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Abstract. The current methods for multi-view-based 3D object recog-
nition have the problem of losing the correlation between views and ren-
dering 3D objects with multi-view redundancy. This makes it difficult to
improve recognition performance and unnecessarily increases the com-
putational cost and running time of the network. Especially in the case
of limited computing resources, the recognition performance is further
affected. Our study developed an optimal viewset pooling transformer
(OVPT) method for efficient and accurate 3D object recognition. The
OVPT method constructs the optimal viewset based on information en-
tropy to reduce the redundancy of the multi-view scheme. We used con-
volutional neural network (CNN) to extract the multi-view low-level local
features of the optimal viewset. Embedding class token into the headers
of multi-view low-level local features and splicing with position encoding
generates local-view token sequences. This sequence was trained parallel
with a pooling transformer to generate a local view information token
sequence. At the same time, the global class token captured the global
feature information of the local view token sequence. The two were ag-
gregated next into a single compact 3D global feature descriptor. On
two public benchmarks, ModelNet10 and ModelNet40, for each 3D ob-
ject we only need a smaller number of optimal viewsets, achieving an
overall recognition accuracy (OA) of 99.33% and 97.48%, respectively.
Compared with other deep learning methods, our method still achieves
state-of-the-art performance with limited computational resources. Our
source code is available at https://github.com/shepherds001/OVPT.

1 Introduction

With the rapid development of 3D acquisition technology, 3D scanners, depth
scanners, and 3D cameras have become popular and inexpensive. The acquisi-
tion of 3D data such as point clouds and meshes has become more convenient
and accurate [1]. These factors have promoted the widespread application of 3D
data–based object recognition techniques in the fields of environment perception
for autonomous driving [2], object recognition for robots [3], and scene under-
standing for augmented reality [4]. Therefore, 3D object recognition has become
a hotspot for current research.
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Fig. 1. Comparison with the state-of-the-art approaches in terms of recognition per-
formance, and the number of views required per 3D object.

Deep learning–based methods have become mainstream research techniques
for 3D object recognition tasks. In general, these methods can be divided accord-
ing to the type of data input to the deep neural network: voxel-based methods
[5–12], point-cloud-based methods [13–20], and multi-view-based methods [21–
30].

Multi-view-based methods render 3D data objects into multiple 2D views,
so they no longer need to rely on complex 3D features. Instead, the rendered
multi-views are fed into multiple well-established image classification networks
to extract multi-view low-level local features. Finally, the multi-view low-level
local features are aggregated into global descriptors to complete the 3D ob-
ject recognition task. Especially when 3D objects are occluded, such methods
can complement each other’s detailed features of 3D objects according to views
from different perspectives. Compared with voxel-based and point cloud-based
methods, the multi-view-based method achieves the best 3D object recognition
performance.

However, this type of method still has the shortcomings that feature informa-
tion cannot be extracted for all views simultaneously during training and that
related feature information between multiple views cannot be efficiently cap-
tured. In addition, there is redundancy when rendering 3D objects into multiple
views. The relevant feature information between multiple views is indispensable
for aggregating the multi-view local features into a compact global descriptor.
The omission of these relevant features is why it is difficult to improve the
recognition accuracy of this type of method. The view redundancy problem in-
creases unnecessary network running time and affects final recognition accuracy.
This paper researches this and proposes the optimal viewset pooling transformer
(OVPT) method. Our main contributions are summarized as follows:

– The method to construct the optimal viewset based on information en-
tropy solves the view redundancy problem of the multi-viewpoint rendering
method [24], which reduces computational cost of the network.
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– The proposed multi-view low-level local feature token sequence generation
method introduces transformers into 3D object recognition tasks. This method
combining transformers and CNNs is able to process all views and capture
relevant features among views while maintaining strong inductive bias capa-
bility.

– The pooling transformer-based global descriptor method can improve the in-
sufficient local feature aggregation ability for insufficient transformer train-
ing with small dataset. This method is able to aggregate multi-view low-level
features coming from local and global respectively into a compact global de-
scriptor.

– We conducted extensive experiments on ModelNet10 and ModelNet40 datasets
to verify the performance our OVPT method. This OVPT method can
achieve respectively 99.33% and 97.48% of overall recognition accuracy (OA)
in two datasets, only requiring a smaller number of optimal viewsets. Com-
pared with other state-of-the-art methods, our OVPT network achieves the
best performance.

2 Related Work

Voxel-based Methods. VoxNet [5] uses 3D CNN to extract voxelized 3D object
features and processes non-overlapping voxels through max pooling. However, it
cannot compactly represent the structure of 3D objects. Therefore, Kd-network
[9] was proposed. It creates a structural graph of 3D objects based on a Kd-tree
structure, and computes a sequence of hierarchical representations in a feed-
forward bottom-up fashion. Its network structure occupies less memory and
is more computationally efficient, but loses information about local geometry.
These voxel-based methods solve the problems of large memory footprint and
long training time of point cloud voxelization, but still suffer from the problems
of lost information and high computational cost.

Point Cloud-based Methods. Point cloud voxelization inevitably loses in-
formation that may be essential. Some methods consider processing point clouds
directly. PointNet [13] was the earliest method to process point clouds directly. It
uses T-Net to perform an affine transformation on the input point matrix, and
extract each point feature through a multi-layer perceptron. But it could not
capture the local neighborhood information between points. Thus, PointNet++
[14] was developed, which constructs local neighborhood subsets by introducing
a hierarchical neural network, and then extracted local neighborhood features
based on PointNet. PointNet++ solved the local neighborhood information ex-
traction of PointNet to a certain extent. Dynamic Graph CNN (DGCNN) [19]
uses EdgeConv to build a dynamic graph convolutional neural network for object
recognition. EdgeConv could extract local domain feature information, and the
local shape features of the extracted point cloud could keep the arrangement in-
variance. Although the point cloud-based method can directly process the point
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cloud to reduce the loss of information, its network is often complex, the training
time is long, and the final recognition accuracy is not high enough.

Multi-view-based Methods.Multi-view-based approaches render 3D data
objects into multiple 2D views, so they no longer need to rely on complex 3D
features. This class of methods achieves the best 3D object recognition perfor-
mance. Multi-view Convolutional Neural Networks (MVCNN) [21] employs a
2D CNN network to process rendered multiple views individually. MVCNN then
uses view pooling to combine information from multiple views into a compact
shape descriptor. However, it lost the position information of the views when
pooling multiple views. Multi-view convolutional neural network (GVCNN) [23]
mines intra-group similarity and inter-group distinguishability between views by
grouping multi-view features to enhance the capture of location information.
Hierarchical Multi-View Context Modeling (HMVCM) [30] adopted adaptive
calculation of feature weights to aggregate features into compact 3D object de-
scriptors. This type of hierarchical multi-view context modeling used a module
that combined a CNN and a Bidirectional Long Short-Term Memory (Bi-LSTM)
network to learn the visual context features of a single view and its neighbor-
hood. This network had an overall recognition accuracy (OA) on the ModelNet40
dataset of 94.57%. However, it did not consider the local features of all views
in parallel during training, and lost relevant information between views, so the
aggregated global descriptors were not sufficiently compact. Its 3D object recog-
nition accuracy has room for improvement.

3 Methods

The OVPT network proposed in this paper is shown in Fig. 2. OVPT has three
parts: (a) Optimal viewset construction based on information entropy; (b) Multi-
view low-level local feature token sequence generation; (c) Global descriptor
generation based on the pooling transformer.

3.1 Optimal Viewset Construction based on Information Entropy

The input stage of the OVPT network renders 3D objects (represented by point
cloud or meshes) into multiple 2D views. This study selected a mesh represen-
tation with higher accuracy for 3D object recognition. Of course, 3D objects in
the form of point clouds can also be reconstructed into mesh forms [31–33]. The
specific process is as follows:

Multi-view Acquisition. For a 3D object O, different 2D rendering views
V = {v1, ...vi..., vN} can be obtained by setting the camera in different positions,
where vi represents the view taken from the i-th viewpoint, vi ∈ RC×H×W .

[v1, ...vi..., vN ] = Render(O) (1)

We use the dodecahedron camera viewpoint setting [24]. It places the 3D
object in the center of the dodecahedron then sets the camera viewpoint at the
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Fig. 2. The architecture of the proposed optimal viewset pooling transformer (OVPT).

vertices of the dodecahedron. This setup evenly distributes the camera view-
points in 3D space, capturing as much global spatial information as possible
and reducing information loss. However, among the 20 views rendered in this
way, there are always duplicates. This may lead to redundant features being ex-
tracted by the deep neural network and increase the running time of the network,
eventually decreasing the accuracy of the recognition.

Optimal Viewset Construction. Information entropy can highlight the
grayscale information for the pixel position in the view and the comprehensive
characteristics of the grayscale distribution in the pixel neighborhood. Assuming
a given amount of information contained in the view, information entropy can
be an effective means to evaluate view quality. Aiming at the problem of repet-
itive in the viewpoint settings of the dodecahedron camera, we introduce the
information entropy [34] of 2D views as an evaluation criterion to construct the
optimal viewset to reduce redundant views. Different from the previous view-
point selection methods based on information entropy [35, 36], our method does
not require human intervention and only considers the quality of the view itself
without calculating the projected area of the viewpoint, which is more reliable.
Dodecahedron camera viewpoint settings and optimal viewset are shown in Fig.
3. The optimal viewset is constructed as follows:

(1) Information entropy calculation of N views (N = 20): Hi represents the
information entropy of the i-th view vi. The specific calculation is shown in
formulas (2) and (3):

Pa,b = f(a, b)/W ·H (2)

Hi = −
∑255

a=0
Pa,blogPa,b (3)

where (a, b) is a binary group, a represents the gray value of the center in a sliding
window, and b is the average gray value of the center pixel in the window. Pa,b

is the probability that (a, b) appears in the full view vi. f(a, b) is the number of
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Fig. 3. Dodecahedron camera viewpoint settings [24] and optimal viewset.

times the binary group (a, b) appears in the full view vi. W and H represent the
width and height of the view.

(2) Rank the information entropy values Hi(i = 1, ..., N,N = 20). (3) Con-
struct the optimal viewset: The views with the best information entropy ranking
n (n < N, n = 6, 9 in this paper) are regarded as the optimal viewset. When
n = 1 in the optimal viewset, the single view with the highest information en-
tropy value is selected, which is called the optimal view.

3.2 Multi-View Low-level Local Feature Token Sequence Generation

Because the transformer was first proposed for natural language processing,
its input requirements are two-dimensional matrix sequences. For the optimal
viewset V = {v1, ...vi..., vn}, vi ∈ RC×H×W , where n is the number of views, C
is the number of channels,H is the height of the image, andW is the width of the
image. Therefore, the obtained view cannot be directly input to the transformer,
and it needs to be flattened into a local view token sequenceX = {x1, ...xi..., xn}.
xi represents the local view token generated by the i-th view, xi ∈ R1×D, where
D is the constant latent vector size used in all transformer layers. To this end,
this paper proposes a multi-view low-level local feature token sequence genera-
tion method. The specific process is as follows:

Low-level Local Feature Extraction. We used multiple CNNs pretrained
on ImageNet [37] to extract low-level local features of multi-view V = {v1, ...vi, ...vn}.
Any well-established 2D image classification network can be used as a multi-view
low-level feature extractor.

Local View Token Sequence Generation. After the multi-view low-level
local features are extracted, a local view token sequence X = {x1, ...xi..., xn} is
generated by embedding.

Addition of Initialized Class Token and Position Encoding. After
obtaining the local view token sequence X = {x1, ...xi..., xn}, it is also necessary
to add an initialized class token xclass [38] to the header of the local view token
sequence, and concatenate them with position encoding Epos [38]. where xclass
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is a random initial value that matches the dimension of the local view token,
xclass ∈ R1×D , Epos is used to save location information from different view-
points xi, Epos ∈ R(n+1)×D. Finally, the multi-view low-level local feature token
sequence X0 can be generated.

X0 = [xclass;x1, ...xi..., xn]⊕ Epos, X0 ∈ R(n+1)×D (4)

3.3 Global Descriptor Generation based on the Pooling Transformer

The method uses a pooling transformer to aggregate X0 into one compact 3D
global descriptor in two steps:

Global Feature Information Generation based on Transformer. The
generation of the global feature information has three steps: layer normaliza-
tion [39] processing; multi-head multi-view attention calculation; and residual
connection and the use of multi-layer perceptron:

(1) Layer Normalization Processing: X0 is input to the pooling transformer
as a sequence of multi-view low-level local feature tokens. Before the calculating
Multi-Head Multi-View Attention (MHMVA), X0 undergoes Layer Normaliza-
tion (LN), see formula (5):

X̂0 = LN(X0), X̂0 ∈ R(n+1)×D (5)

(2) Multi-Head Multi-View Attention Calculation: We use the normalized
X̂0 to generate Query , Key , and V alue through linear transformations. MH-
MVA performs multiple parallel Multi-View Attention (MVA). The inputs qi,
ki and vi of each MVA can be obtained by equally dividing the Query, Key

and V alue vectors, where qi ∈ R(n+1)×
DQ
N , ki ∈ R(n+1)×DK

N , vi ∈ R(n+1)×DV
N ,

DQ = DK = DV represents the vector dimension of Query, Key and Value
respectively. We obtained multiple MVA according to the number of heads N ,
and multiple subspaces can be formed. Therefore, MHMVA can pay to take the
information of various parts of the input features into account. The calculation
result XMVA

i of each MVA is obtained from formula (6):

XMVA
i = Softmax(

qik
T
i√

DK/N
)vi, X

MVA
i ∈ R(n+1)×DK

N (6)

Concat is performed on each XMVA
i after calculation, and the MHMVA

calculation is finally completed after a linear transformation, as shown in formula
(7):

XMHMVA = hΘ(

N∑
i=1

XMVA
i ), XMHMVA ∈ R(n+1)×D (7)

where hΘ represents a linear function with dropout.
(3) Residual Connection and the Use of Multi-Layer Perceptrons: TheXMHMVA

obtained after the MHMVA calculation uses residual connections [40] to avoid
vanishing gradients.

X1 = XMHMVA +X0, X1 ∈ R(n+1)×D (8)
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After X1 is obtained, it is also processed by layer normalization and input
to a multi-layer perceptron (MLP). Because MHMVA does not fit the complex
process sufficiently, MLP is added after them to enhance the model’s general-
ization. The MLP consists of linear layers that use the GELU [41] activation
function shown in formula (9):

MLP (x) = GELU(W1x+ b1)W2 + b2 (9)

where W1 and b1 are the weights of the first fully connected layer, W2 and b2
are the weights of the second fully connected layer, and x represents the input
feature information.

There is also a residual connection between the output of MLP and X1, and
the calculation is given by formula (10):

X̂1 = MLP (LN(X1)) +X1 (10)

The final X̂1 is the output of global feature information generation based on
the transformer method, where X̂1 ∈ R(n+1)×D. It consists of a global class to-
ken x̂class and the local view information token sequence {x̂1, ...x̂i..., x̂n}, where
x̂class ∈ R1×D, x̂i ∈ R1×D. The global class token x̂class stores the global feature
information of the local view token sequence.

Local View Information Token Sequence Aggregation based on
Pooling. After parallel transformer training, the global class token x̂class saves
the global feature information of the local view token sequence, but the single
best local view information token may be lost. It is very efficient to aggregate this
part of the information into a 3D global descriptor. Our local view information
token sequence aggregation based on the pooling method can solve this prob-
lem. It can simultaneously capture the single best local view information token
while preserving the global feature information of the local view token sequence.
This method pools the local view information token sequence {x̂1, ...x̂i..., x̂n}
to obtain the best local view information token then splices the best local view
information token and the global class token x̂class. After these processes, we can
aggregate multi-view low-level local feature token sequences locally and globally,
then generate a more compact 3D global descriptor Y , Y ∈ R1×D. The 3D global
descriptor is input to the head layer to complete the object recognition task.

Y = max[x̂1, ...x̂i..., x̂n] + x̂class (11)

4 Experimental Results and Discussion

4.1 Dataset

ModelNet [6] is a widely used 3D object recognition dataset, popular for its
diverse categories, clear shapes, and well-built advantages. The two benchmark
datasets ModelNet40 and ModelNet10 are its subsets. Among them, ModelNet40
consists of 40 categories (such as airplanes, cars, plants, and lights), with 12,311
CAD models, including 9,843 training samples and 2,468 test samples. Model-
Net10 consists of 10 categories, with 4,899 CAD models, including 3,991 training
samples and 908 test samples.
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4.2 Implementation Details

We conducted extensive comparative experiments using PyCharm on a com-
puter with the Windows10 operating system. The relevant configuration of this
computer is as follows: (1) Central Processing Unit (CPU) was an Intel(R) Xeon
CPU @2.80 GHz, (2) Graphic Processing Unit (GPU) was RTX2080, (3) Ran-
dom Access Memory (RAM) was 64.0 GB, and (4) Pytorch 1.6 was used. For all
our experiments, the learning rate was initialized to 0.0001, the epoch was set
to 20, the batch size is set to 8 by default. On ModelNet10 and ModelNet40, the
CNNs are resnet34 [40] and densenet121 [42], respectively. We used the Adam
[43] algorithm to optimize the network structure based on the learning rate de-
cay and the L2 regularization weight decay strategy to avoid overfitting in our
network.

4.3 The Influence of the Number of Views

When 3D objects are rendered into multiple 2D views, the number of views
has different effects on the object recognition performance of the network. We
selected eight different view numbers to quantitatively analyze the recognition
accuracy of the OVPT method on ModelNet40 (including 1, 3, 6, 9, 12 and 15
views selected using the optimal viewset construction method based on informa-
tion entropy, and the batch size is uniformly set to 8).

Fig. 4. Recognition performance with different numbers of views.

The object recognition performance of the OVPT method with different num-
ber of views is shown in Figure 4. We can find that more views are not necessarily
conducive to 3D object recognition. That is, the object recognition performance
can’t always improve with the increase of the number of views. On the Model-
Net40 dataset, when the number of views n <= 6, the recognition accuracy is

4452



10 W. Wang et al.

proportional to the number of views. When 6 < n <= 15, the recognition per-
formance generally appears a downward trend with the increase of the number
of views. This experimental result verifies our proposal: the 20 views of the 3D
object obtained by the dodecahedron viewpoint method have redundancy, that
is, the features of these views have repeated parts. Redundant view features will
lead to the degradation of the object recognition performance of the network.

Fig. 5. Optimal viewset construction method based on information entropy.

The proposed optimal viewset construction method solves this problem (see
Fig. 5). On the ModelNet40 dataset, selecting the top six views according to the
information entropy value as the best viewset, the OVPT method achieves the
best OA of 97.48% and AA of 96.74%. Compared with 97.03% OA and 95.66%
AA obtained by 15 views, this result is improved by 0.45% and 1.08%.

4.4 The Influence of Viewset Information Entropy Ranking

We further evaluate the effectiveness about the proposed method of constructing
the optimal viewset based on information entropy. While ensuring that the num-
ber of views n (n=1, 3, 6, 9) is consistent, We construct viewsets with random,
uniform viewpoint selection and top-n and bottom-n viewsets with information
entropy ranking, respectively. Table 1 is our experimental result.

Table 1. Comparison of different viewpoint selection methods (ModelNet40).

Number of views (n) 1 view 3 views 6 views 9 views

Bottom-n 91.97 95.62 97.16 96.67
Random-n 93.31 96.83 97.12 96.63
Uniform-n 94.04 96.88 97.04 97.11
Top-n 95.82 96.92 97.48 97.28

It can be found that the object recognition performance of top-n viewsets
is always better than random, uniform and bottom-n viewsets. Especially when
the number of views n is fixed to 1, the OVPT method performance for bottom-n
viewset and the top-n viewset has a large gap. For example, the OVPT method
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achieves 91.97% OA with the bottom-n viewset (n = 1), which is much lower
than the top-n viewset (n = 1). Their difference is 3.85%. This is because when
the number of views n is set to 1, the bottom n viewsets and the top n viewsets
select the view with the 20th and 1st information entropy ranking, respectively.
Obviously their information entropy difference is larger, which means that the
top-n viewset contains more visual features to improve the recognition perfor-
mance.

4.5 The Influence of the Pooling Transformer block

We tried 3 different model settings on ModelNet40 to evaluate the impact of
pooling transformers on recognition performance. As shown in table 2, we do
not need a larger pooling transformer model due to the optimal viewset we
build. We achieve the best performance under the tiny model, which means less
computational cost. The size of the tiny model is only 29.7MB, which is more
lightweight than other model settings.

Table 2. The Influence of the Pooling Transformer block.

Model Hidden Size Heads OA (%) AA (%) Model Size

tiny 192 3 97.48 96.74 29.7MB
small 384 6 97.20 96.16 35.6MB
base 768 12 97.28 96.13 57.4MB

Table 3. Ablation study.

Optimal Viewset Transformer Pooling Transformer OA (%) AA (%)

✓ 98.45 98.26
✓ 98.78 98.66

✓ ✓ 99.33 99.21

4.6 Ablation Study

We performed an ablation study on the OVPT network on ModelNet10. The
results experiment are shown in Table 3. It can be found that the best recog-
nition performance (99.33% for OA and 99.21% for AA) is achieved with our
optimal viewset and pooling transformer method. The main reason is that the
optimal viewset solves the redundancy problem of current viewpoint rendering
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methods. At the same time, the pooling transformer method solves the prob-
lem of insufficient local feature aggregation ability of the transformer, which can
obtain the feature information of all local view token sequences from local and
global aggregation respectively.

4.7 Model Complexity

The results of our experiments comparing model complexity with other meth-
ods are shown in Table 4. It can be found that our OVPT method outperforms
these enumerated methods in both time and space complexity. In terms of space
complexity, the model size of our OVPT method is 29.7MB, and the model sizes
of MVCNN and CARNet are 44.8MB and 45.7MB, respectively. It can be seen
that the model size of OVPT is reduced by 35% compared to the previous SOTA
method CARNet. Even though CARNet uses ResNet18 as the multi-view fea-
ture extractor, we use DenseNet121 which is more complex than ResNet18. This
is because in the subsequent part of OVPT, which requires only one Tiny Pool-
ing Transformer block (see Fig. 2) to aggregate multi-view features, CARNet
also contains more smaller hand-designed components. In terms of time com-
plexity, the running time of our OVPT method is 0.10 seconds, and the running
times of MVCNN and CARNet are 0.12 seconds and 0.20 seconds, respectively.
Obviously, the running time of our OVPT method is the shortest among these
methods, and only needs half of the running time of the previous SOTA method
CARNet.

Table 4. Model size and running time comparison (ModelNet40).

Model Model Size Running Time Relative Time Cost

MVCNN [21] 44.8 MB 0.12 seconds 0.6 ×
CARNet [44] 45.7 MB 0.20 seconds 1 ×
OVPT (Ours) 29.7 MB 0.10 seconds 0.5 ×

4.8 Visual Analysis of Confusion Matrix

We use confusion matrix to visually analyze the recognition performance of the
OVPT method on the ModelNet40 dataset. It can help us understand which
categories are easier or harder to identify. The values on the diagonal of the
confusion matrix represent the number of correct identifications, and the values
outside the diagonal indicate the number of incorrect identifications. When the
value outside the diagonal of the category is lower, it means that the OVPT
method is more accurate in identifying the category. As shown in Figure 6,
OVPT achieves 100% recognition accuracy on categories such as airplane, bed,
and car. Of course, there are also some mis-judgments like cup, night stand and
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vase. For the vase object containing 100 samples, 4 samples were misjudged
as lamps. We attribute this to the fact that some objects have similar visual
features, leading to in model recognition errors. Notably, OVPT has excellent
recognition performance in most categories with complex visual features.

Fig. 6. Confusion Matrix.

4.9 Comparsions with State-of-the-Art Methods

As seen in the Table 5, the OVPT method achieves the state-of-the-art recogni-
tion accuracy on the ModelNet10 dataset with OA of 99.33% and AA of 99.21%.
Compared with the CARNet [44] method, OVPT improves OA by 0.32%. How-
ever, we only need nine views of each 3D object to accomplish the object recog-
nition task. Compared with other multi-view-based methods, the view number
is also minimal, which helps reduce computational cost and running time. We
can also find that our OVPT method outperforms other point cloud-based and
voxel-based methods.

On ModelNet40, the Transformer architecture of MVT [45] follows DeiT’s
setting [46] to solve the problem of insufficient local feature aggregation capabil-
ity of the transformer on smaller-scale datasets, and requires stacking multiple
local-global Transformer blocks (12 blocks in total) for 3D objects identify. When
20 views of each 3D object are input, the OA reaches 97.50%. Our OVPT method
also can achieve close to its recognition accuracy (OA reaches 97.48%). However,
one our proposed pooling transformer block and 6 views of each 3D object are
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only employed, which are much less than MVT. CARNet [44] combines the do-
decahedron view rendering method and the knn search method to exploit the
latent correspondence of views and viewpoints to aggregate shape features in
communication. In contrast, our OVPT method is simpler and easier to use.

Table 5. Recognition performance comparison with present state-of-the-art methods.

Methods Input Modality ModelNet40 ModelNet10
OA (%) AA (%) OA (%) AA (%)

3D ShapeNets [6] Voxel - 77.32 - 83.54
VoxNet [5] Voxel - 83.00 - 92.00
O-CNN [8] Voxel 90.60 - - -
PointNet [13] Point Cloud 89.20 86.20 - -
PointNet++ [14] Point Cloud 91.90 - - -
DGCNN [19] Point Cloud 93.50 90.70 - -
MVCNN [21] 12 Views 92.10 89.90 - -
HMVCM [30] 12 Views 94.57 - 95.70 -
MHBN [47] 6 Views 94.70 93.10 95.00 95.00
RotationNet [24] 20 Views 97.37 95.84 98.46 95.99
MVT [45] 20 Views 97.50 - 99.30 -
CARNet [44] 20 Views 97.73 - 99.01 -
OVPT (Ours) 1 View 95.82 94.30 98.45 97.98
OVPT (Ours) 6 Views 97.48 96.74 98.89 98.88
OVPT (Ours) 9 Views 97.28 95.90 99.33 99.21

5 Conclusion

This paper proposes an OVPT network for efficient, accurate 3D object recog-
nition tasks. Compared with other deep learning methods, OVPT introduces
information entropy to solve the problem of redundancy when rendering 3D ob-
jects into multiple views. The pooling transformer can efficiently capture the
relevant feature information between multiple views and realize the global and
local aggregation of multi-view low-level local feature token sequences into com-
pact 3D global descriptors. We conducted a series of experiments on two popular
ModelNet datasets, and the results show that OVPT achieves state-of-the-art
performance while using the least number of views. Our method significantly
improves the accuracy and efficiency of 3D object recognition tasks and reduces
the computational cost, and is especially suitable for computationally resource-
constrained environments. This method can be widely used in areas such as
autonomous driving, augmented reality, interior design, and robotics.
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