match methods [10,27,36,32,17,39,35,28] de-

2748



4 Q. Wang et al.

signed for feature matching, CNNs are normally adopted to learn dense and
discriminative features. CAPS [42] fuses multi-resolution features extracted by
CNNs and obtains the descriptor of each pixel through interpolation. DSM [38]
strengthens detection and refines the descriptors by merging various frames and
multiple scales extracted by CNNs. DRC-Net [17] obtains CNN feature maps of
two different resolutions, generates two 4D matching tensors, and fuses them to
achieve high-confidence feature matching. D2Net [10] obtains valid key points
by detecting the local maximum of CNN features. R2D2 [27] adapts dilated
convolutions [5,47] to maintain image resolution and predict each key points
and descriptors. COTR [14], LoFTR [36], and QuadTree [39] follow sequential
extract-to-match processing. In this work, we consider that feature extraction and
similarity learning through a transformer synchronously, can provide matching-
aware features in each stage of the hierarchical structure.
Vision Transformer. Transformer [9] excels at capturing long-distance depen-
dency [41], making it outstanding in vision tasks such as classification [20,40,48],
detection [3,43,56], semantic segmentation [52,44,50], image enhancement [51],
and image synthesis [12]. For local-feature matching, only attention blocks of
transformers have been used in recent works. For example, SuperGlue [32] and
LoFTR [36] applied self- and cross-attention to process the features which were
extracted from CNNs. Yet, attention can actually function as the backbone mod-
ule for feature extraction instead of only being used in the decoder for CNNs.
This has been verified in ViT [9], but mainly for classification and segmentation
tasks [52,43]. It remains unclear whether it is transferable to the image feature
matching. When a pure transformer framework is used to process local feature
matching, the computation complexity will be exceedingly large. Besides, trans-
formers often lack and miss local feature information [48]. In this paper, we put
forward a fully transformer image matching framework. In our model, we design
positional patch embedding to enhance the feature extraction and introduce
interleaving attention to achieve efficient and robust feature matching.

3 Methodology

3.1 MatchFormer

As illustrated in Fig. 3, MatchFormer employs a hierarchical transformer, which
comprises four stages to generate high-resolution coarse and low-resolution fine
features for local feature matching. In four stages, the self- and cross-attention
are arranged in an interleaving strategy. Each stage consists of two components:
one positional patch embedding (PosPE) module, and a set of efficient atten-
tion modules. Then, the multi-scale features are fused by an FPN-like decoder.
Finally, the coarse and fine features are passed to perform the coarse-to-fine
matching, as introduced in LoFTR [36].
Extract-and-Match Pipeline. Unlike the extract-to-match LoFTR using at-
tention on a single-scale feature map and only after feature extraction, we com-
bine self- and cross-attention inside the transformer-based encoder and apply
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Fig. 3. MatchFormer architecture: (a) The transformer backbone generates high-
resolution coarse features and low-resolution fine features; In (b), each attention block
has interleaving-arranged self-attention (w.r.t. Q, K, V and red arrows) within the
input, and cross-attention (w.r.t. Q, K′, V ′ and alternative green arrows) cross images
(input and input′). Multi-head efficient-attention reduces the computation; Positional
Patch Embedding (PE) completes the patch embedding and the position encoding.

on multiple feature scales (see Fig. 1). The combination of two types of atten-
tion modules enables the model to extract non-local features via self-attention
and explore their similarities via cross-attention simultaneously, so called the
extract-and-match scheme. As a new matching scheme, however, the difficulty
lies in finding an effective and optimal combination strategy while maintaining
the efficiency and robustness of the entire model. Thanks to the hierarchy na-
ture of Transformers [9,43], we obtain two insights: (1) As the feature map at
the shallow stage emphasizes textural information, relatively more self-attention
are applied to extract the feature itself on the early stages. (2) As the feature
map at the deep stage is biased toward semantic information, relatively more
cross-attention are developed to explore the feature similarity on the later stages.
These two observations lead us to design a novel interleaving strategy for joining
self- and cross-attention.
Interleaving Self-/Cross-Attention. As shown in Fig. 3(a), the combina-
tion of self- and cross-attention modules are set at each stage in an interleaving
strategy. Each block in Fig. 3(b) contains N attention modules, where each
attention module is represented as self-attention or alternative cross-attention
according to the input image pair. For self-attention, Q and (K, V ) come from
the same input, so the self-attention is responsible for feature extraction of the
image itself. For cross-attention, (K′, V ′) are from another input′ of the image
pair. Thus, the cross-attention learns the similarity of the image pair, result-
ing a match-aware transformer-based encoder. Within an attention block, self-
attended features are extracted, while the similarity of the feature pair is located
by the cross-attention. The strategy is more human-intuitive, which learns more
respective features of image pairs while paying attention to their similarities.
Positional Patch Embedding (PosPE). Typical transformers [9], split the
image (H×W×3) into patches with size of P×P and then flatten these patches
into sequence with a size of N×C, where N=HW/P 2. The process is difficult
to gather location information around patches. As a result, low-level feature in-
formation cannot be acquired directly through the standard process [48], which
severely restricts the local feature matching. In the case of standard Patch Em-
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Fig. 4. Comparison between different patch embedding modules.

beding (PE) in Fig. 4(a), the independent patch ignores the information around
it and requires additional position encoding at the end. Therefore, we propose a
simple but effective positional patch embedding (PosPE) method for capturing
low feature information with few parameters, as shown in Fig. 4(b). It has a
7×7 convolution layer (with padding 3 and stride 2) in the first stage, and 3×3
convolution layers (all with padding 1 and stride 2) in later stages. A depth-wise
3×3 convolution is added to further enhance local features and encode positional
information by its padding operation. The pixel-wise weights are then scaled by
a sigmoid function σ(·) after the first step of convolution. Besides, our PosPE
includes a first overlapping convolution that captures the continuous patch area
information. PosPE augments the location information of patches and extracts
denser features, which facilitates accurate feature matching.
Preliminaries on Efficient-Attention. After Patch Embedding, the query Q,
key K, and value V are obtained, with the same N×C dimension according to
the input resolution N=H×W . The computation of the traditional attention is
formulated as: softmax((QKT )/

√
d)V , where

√
d is the scaling factor. However,

the product of QKT introduces a O(N2) complexity, which is prohibitive in large
image resolutions and makes the model inefficient. To remedy this problem, we
apply two kinds of efficient attention, i.e., Spatial Efficient Attention (SEA) as in
[43,44] or Linear Attention (LA) as in [34]. Then, O(N2) is reduced to O(N2/R)
or O(N). Hence, larger input feature maps can be well handled and processed
while using a pure transformer-based encoder in the feature matching task.
Multi-scale Feature Fusion. Apart from the interleaving combination, there
are four different stages in our hierarchical transformer encoder, in which the
feature resolution shrinks progressively. Different from previous works [17,14]
considering only the single-scale feature, MatchFormer fuses multi-scale features
to generate dense and match-aware features for feature matching. As shown in
Fig. 3(a), we flexibly adopt an FPN-like decoder in our architecture, because it
can bring two benefits: (1) generating more robust coarse- and fine features for
promoting the final matching; (2) creating a lightweight decoder without making
the whole model computationally complex.

3.2 Model Settings

MatchFormer Variants. MatchFormer is available with its lite and large ver-
sions, as presented in Table 1. For the MatchFormer-lite models, we pick a lower
resolution setting, which greatly increases the matching efficiency and ensures
a certain matching accuracy. Therefore, we set MatchFormer-lite 4-stage fea-
tures in the respective resolution of 1

ri
∈{ 1

4 ,
1
8 ,

1
16 ,

1
32} of the input. To promote
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Table 1. MatchFormer-lite and -large with Linear Attention (LA) and Spa-
tial Efficient Attention (SEA). C: the channel number of feature F ; K, S and P :
the patch size, stride, and padding size of PosPE; E: the expansion ratio of MLP in an
attention block; A: the head number of attention; R: the down-scale ratio of SEA.

Stage MatchFormer-lite MatchFormer-large Ni

F1

H/4×W/4 K=7, S=4, P=3, E=4 H/2×W/2 K=7, S=2, P=3, E=4

C1=128 LA: A=8 ; SEA: A=1, R=4 C1=128 LA: A=8 ; SEA: A=1, R=4 ×3

F2

H/8×W/8 K=3, S=2, P=1, E=4 H/4×W/4 K=3, S=2, P=1, E=4

C2=192 LA: A=8 ; SEA: A=2, R=2 C2=192 LA: A=8 ; SEA: A=2, R=2 ×3

F3

H/16×W/16 K=3, S=2, P=1, E=4 H/8×W/8 K=3, S=2, P=1, E=4

C3=256 LA: A=8 ; SEA: A=4, R=2 C3=256 LA: A=8 ; SEA: A=4, R=2 ×3

F4

H/32×W/32 K=3, S=2, P=1, E=4 H/16×W/16 K=3, S=2, P=1, E=4

C4=512 LA: A=8 ; SEA: A=8, R=1 C4=512 LA: A=8 ; SEA: A=8, R=1 ×3

Output Coarse: H/4×W/4, 128 Coarse: H/2×W/2, 128
Fine: H/8×W/8, 192 Fine: H/8×W/8, 256

context learning for matching, feature embeddings with higher channel num-
bers are beneficial, which are set as Ci∈{128,192,256,512} for four stages. In the
MatchFormer-large models, higher resolution feature maps facilitate accurate
dense matching. Hence, the 1

ri
and Ci are set as { 1

2 ,
1
4 ,

1
8 ,

1
16} and {128,192,256,512}

for the large MatchFormer.
Attention Module Variants. To fully explore the proposed extract-and-match
scheme, each of the two MatchFormer variants has two attention variants. Here,
we mainly investigate Linear Attention (LA) and Spatial Efficient Attention
(SEA). Thus, there are four versions of MatchFormer as presented in Table 1.
We found that they have different capabilities for recognizing features, making
them suitable for various tasks. In the local feature matching, the density of
features is different indoors and outdoors. We study the two kinds of attention
in indoor (in Sec. 4.2) and outdoor (in Sec. 4.3) pose estimation, respectively.

4 Experiments

4.1 Implementation and Datasets

ScanNet. We use ScanNet [7] to train our indoor models. ScanNet is an indoor
RGB-D video dataset with 2.5 million views in 1,513 scans with ground-truth
poses and depth maps. The lack of textures, the ubiquitous self-similarity, and
the considerable changes in viewpoint make ScanNet a challenging dataset for
indoor image matching. Following [32], we select 230 million image pairs with
the size of 640×480 as the training set and 1,500 pairs as the testing set.
MegaDepth. Following [10], we use MegaDepth [18] to train our outdoor mod-
els, which has 1 million internet images of 196 scenarios, and their sparse 3D
point clouds are created by COLMAP [33]. We use 38,300 image pairs from 368
scenarios for training, and the same 1,500 testing pairs from [36] for evaluation.
Implementation Settings. On the indoor dataset ScanNet, MatchFormer is
trained using Adam [15] with initial learning rate and batch size, setting for the
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Table 2. Indoor pose estimation on ScanNet. The AUC of three different thresh-
olds and the average matching precision (P) are evaluated.

Method Pose estimation AUC (%) P@5° @10° @20°

ORB [30]+GMS [2] CVPR’17 5.21 13.65 25.36 72.0
D2-Net [10]+NN CVPR’19 5.25 14.53 27.96 46.7
ContextDesc [22]+RT [21] CVPR’19 6.64 15.01 25.75 51.2
SP [8]+NN CVPRW’18 9.43 21.53 36.40 50.4
SP [8]+PointCN [45] CVPR’18 11.40 25.47 41.41 71.8
SP [8]+OANet [49] ICCV’19 11.76 26.90 43.85 74.0
SP [8]+SuperGlue [32] CVPR’20 16.16 33.81 51.84 84.4
LoFTR [36] CVPR’21 22.06 40.80 57.62 87.9
LoFTR [36]+QuadTree [39] ICLR’22 23.90 43.20 60.30 89.3
MatchFormer-lite-LA 20.42 39.23 56.82 87.7
MatchFormer-lite-SEA 22.89 42.68 60.66 89.2
MatchFormer-large-LA 24.27 43.48 60.55 89.2
MatchFormer-large-SEA 24.31 43.90 61.41 89.5

lite version at 3×10−3 and 4, and for the large version at 3×10−4 and 2. In the
case of the outdoor dataset MegaDepth, MatchFormer is trained using Adam
with initial learning rate and batch size, setting for the lite version at 3×10−3

and 2, and for the large version at 3×10−4 and 1. To compare LoFTR and Match-
Former at different data scales on outdoor pose estimation task, both use 8 A100
GPUs, otherwise use 64 A100 GPUs following LoFTR [36]. We perform Image
Matching, Homography Estimation, and InLoc Visual Localization experiments
using the model trained with MatchFormer-large-LA on MegaDepth.

4.2 Indoor Pose Estimation

Indoor pose estimation is highly difficult due to wide areas devoid of textures, a
high degree of self-similarity, scenes with complicated 3D geometry, and frequent
perspective shifts. Faced with all these challenges, MatchFormer with interleaved
self- and cross-attention modules still functions well as unfolded in the results.
Metrics. Following [32], we provide the area under the cumulative curve (AUC)
of the pose error at three different thresholds (5°, 10°, 20°). The camera pose is
recovered by using RANSAC. We report the matching precision (P), the proba-
bility of a true match if its epipolar is smaller than 5×10−4.
Quantitative Results. As shown in Table 2, MatchFormer demonstrates excep-
tional performance on the low-texture indoor pose estimation task. The match-
ing precision (P) of MatchFormer-large-SEA reaches the state-of-the-art level
of 89.5%. Benefiting from the extract-and-match strategy, MatchFormer-large-
SEA can bring +5.1% improvement over the detector-based SuperGlue, +1.6%
over the extract-to-match LoFTR. Pose estimation AUC of MatchFormer is also
significantly superior to detector-based SuperGlue. Compared to LoFTR, Match-
Former provides a more pronounced pose estimation AUC by boosting (+2.25%,
+3.1%, +3.79%) at three thresholds of (5°, 10°, 20°). The LoFTR model is re-
cently adapted by a complex decoder with QuadTree Attention [39]. However,
MatchFormer maintains its lead (+0.41%,+0.70%,+1.11%) with the extract-
and-match strategy. Additionally, compared to LoFTR, our lightweight MatchFormer-
lite-SEA has only 45% GFLOPs, yet achieves a +1.3% precision gain and a 41%
running speed boost. More details of the efficiency comparison will be presented
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Fig. 5. Qualitative visualization of MatchFormer and LoFTR [36]. MatchFormer
achieves higher matching numbers and more correct matches in low-texture scenes.

Stage 1 Stage 2
Stage 3 Stage 4

Fig. 6. Visualization of self- and cross-attention at 4 stages of MatchFormer.
Cross-attention focuses on learning the similarity across paired images and gradually
refines the matching range, while self-attention focuses on detecting features of the
image itself and enabling long-range dependencies.

in Table 7. Comparing SEA and LA, we found that the spatial scaling operation
in SEA has benefits in handling low-texture features, thus it is more suited for
indoor scenes and provides better results.

Qualitative Results. The indoor matching results are in Fig. 5. In challenging
feature-sparse indoor scenes, it can reliably capture global information to assure
more matches and high accuracy. Thus, the pose solved by matching prediction
has a lower maximum angle error (∆R) and translation error (∆t). Due to the
hierarchical transformer and interleaving-attention design, the receptive field of
MatchFormer exceeds that of CNN-based methods. It confirms that applying
cross-attention modules earlier for learning feature similarity robustifies low-
texture indoor matching, which is in line with our extract-and-match pipeline.

Self- and Cross-attention Visualization. To further investigate the effective-
ness of interleaving attention in MatchFormer, the features of self- and cross-
attention modules in four stages are shown in Fig. 6. Self-attention connects
obscure points with surrounding points, while cross-attention learns relationship
between points across images. Specifically, self-attention enables the query point
to associate surrounding textural features in the shallow stage, and it enables
the query point to connect to semantic features in the deep stage. As the model
deepens, cross-attention will narrow the range of query points detected across
images, rendering the matching much easier and more fine-grained. Finally, these
four stages of features are blended, empowering the model to perform accurate
feature matching in low-texture scenes.
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Table 3. Outdoor pose estimation on MegaDepth. † represents training on dif-
ferent percentages of datasets, which requires 8 GPUs for training.

Method Data Pose estimation AUC (%) Ppercent @5° @10° @20°

SP [8]+SuperGlue [32] CVPR’20 100% 42.18 61.16 75.95 –
DRC-Net [17] NeurIPS’20 100% 27.01 42.96 58.31 –
LoFTR [36] CVPR’21 100% 52.80 69.19 81.18 94.80
MatchFormer-lite-LA 100% 48.74 65.83 78.81 97.55
MatchFormer-lite-SEA 100% 48.97 66.12 79.07 97.52
MatchFormer-large-LA 100% 52.91 (+0.11) 69.74 (+0.55) 82.00 (+0.82) 97.56 (+2.76)

Robustness with less training data and fewer GPU resources:

LoFTR† 10% 38.81 54.53 67.04 83.64
MatchFormer† 10% 42.92 (+4.11) 58.33 (+3.80) 70.34 (+3.30) 85.08 (+1.44)
LoFTR† 30% 47.38 64.77 77.68 91.94
MatchFormer† 30% 49.53 (+2.15) 66.74 (+1.97) 79.43 (+1.75) 94.28 (+2.34)
LoFTR† 50% 48.68 65.49 77.62 92.54
MatchFormer† 50% 50.13 (+1.45) 66.71 (+1.22) 79.01 (+1.39) 94.89 (+2.35)
LoFTR† 70% 49.08 66.03 78.72 93.86
MatchFormer† 70% 51.22 (+2.14) 67.44 (+1.41) 79.73 (+1.01) 95.75 (+1.89)
LoFTR† 100% 50.85 67.56 79.96 95.18
MatchFormer† 100% 53.28 (+2.43) 69.74 (+2.18) 81.83 (+1.87) 96.59 (+1.41)

4.3 Outdoor Pose Estimation

Outdoor pose estimation presents unique challenges compared to indoors. In
particular, outdoor scenes have greater variations in lighting and occlusion. Still,
Matchformer achieves outstanding performance in outdoor scenes.
Metrics. We present the same AUC of the pose error as in the indoor pose
estimation task. The matching precision pipolar distance threshold is 1×10−4.
Results. As shown in Table 3, MatchFormer noticeably surpasses the detector-
based SuperGlue and DRC-Net, as well as the extract-to-match LoFTR. Our
MatchFormer-lite-LA model also achieves great performance. It can deliver a
higher matching precision (P) with 97.55%, despite being much lighter. Note
that MatchFormer-large-SEA using the partially optimized SEA will raise an
out-of-memory issue. Here, we recommend to use the memory-efficient LA in
the high-resolution outdoor scenes. Our MatchFormer-large-LA model achieves
consistent state-of-the-art performances on both metrics of AUC and P.
Robustness and Resource-Efficiency. It is reasonable to evaluate the robust-
ness of the model when only less training data and fewer training resources are
available in practical applications. Therefore, we further train MatchFormer-
large-LA and LoFTR (marked with † in Table 3) using different percentages
of datasets and on fewer resources with 8 GPUs. First, compared to LoFTR†,
MatchFormer† obtains consistent improvements on different constrained data
scales, i.e., the first {10,30,50,70,100} percentages of the original dataset. It
proves that MatchFormer has more promise in data-hungry real-world appli-
cations. Second, training with the same 100% data on different GPU resources,
LoFTR† has (−1.95%,−1.63%,−1.22%) performance drops at three AUC thresh-
olds of (5°, 10°, 20°) when using 8 GPUs instead of 64 GPUs. In contrast, Match-
Former maintains the stable and surprising accuracy, which shows that our
method is more resource-friendly and easier to reproduce.
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MatchFormer 4.8K / 4.8K
Patch2Pix [54] ICCV’21 1.2K / 1.2K

LoFTR [36] CVPR’21 4.7K / 4.7K

SP [8]+SuperGlue [32] CVPR’20 0.5K / 0.9K

ASLFeat [23]+NN CVPR’20 4.0K / 2.0K

SP [8]+ CAPS [42]+NN ECCV’20 2.0K / 1.1K

SparseNCNet [29] ECCV’20 2.0K / 2.0K

D2Net [10]+NN CVPR’19 6.0K / 2.5K

R2D2 [27]+NN NeurIPS’19 5.0K / 1.6K

HAN [26]+HN++ [25]+NN ECCV’18 3.9K / 2.0K

SP [8]+NN CVPRW’18 2.0K / 1.1K

Fig. 7. Image matching on HPatches. The mean matching accuracy (MMA) at
thresholds from [1,10] pixels, and the number of matches and features are reported.

4.4 Image Matching
Metrics. On the standard image matching task of HPatches sequences based on
sequences with illumination or viewpoint change, we evaluate MatchFormer by
detecting correspondences between pairs of input images. Following the experi-
mental setup of Patch2Pix [54], we report the mean matching accuracy (MMA)
at thresholds from [1,10] pixels, and the number of matches and features.
Results. Fig. 7 illustrates the results for the experiments with illumination and
viewpoint changes, along with the MMA. Under varying illumination conditions,
our method provides the best performance. On overall (the threshold ≤3 pix-
els), Matchformer performs optimally at precision levels. While other methods
can only account for lighting changes or viewing angles changes, MatchFormer
is reasonably compatible and maintains its functionality when the viewpoint
changes. Thanks to the match-aware encoder, a larger number of features and
matches, both 4.8K, are obtained. The results reveal the effectiveness of our
extract-and-match strategy for image matching.

4.5 Homography Estimation
Metrics. To evaluate how the matches contribute to the accuracy of the geomet-
ric relations estimation, we assess MatchFormer in the homography estimation
on HPatches benchmark [1]. The proportion of accurately predicted homogra-
phies with an average corner error distance less than 1/3/5 pixels is reported.
Results. As shown in Table 4, the large-LA MatchFormer achieves excellent
performance on the HPatches benchmark in homography estimation. It reaches
the best level in the face of illumination variations, delivering the accuracy of
(0.75,0.95,0.98) at 1/3/5 pixel errors. Additionally, MatchFormer obtains highest
number of matches with 4.8K. To evaluate the robustness and resource-efficiency,
we also execute experiments with varying dataset percentages in Table 4. Com-
pared to LoFTR†, MatchFormer† performs significantly better in homography
experiments, and is relatively unaffected by the limited training data. Match-
Former trained with 30% data has a better performance in illumination varia-
tions. One reason is that the accuracy of the geometry relation estimation is re-
lated to accurate matches, as well as the distribution and number of matches [54].
Training with fewer GPUs on 100% data, while LoFTR† has noticeable perfor-
mance drops, MatchFormer† maintains stable performance and requires fewer
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Table 4. Homography estimation on HPatches. † represents training on different
percentages of datasets, which requires 8 GPUs for training.

Method Data Overall Illumination Viewpoint #Matchespercent Accuracy (%,ϵ < 1/3/5 px)

SP [8] CVPRW’18 100% 0.46/0.78/0.85 0.57/0.92/0.97 0.35/0.65/0.74 1.1K
D2Net [10] CVPR’19 100% 0.38/0.71/0.82 0.66/0.95/0.98 0.12/0.49/0.67 2.5K
R2D2 [27] NeurIPS’19 100% 0.47/0.77/0.82 0.63/0.93/0.98 0.32/0.64/0.70 1.6K
ASLFeat [23] CVPR’20 100% 0.48/0.81/0.88 0.62/0.94/0.98 0.34/0.69/0.78 2.0K
ASLFeat [23] CVPR’20 + ClusterGNN [35] 100% 0.51/0.83/0.89 0.61/0.95/0.98 0.42/0.72/0.82 -
SP [8] + SuperGlue [32] CVPR’20 100% 0.51/0.82/0.89 0.60/0.92/0.98 0.42/0.71/0.81 0.5K
SP [8] + CAPS [42] ECCV’20 100% 0.49/0.79/0.86 0.62/0.93/0.98 0.36/0.65/0.75 1.1K
SP [8] + ClusterGNN [35] CVPR’22 100% 0.52/0.84/0.90 0.61/0.93/0.98 0.44/0.74/0.81 -
SIFT + CAPS [42] ECCV’20 100% 0.36/0.77/0.85 0.48/0.89/0.95 0.26/0.65/0.76 1.5K
SparseNCNet [29] ECCV’20 100% 0.36/0.65/0.76 0.62/0.92/0.97 0.13/0.40/0.58 2.0K
Patch2Pix [54] CVPR’21 100% 0.50/0.79/0.87 0.71/0.95/0.98 0.30/0.64/0.76 1.3K
LoFTR [36] CVPR’21 100% 0.55/0.81/0.86 0.74/0.95/0.98 0.38/0.69/0.76 4.7K
MatchFormer 100% 0.55/0.81/0.87 0.75/0.95/0.98 0.37/0.68/0.78 4.8K

Robustness with less training data and fewer GPU resources:

LoFTR† 10% 0.50/0.78/0.84 0.74/0.95/0.98 0.28/0.63/0.71 3.6K
MatchFormer† 10% 0.50/0.78/0.84 0.72/0.93/0.97 0.30/0.64/0.71 4.0K
LoFTR† 30% 0.52/0.80/0.86 0.74/0.96/0.98 0.32/0.66/0.74 4.1K
MatchFormer† 30% 0.57/0.81/0.86 0.78/0.97/0.98 0.36/0.66/0.74 4.4K
LoFTR† 50% 0.52/0.79/0.85 0.73/0.95/0.98 0.32/0.65/0.73 4.1K
MatchFormer† 50% 0.54/0.78/0.85 0.75/0.95/0.98 0.35/0.62/0.74 4.5K
LoFTR† 70% 0.52/0.79/0.85 0.74/0.94/0.98 0.31/0.64/0.73 4.1K
MatchFormer† 70% 0.55/0.79/0.86 0.76/0.94/0.98 0.35/0.64/0.75 4.5K
LoFTR† 100% 0.52/0.79/0.86 0.74/0.93/0.98 0.32/0.65/0.74 4.2K
MatchFormer† 100% 0.54/0.79/0.87 0.74/0.95/0.98 0.36/0.66/0.77 4.5K

Table 5. Visual localization on InLoc. We report the percentage of correctly lo-
calized queries under specific error thresholds, following the HLoc [31] pipeline.

Method Localized Queries (%, 0.25m/0.5m/1.0m, 10◦)
DUC1 DUC2

SP [8] + NN CVPRW’18 40.4 / 58.1 / 69.7 42.0 / 58.8 / 69.5
D2Net [10] + NN CVPR’19 38.4 / 56.1 / 71.2 37.4 / 55.0 / 64.9
R2D2 [27] + NN NeurIPS’19 36.4 / 57.6 / 74.2 45.0 / 60.3 / 67.9
SP [8] + SuperGlue [32] CVPR’20 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
SP [8] + CAPS [42] + NN ECCV’20 40.9 / 60.6 / 72.7 43.5 / 58.8 / 68.7
SP [8] + ClusterGNN [35] CVPR’22 47.5 / 69.7 / 79.8 53.4 / 77.1 / 84.7
ASLFeat [23] + SuperGlue [32] CVPR’20 51.5 / 66.7 / 75.8 53.4 / 76.3 / 84.0
ASLFeat [23] + ClusterGNN [35] CVPR’22 52.5 / 68.7 / 76.8 55.0 / 76.0 / 82.4

SIFT + CAPS [42] + NN ECCV’20 38.4 / 56.6 / 70.7 35.1 / 48.9 / 58.8
SparseNCNet [29] ECCV’20 41.9 / 62.1 / 72.7 35.1 / 48.1 / 55.0
Patch2Pix [54] CVPR’21 44.4 / 66.7 / 78.3 49.6 / 64.9 / 72.5
LoFTR-OT [36] CVPR’21 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
MatchFormer 46.5 / 73.2 / 85.9 55.7 / 71.8 / 81.7

training resources for success. These experiments sufficiently prove that our new
extract-and-match pipeline has higher robustness than the extract-to-match one
used in previous methods.

4.6 Visual Localization on InLoc

Metrics. A robust local feature matching method ensures accurate visual local-
ization. To evaluate our local feature matching method MatchFormer, we test it
on the InLoc [37] benchmark for visual localization. Referring to SuperGlue [32],
we utilize MatchFormer as the feature matching step to complete the visual
localization task along the localization pipeline HLoc [31].
Results. As shown in Table 5, on the InLoc benchmark for visual localization,
MatchFormer reaches a level comparable to the current state of art methods
SuperGlue and LoFTR. Interleaving attention in the MatchFormer backbone
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Table 6. Ablation study with different struc-
tures, attention arrangements and PEs.

Method Self Cross PosPE StdPE Pose estimation AUC (%) P
@5° @10° @20°

LoFTR [36] CVPR’21 15.47 31.72 48.63 82.6
1 Convolution 7.36 18.17 32.21 76.1
2 Self-only ✓ 9.48 22.68 38.10 81.3
3 Cross-only ✓ 13.88 29.98 46.89 84.4
4 Sequential ✓ ✓ 14.75 31.03 48.27 85.0
5 Sequential ✓ ✓ ✓ 17.32 34.85 52.71 85.8
6 Interleaving ✓ ✓ ✓ 16.53 34.63 52.31 85.9
7 Interleaving ✓ ✓ ✓ 18.01 35.87 53.46 86.7

Table 7. Efficiency analysis. Run-
time in ms, GFLOPs @ 640×480.

Method #Params GFLOPs Runtime P

LoFTR [36] 11 307 202 87.9

LoFTR [36]+QuadTree [39] 13 393 234 89.3

MatchFormer-lite-LA 22 97 140 87.7

MatchFormer-large-LA 22 389 246 87.8

MatchFormer-lite-SEA 23 140 118 89.2

MatchFormer-large-SEA 23 414 390 89.5

enables robust local feature matching in indoor scenes with large low-texture
areas and repetitive structures.

4.7 MatchFormer Structural Study
Performing the extract-and-match strategy in a pure transformer, the layout
between self- and cross-attention co-existing inside each stage of MatchFormer
is a critical point to achieve efficient and robust feature matching. The structural
study is conducted to explore the sweet spot to arrange attention modules.
Ablation Study of Interleaving. To verify the rationality of the model de-
sign, models in Table 6 are ablated according to different backbone structures,
attention arrangements and patch embedding modules. Models are trained with
10% data of ScanNet. Such a setting is one for efficiency and another is that the
robustness between models is validated with less training data. By comparing
1 and 2 , we establish that the transformer with self-attention significantly im-
proves the matching precision (P, +5.2%) compared to utilizing the convolutional
extractor, which shows the long-range dependency can robustify the local feature
matching. While the structure in 2 contains only self-attention in between, the
structure in 3 with cross-attention can bring a +3.1% performance gain, which
demonstrates the benefits of leaning feature similarity inside a transformer. The
sequential structures ( 4 5 ) apply pure self-attention in the early stages and
pure cross-attention in the later stages, while our interleaving structures ( 6 7 )
apply mix self-/cross-attention in each stage. Our structures improve the overall
performance, which adaptively inserts self-/cross-attention in multi-scale stages,
and it is in line with our statement about the extract-and-match strategy in
transformers. The comparison between 4 and 5 indicates that the proposed
PosPE is capable of completing the fixed position encoding and it comes with
a +0.8% gain. Our PosPE in 7 can enhance the accuracy by +0.8% compared
with standard PE (StdPE) in 6 , demonstrating that PosPE is more robust. Our
interleaving model in 7 surpasses LoFTR by a large margin (+4.1% @ P), indi-
cating that MatchFormer is more robust, not only in low-texture indoor scenes,
but also with less training data.
Feature Maps Comparison. As shown in Fig. 8, we visualize the feature maps
of the ablation experiment 2 and 7 of Table 6. In both shallow and deep lay-
ers, our interleaving attention structure enables MatchFormer to capture dense
features and learn feature similarities, such as the paired regions highlighted
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Fig. 8. Feature maps comparison between interleaving and self-only attention in
shallow and deep layers (from the last layer of the stage-2 and stage-3, respectively).

in yellow. The model with only self-attention tends to extract features in each
individual image and neglects the matching-aware features across images, i.e.,
without cross-attention weights. As a result, the self-attention model without
cross-attention model will be incapable of matching local features when the im-
age features are sparse (i.e., low-texture scenes).
Runtime and Efficiency Analysis. Aside from verifying the effectiveness
of arranging self- and cross-attention in an interleaving manner, MatchFormer
is still supposed to be computationally efficient. The comparisons of efficiency
results including the #Parameters (M), GFLOPs, and runtime (ms) are detailed
in Table 7. Based on a 3080Ti GPU, MatchFormer is compared against the
previous transformer-based LoFTR. We quantify the average runtime it takes
for MatchFormer to complete a single image pair on the ScanNet test set, which
includes 1,500 pairs of images in the resolution of 640×480. MatchFormer-lite-
SEA is clearly much faster, speeding up the matching process by 41%, although a
higher number of parameters is required. Additionally, we compute the GFLOPs
of the two approaches to determine their computing costs and storage demands.
The GFLOPs of MatchFormer-lite-SEA are only 45% of those of LoFTR. Yet,
our model achieves a +1.3% precision gain. Thanks to interleaving self- and cross-
attention in between, our lite and large MatchFormers achieve state-of-the-art
performances with respect to previous methods on various tasks.

5 Conclusions

Rethinking local feature matching from a novel extract-and-match perspective
with transformers, we propose the MatchFormer framework equipped with a
matching-aware encoder by interleaving self- and cross-attention for performing
feature extraction and feature similarity learning synchronously. MatchFormer
circumvents involving a complex decoder as used in the extract-to-match meth-
ods and adopts a lightweight FPN-like decoder to fuse multi-scale features. Ex-
periments show that MatchFormer achieves state-of-the-art performances in in-
door and outdoor pose estimation on the ScanNet and MegaDepth benchmarks,
and in both homography estimation and image matching on the HPatches bench-
mark, as well as in visual localization on the InLoc benchmark.
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