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Abstract. Previous relation-based losses in person re-identification (ReI-
D) typically comprise two sequential steps: they firstly sample both pos-
itive pair and negative pair and then deploy constraints to simultane-
ously improve intra-identity compactness and inter-identity separability.
However, existing relation-based losses usually place emphasis on ex-
ploring the relation between images and therefore consider only several
pairs during each optimization. This inevitably leads to different con-
vergence status for pairs of the same kind and brings about the intra-
pair variance problem. Accordingly, we propose a novel Relation-Aware
(RA) loss to address the intra-pair variance via exploring the informa-
tive relation across pairs. In brief, we introduce a macro-constraint and
a micro-constraint. The macro-constraint encourages the separation of
positive pair and negative pair via pushing far apart the two “center-
s” of the positive pair and the negative pair. The “center” of each kind
of pair are obtained via averaging all the pairs of the same kind. The
micro-constraint further enhances the compactness by minimizing the
discrepancies among pairs of the same kind. The two constraints work
cooperatively to relieve the intra-pair variance and improve the quali-
ty of pedestriansąŕ representation. Results of extensive experiments on
three widely used ReID benchmarks, i.e., Market-1501, DukeMTMC-
ReID and CUHK03, demonstrate that the RA loss brings improvements
over existing relation-based losses.

Keywords: Deep learning · Person re-identification · Metric learning.

1 Introduction

Person re-identification (ReID) intends to retrieve pedestrian images belonging
to the same identity from viewpoints across multiple cameras. In recent years,
? Corresponding author
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due to the widespread range of potential applications in video surveillance, e.g.,
multi-camera tracking [60] and forensic search [54, 64], ReID has drawn a lot of
attention from both academia and industry [8, 15, 43–45, 47, 57, 70].

The key to robust ReID lies in high-quality representation for pedestrian im-
age. Recently, many loss functions have been proposed to improve the quality
of pedestrians representation and achieve superior performance [4, 6, 13, 16, 33,
35, 41, 51, 63]. Among them, a kind of loss functions that explore the relation
between pedestrian images emerge and become popular [4, 6, 13, 16, 33, 41, 27].
In common, existing relation-based loss functions typically comprise two steps.
First, they sample structures from a batch of pedestrian images. The structure
commonly contains two categorizes of pairs, i.e., the positive pair and negative
pair that comprise two pedestrian images with identical identity and different
identities, respectively. Second, the losses improve both intra-identity compact-
ness and the inter-identity separability via deploying constraints on the two kinds
of pairs. For example, as one of the most widely-used relation-based loss in ReID,
the triplet loss [16, 31] samples triplet from a batch of pedestrian images. Each
triplet comprises one positive pair and one negative pair. Afterwards, the triplet
loss enlarges intra-identity similarity while shrinking inter-identity similarity via
encouraging the distance between positive pair and negative pair4 to be greater
than a predefined threshold. Besides, the contrastive loss [6, 13] directly samples
positive pairs and negative pairs from a batch of pedestrian images, and then
minimizes the embedding distance of positive pairs but demands the distance of
negative pairs to be consistently larger than a predefined threshold.

However, although brings performance improvements, during optimization,
existing relation-based losses [16, 31] typically increase the distance between in-
dividual pairs. As a result, the consideration of only several pairs usually leads to
the intra-pair variance problem: pairs of the same kind show significant variation.
More specifically, as illustrated in Fig. 1(a,b,c), the positive pairs have significan-
t variance in appearance similarity, due to viewpoint variations and inaccurate
detection. Besides, appearance similarity of the negative pairs presented in Fig.
1(d,e,f) also varies, since the two pedestrians in different pairs may wear similar
or dissimilar clothes. Accordingly, we propose a novel Relation-Aware (RA) loss
which relieves the intra-pair variance via exploring the relation across pairs from
both macro- and micro-perspectives.

Though several subsequent methods proposed to utilize information from
more pairs [4, 33], the global cues from all pairs are not sufficiently explored.
Accordingly, we propose the macro-constraint to improve the separation between
positive pairs and negative pairs from a global perspective. In brief, the macro-
constraint pushes far apart the two “centers” of the two kinds of pairs. More
specifically, at first, we average the distance of all pairs of the same kind as
the corresponding “center”. Afterwards, distance between the two “centers” is
encouraged to be larger than a per-defined threshold. By using this method, the

4 In this paper, the distance of one pair denotes the distance between the two pedes-
trian images contained in this pair. In comparison, the distance between two pairs
indicates the difference value in the two distances of the two pairs.
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Relation-Aware Loss 3

Fig. 1. Illustration of the challenges of intra-pair variance in ReID. (a, b, c) Three
positive pairs show high, moderate and low similarity in pedestrian appearance, re-
spectively. (d, e, f) Three negative pairs show high, moderate and low similarity in
pedestrian appearance, respectively.

macro-constraint is able to explore the useful information from all pairs sampled
from a batch; therefore it is more effective in improving the separation between
positive pairs and negative pairs and therefore stabilizes the training procedure.
Since the introduced constraint optimizes pairs from a global perspective; we
therefore name it macro-constraint.

We further propose the micro-constraint to minimize the discrepancies among
the positive pairs and negative pairs. As presented in Fig. 1, there exist significant
intra-pair variance for both kinds of pairs. Accordingly, in order to enhance the
compactness of each kind of pairs, we impose constraint on these “unqualified”
pairs, which denotes these pairs that away from the corresponding “center”. More
specifically, we drives these “unqualifie” pairs within both kinds to be close to
the corresponding “center” to a certain extent. By this way, the micro-constraint
is able to explicitly alleviate the intra-pair variance; and therefore improves the
generalization ability of the pedestrian representation. Besides, different with the
macro-constraint which optimizes pairs from a global perspective, this constraint
is imposed on individual pairs; therefore we name it micro-constraint.

In conclusion, the macro- and micro-constraints are complementary to each
other and work cooperatively to relieve the intra-pair variance and therefore
improve the quality of pedestrian representation. From the methodological point
of view, the contributions of this work can be summarized as follows:

• First, to the best of our knowledge, this is the first attempt to study the
intra-pair variance from a comprehensive perspective for robust ReID.

• Second, we propose a novel and simple-yet-effect loss named RA loss, which
releives the intra-pair variance via exploring the informative relation across
pairs from both macro- and micro-perspectives.
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• Third, we demonstrate the effectiveness of the proposed RA loss on three
popular large-scale ReID benchmarks, i.e., Market-1501[60], DukeMTMC-
ReID[64] and CUHK03[22], and the results show that RA loss brings signif-
icant improvements over existing relation-based losses.

2 Related Works

2.1 Person Re-identification

Over the past few years, deep learning-based methods [8, 42, 38, 5, 18, 11, 46, 50,
49] have come to dominate in the ReID community. We here categorize existing
deep learning-based ReID methods into two groups: the methods based on fea-
ture learning and the methods using metric learning, according to the manner
adopted to improve the quality of pedestrian representation.

Feature learning-based ReID. Previous methods belonging to this cate-
gory typically target on learning discriminative holistic representation for pedes-
trian image [5, 17, 23, 62, 2, 67, 53, 68, 3, 28]. However, the holistic representation-
based approaches usually suffer from the overfitting problem [47, 38, 26]. Accord-
ingly, part-level representations [8, 57, 38, 34, 37] have been adopted for robust
ReID, as their features contain fine-grained information to distinguish identi-
ty. In common, existing part-level representations-based approaches usually use
some auxiliary tools, e.g., pose estimators [26, 59, 21], human parsing algorithms
[70, 12, 19] or attention modules [45, 68, 58] to infer the body parts’ regions, from
which the part-level representations are subsequently extracted.

Metric learning-based ReID. According to the manner to employ su-
pervision during the training stage, methods in this category can be further
subdivided into two categories, i.e., approaches that optimized with identity-
level labels [51, 63, 36, 52] and methods using pair-wise labels [4, 16, 33, 41]. The
former methods typically see ReID as an image classification task [63, 36] and
employ classification losses to optimize the similarity between representations
of pedestrian images and the identity-related weight vectors. Unfortunately, the
classification losses may harm the generalization ability of pedestrian representa-
tions, as classification losses in ReID usually encourage features to overfit to the
identities. However, ReID is actually a zero-shot task: the identities encountered
during testing has no overlap with that in the training stage.

In order to enhance the generalization ability of pedestrian representation,
subsequent works [16, 33, 41] attempted to explore the relation across pedestrian
images and formulate pair-wise labels as supervision during the training stage.
In common, existing relation-based losses typically comprise two steps. First,
they adopt various strategies to construct loss-specific structures [16, 33, 41, 31].
Second, constraints are designed in order to improve both intra-identity com-
pactness and inter-identity discrepancy. For example, the triplet loss [16] first
samples triplet which contains a positive pair and a negative pair, then pushes
away the distance of the negative pair to be larger than that of the positive
pair. Moreover, quadruplet loss [4] proposed to generalizes the triplet loss via
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Fig. 2. Distribution of the positive pairs (green dots) and negative pairs (red dots). (a)
Significant intra-pair variance for the pairs of the same kind. (b) The macro-constraint
improves the separation between positive pairs and negative pairs. (c) The micro-
constraint enhances the compactness of each of the two kinds of pairs. Pairs in this and
the next figure are demonstrated in the two-dimensional space for better illustration.
The vertical coordinates has no indication.

introducing another negative pair for better approximation of the inter-identity
distance. However, although brings performance improvements, existing relation-
based loss functions consider only several pairs; therefore the relation across pairs
are not sufficiently explored.

In comparison, we deploy constraints on all of the positive and negative
pairs from both macro- and micro-perspectives; therefore, we make use of the
informative relation across pairs in a more comprehensive manner.

2.2 Intra-pair Variance

A few previous methods [35, 55, 20] have attempted to study the intra-pair vari-
ance problem. For example, [55] introduced an intra-pair loss which learns a
class-independent distance metric by minimizing the intra-pair variance in both
positive and negative pairs. Besides, [35] addressed the intra-pair variance via
setting up a definite optimization target for all pairs of the same kind. After-
wards, it utilized the re-weighting strategy to highlight the less-optimized pairs
in order to benefit the deep feature learning with flexible optimization.

We propose RA loss, which directly pushes apart the positive pair and the
negative pair from a comperhensive perspective, and promotes the compactness
of each kind of pairs via deploying constraint on each individual pair.

3 Method

3.1 Intra-pair Variance in ReID

Existing loss functions in ReID commonly lay emphasis on exploring the relation
between pedestrian images, and only several pairs are taken into consideration
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during each optimization. As a result, this type of local constraint for the relation
across pairs usually brings the intra-pair variance, i.e., ambiguous convergence
status for pairs of the same kind.

As illustrated in Fig. 2(a), three positive pairs inherently show high, moder-
ate and low similarity in pedestrian appearance, respectively. Moreover, existing
relation-based loss functions introduce no constraint to encourage the distance of
the three pairs to be consistent. Therefore, after optimized by existing relation-
based loss functions, the three positive pairs may get into different convergence
status: for example, the distance of them are 0.9, 0.7 and 0.3, respectively. Sim-
ilarly, the distance of three negative pairs in Fig. 2(a) also obviously different
and show significant intra-pair variance.

3.2 The Macro-constraint

The macro-constraint targets on improving the separation between positive pairs
and negative pairs from a global perspective. To this end, the macro-constraint
comprises two sequential steps to explore the informative cues from all the pos-
itive and negative pairs that sampled from a batch.

First, the macro-constraint respectively computes the “center” for both the
category of positive pairs and negative pairs via averaging the distances of all
the pairs within each of the two categories, as follows:

Cpos =
1

|P|

|P|∑
i=1

D(fp1

i , fp2

i ), (1)

Cneg =
1

|N |

|N |∑
i=1

D(fn1
i , fn2

i ). (2)

Here P and N represent the set of positive pairs and negative pairs that are sam-
pled from the same batch, respectively. Besides, |P| and |N | denotes the number
of elements in P and N , respectively. At last, D(fp1

i , fp2

i ) and D(fn1
i , fn2

i ) in-
dicates the cosine distance between two pedestrian representations for the i-th
positive pair (fp1

i , fp2

i ) in P and the i-th negative pair (fn1
i , fn2

i ) in N , respec-
tively.

Second, in order to improve the separation between positive pairs and nega-
tive pairs, the macro-constraint encourages the distance between the two “cen-
ters” to be larger than a per-defined margin, as follows:

Lmacro = [Cpos − Cneg + α]+, (3)

where α represents the margin of the proposed macro-constraint. Besides, [·]+ =
max(·, 0) denotes the hinge loss.

During each optimization, previous methods [16, 33, 41] commonly utilize the
information from a part of pairs; therefore, they improve the separation between
only several positive pairs and negative pairs. Compared with them, the proposed
macro-constraint shows its superiority in taking full advantage of the compre-
hensive cues from all the pairs and improves the separation between positive
pairs and negative pairs from a global perspective.
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Fig. 3. (a) The macro-constraint pushes away the two “centers” of positive pairs and
negative pairs. Rectangles without and with black border represent the “centers” before
and after macro-constraint. (b) The micro-constraint encourages pairs within each
category to be close to the corresponding decision boundary, which is denoted by the
green/red vertical lines. Dots without and with black border represent the pairs before
and after micro-constraint.

3.3 The Micro-constraint

We further propose the micro-constraint, which is complementary to the macro-
constraint, to explicitly address the intra-pair variance. We can observe that, as
presented in Fig. 1, due to the significant variance in appearance similarity, the
distance of pairs within the same category varies. Accordingly, we propose the
micro-constraint to explicitly minimize the discrepancies among pairs for both
the category of positive pair and negative pair. As illustrated in Fig. 3(b), the
micro-constraint is imposed on a part of individual pairs. More specifically, the
micro-constraint consists two sequential steps.

First, we identify the pairs on which the micro-constraint should be deployed.
We name these pairs as “unqualified” pairs. Intuitively, in order to address the
intra-pair variance, it seems reasonable to encourage all pairs of the same kind
to be close to corresponding “center”. However, the above constraint is too rigid
and unreasonable. This is because the distance of different pairs are inherently
inconsistent, as illustrated in Fig. 1. Besides, it is also counterintuitive to further
increase distance of these positive pairs whose distance is already smaller than
its corresponding “center” (Cpos), and decrease distance of these negative pairs
whose distance is already larger than its corresponding “center” (Cneg).

Based on the above analysis, as presented in Fig. 3(b), the sets of “unqualified”
pairs for the positive pairs and negative pairs are defined respectively as:

P̂ = {(fp1

i , fp2

i ) ∈ P : D(fp1

i , fp2

i ) > (Cpos + β · Spos)} , (4)

N̂ = {(fn1
i , fn2

i ) ∈ N : D(fn1
i , fn2

i ) < (Cneg + β · Sneg)} . (5)

Here Spos and Sneg denotes the standard deviation for the category of positive
pair and negative pair, respectively. β is a hyper-parameter which determines
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the decision boundaries of the micro-constraint. Please refer to Fig. 3(b) for a
clear illustration of the decision boundaries.

Second, we encourage the pairs in P̂ and N̂ to be close to the corresponding
decision boundary for better intra-pair compactness. More specifically, as illus-
trated in Fig. 3(b), the micro-constraint deploys constraint on the pairs in P̂
and N̂ , as follows:

Lpos
micro =

1

|P̂|

|P̂|∑
i=1

{D(fp1

i , fp2

i )− (Cpos + β · Spos)} , (6)

Lneg
micro =

1

|N̂ |

|N̂ |∑
i=1

{(Cneg + β · Sneg)−D(fn1
i , fn2

i )} . (7)

Based the above, the micro-constraint is summarized as follows:

Lmicro = Lpos
micro + L

neg
micro. (8)

Finally, the proposed RA loss which comprises both macro-constraint and
micro-constraint is formulated as follows:

LRA = Lmacro + λ1Lmicro. (9)

Here λ1, whose value is set to 1 for the sake of simplicity, indicates the hyper-
parameter which balances the macro-constraint and micro-constraint.

3.4 Person ReID via RA Loss

During the training stage, the proposed RA loss is deployed on the ReID feature
extractor (i.e., the PCB model [38]) and optimized simultaneously with the
popular Cross-Entropy (CE) loss as well as the triplet loss. Therefore, the overall
objective function can be written as:

L = LID + λ2LTP + λ3LRA. (10)

Here LID and LTP represents the cross-entropy loss and triplet loss, respectively.
λ2 and λ3 are represents the weights of loss functions. For the sake of simplicity,
they are consistently set to 1.

During the testing stage, the cosine metric is adopted in order to measure
the similarity between two pedestrian representations f1 and f2:

ρ =
f1

Tf2
‖f1‖ ‖f2‖

. (11)

Here ‖∗‖ indicates the L2 norm of ∗.
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4 Experiments

4.1 Datasets and Evaluation Protocols

In order to verify the effectiveness of RA loss, we perform extensive experiments
on three large-scale ReID benchmarks, i.e., Market-1501 [60], DukeMTMC-ReID
[64] and CUHK03 [22]. The official protocol for each database is respectively fol-
lowed. The widely utilized Rank-1 accuracy and mean Average Precision (mAP)
are consistently adopted as metrics for performance evaluation.

Market-1501 includes images of 1,501 identities. A total of 12,936 images
of 751 identities are utilized as the training set, while images of the other 750
identities are used for testing. The testing set is further split into a gallery set
containing 19,732 images and a query set including the other 3,368 images.

DukeMTMC-reID comprises pedestrian images belonging to 1,404 identi-
ties. This dataset is divided into a training set containing 16,522 images belong-
ing to 702 identities, and a testing set comprising images of the remaining 702
identities. Similar to that of Market-1501, the testing set is further subdivided
into a gallery set of 17,661 images and a query set of 2,268 images.

CUHK03 contains 14,097 images of 1,467 identities in total. This dataset
provides both hand-labeled and DPM-detected bounding boxes. We follow the
train/test protocol proposed in [65] to split this dataset into a training set of
767 identities and a testing set of the remaining 700 identities.

4.2 Implementation Details

We use Pytorch to implement the proposed RA loss and adopt PCB [38], one of
the most popular part-level representation-based approach in ReID, to extract
the pedestrian representations. Besides, in this paper, we denote the PCB model
which optimized with the CE loss and triplet loss as the baseline model. We
implement the PCB model and the triplet loss following [47]. For the proposed
RA loss, we empirically set the hyper-parameters α (in Eq. 3) and β (in Eq. 6
and Eq. 7) to 0.5 and 1, respectively.

During training, all images are resized to 384× 128 pixels. The training sets
of all three datasets are augmented by means of offline translation [22], online
horizontal flipping, and random erasing [66] with ratio 0.5. We construct a batch
as follows: each batch comprises 6 identities and each identity has 8 random
sampled images; therefore the size of a batch is 48. The stochastic gradient
descent optimizer with a weight decay of 5 × 10−4 and a momentum [39] value
of 0.9 is utilized for model optimization. The PCB model is fine-tuned from the
IDE model [61] and trained in an end-to-end manner for 70 epochs, with the
learning rate is initially set to 0.01 and then multiplied by 0.1 every 20 epochs.

4.3 Ablation Study

In this subsection, we first validate the effectiveness of the macro- and micro-
constraints. Afterwards, we evaluate the values of two important hyper-parameters
and conclude this subsection by evaluating the universality of RA Loss.
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Fig. 4. Distribution of the positive pairs (green) and negative pairs (red) for: (a) base-
line, (b) macro-constraint (c) RA loss. Values of the horizontal and vertical coordinates
denotes the distance and number of pairs within each histogram, respectively.

Table 1. Ablation study on each key component of RA loss

Dataset Components Market-1501 DukeMTMC CUHK03-D CUHK03-L
Metric Lmacro Lmicro Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
Baseline - - 94.2 84.4 88.2 77.4 70.9 66.7 75.6 71.3
Macro X - 94.9 85.7 89.0 78.8 74.1 69.3 77.2 73.8
Micro - X 95.2 86.2 89.8 79.2 74.9 69.8 78.6 74.0
RA Loss X X 95.7 86.6 90.6 79.8 76.6 70.6 79.6 74.5

Effectiveness of the Macro-constraint. We equip the baseline model with
the macro-constraint only to demonstrate its effectiveness. The experimental re-
sults presented in Table 1 show that the macro-constraint consistently promote
the performance of baseline model on all benchmarks. For example, performance
improvements of 0.7% and 1.3% can be observed on Market-1501 in terms of
Rank-1 accuracy and mAP, respectively. These experimental results firmly jus-
tify the effectiveness of macro-constraint.

Effectiveness of the Micro-constraint. We then verify the effectiveness of
micro-constraint in this experiment via equipping the baseline model with the
micro-constraint only. The experimental results tabulated in Table 1 clearly
demonstrate that micro-constraint achieves significantly superior results than
those of the baseline model. For example, it improves the Rank-1 accuracy and
mAP on DukeMTMC-ReID from 88.2% and 77.4% to 89.8% and 79.2%, respec-
tively. These experimental results validate the effectiveness of micro-constraint.

Effectiveness of the RA loss. We finally equip the baseline model with both
the macro- and micro-constraints. The results can be found in the row “RA Loss”
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(b)(a)

Fig. 5. Visualization using t-SNE [25] for the feature embeddings produced by (a) the
baseline model and (b) the baseline model with the proposed RA loss. We sample 20
pedestrian images for each of 10 random identities, which are denoted using different
colors, from the testing set of Market-1501.

of Table 1. After assessing the results, we can observe that the combination of
the two components creates a considerable performance boost relative to the
use of one component. Finally, the combination of the two constraints improves
the performance of baseline by 1.5%, 2.4%, 5.7%, and 4.0% in terms of Rank-1
accuracy, as well as by 2.2%, 2.4%, 3.9%, and 3.2% in terms of mAP on each
dataset, respectively, These results show that the macro- and micro-constraints
are complementary and convincingly demonstrate the effectiveness of RA loss.

Visualization of the Distribution of Pairs. To support the above quanti-
tative experimental results, we compare the distributions of the positive pairs
and negative pairs produced by three representative models: (a) baseline, (b)
baseline with macro-constraint, and (c) baseline with RA loss, in Fig. 4 .

As can be seen in Fig. 4(a), the distribution of positive pairs significantly
overlapps to that of the negative pairs. Moreover, we note that the compactness
of both kinds of pairs is unsatisfactory. By contrast, Fig. 4(b) illustrates that
the macro-constraint enlarges the separation between positive pairs and negative
pairs. Moreover, as shown in Fig. 4(c), the micro-constraint further improves the
compactness of both kinds of pairs. These above qualitative visualization firmly
justify the effectiveness of the two components in RA loss.

Visualization of the Pedestrian Representations. In addition, in order
to further justify the effectiveness of the RA loss, we visualize the pedestrain
representations produced by (a) baseline and (b) baseline with RA loss.

After assessing the visualizations presented in Fig. 5, we can draw the con-
clusion that RA loss effectively improve the intra-identity compactness of fea-
ture embeddings as well as enhance the separability between different identities.
These visualization results qualitatively justify the capability of RA loss in im-
proving the robustness of pedestrian representations.
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Fig. 6. Evaluation on the value of hyper-parameters α and β.

Table 2. Evaluation on the universality of RA loss

Dataset Market-1501 DukeMTMC
Metric Rank-1 mAP Rank-1 mAP
CE + Contrastive 93.1 82.9 86.8 75.4
CE + Contrastive + RA 95.2 84.5 88.7 77.4
CE + Quadruplet 94.4 84.8 88.5 77.5
CE + Quadruplet + RA 95.6 86.7 90.6 79.7

Evaluation on the Value of Hyper-Parameters α and β. In this experi-
ment, we evaluate the performance of RA loss at different values of α and β. To
facilitate clean comparison, we equip the baseline model with only the proposed
macro-constraint and micro-constraint for two hyper-parameters, respectively.

We can make three observations from Fig. 6. First, the performance becomes
better when α increases to a certain extent while it drops when α further in-
creases. This is because a moderately large α is helpful for the macro-constraint
to separate the positive pairs and negative pairs. Second, the performance tends
better when β increases from 0 to 1. This is because the micro-constraint de-
mands all pairs of the same kind to be consistent when β is set to 0; therefore
the micro-constraint becomes too strict. Third, the performance drops when β
further increases; this is because a large β lowers the effect of micro-constraint.

Evaluation on the Universality of RA Loss. We finally validate the uni-
versality of RA loss. For a clean comparison, we simply replace the triplet loss
in baseline with two other popular relation-based losses, i.e., contrastive loss [6,
13] and quadruplet loss [4], and then add the RA loss.

It can be seen from the experimental results in Table 2 that the RA loss
consistently improve the performance of both losses. For example, it promotes
the performance of two losses by 2.1% and 1.2% in terms of Rank-1 accuracy, as
well as by 1.6% and 1.9% in terms of mAP on Market-1501. These results firmly
verify the universality of RA loss in improving existing relation-based losses.
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4.4 Comparisons with State-of-the-Art Methods

Table 3. Performance comparisons on Market-1501, DukeMTMC-ReID and CUHK03.
blue and Red indicates the best results obtained by HF- and PF-based methods, re-
spectively. Results of our methods are marked in bold. “-” represents these results are
not available, “RR” denotes the re-ranking operation in [65].

Methods Market-1501 DukeMTMC CUHK03-D CUHK03-L
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

H
F
-b
as
ed

PSE [30] 87.7 69.0 79.8 62.0 87.7 69.0 - -
DuATM [32] 91.4 76.6 81.8 64.6 - - - -
SFT [24] 93.4 82.7 86.9 73.2 - - 71.7 60.8
BDB [7] 94.2 84.3 86.8 72.1 72.8 69.3 73.6 71.7
Circle loss [35] 94.2 84.9 - - - - - -
IANet [17] 94.4 83.1 87.1 73.4 - - - -
Res50+NFormer[44] 94.7 87.7 87.4 74.9 - - - -
ViT + DCAL [69] 94.7 87.5 89.0 80.1 - - - -
CFPR [56] 94.8 87.7 87.4 74.9 - - - -
OSNet [67] 94.8 84.9 88.6 73.5 72.3 67.8 - -
TransReID [15] 94.9 88.1 90.2 81.3 - - - -
BDB-Cut [7] 95.3 86.7 89.0 76.0 76.4 73.5 79.4 76.7
AAFormer [71] 95.6 87.7 90.1 80.0 77.6 74.8 79.9 77.8

P
F
-b
as
ed

HA-CNN [23] 91.2 75.7 80.5 63.8 41.7 38.6 44.4 41.0
PCB [38] 92.3 77.4 81.7 66.1 61.3 54.2 - -
PCB+RPP [38] 93.8 81.6 83.3 69.2 63.7 57.5 - -
HPM [10] 94.2 82.7 86.6 74.3 63.9 57.5 - -
Auto-ReID [29] 94.5 85.1 88.7 78.4 73.3 69.3 77.9 73.0
BIN [40] 94.8 87.2 89.4 79.6 72.6 69.8 74.3 72.4
BAT-net [9] 95.1 81.4 87.7 77.3 76.2 73.2 78.6 76.1
MHN-6[2] 95.1 85.0 - - 71.7 65.4 77.2 72.4
DSLNet [48] 95.1 87.3 90.4 78.5 76.3 72.4 - -
AdaMine [1] 95.2 85.9 89.9 79.0 - - - -
CDPM [45] 95.2 86.0 88.2 77.5 71.9 67.0 75.8 71.1
MuDeep [28] 95.3 84.7 88.2 75.6 71.9 67.2 75.6 70.5
FPR [14] 95.4 86.6 88.6 78.4 76.1 72.3 - -
MGN [43] 95.7 86.9 88.7 78.4 66.8 66.0 68.0 67.4
DSA-reID [57] 95.7 87.6 86.2 74.3 78.2 73.1 78.9 75.2
RA Loss 95.7 86.6 90.6 79.8 76.6 70.6 79.6 74.5
RA Loss + RR 96.3 94.1 93.1 90.9 85.1 85.2 87.9 88.2

We here compare the performance of RA loss with that of state-of-the-art
methods on three ReID benchmarks: namely, Market-1501 [60], DukeMTMC-
ReID [64] and CUHK03 [22]. Moreover, to facilitate fair comparison, we divide
existing approaches into two categories: holistic feature-based (HF) methods and
part feature-based (PF) methods, according to the properties of the pedestrian
representation. The comparisons are tabulated in Table 3.
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First, the performance of RA loss is comparable with that of the state-of-the-
art methods onMarket-1501. For example, when compared TransReID [15] and
AAFormer [71], RA loss outperforms them by 0.8% (95.7% - 94.9%) and 0.1%
(95.7% - 95.6%) for Rank-1 accuracy, respectively. Moreover, compared with the
two methods, RA loss shows superiority in efficiency by using a much simpler
feature extractor (i.e., PCB). Besides, RA loss also surpasses Circle Loss [35],
one of the most recent loss for ReID, by a significant margin in terms of both
Rank-1 accuracy (95.7% vs 94.2%) and mAP (86.6% vs 84.9%). At last, we note
that the Re-ranking [65] further promotes the performance of RA loss to 96.3%
and 94.1% for Rank-1 accuracy and mAP, respectively. These results firmly
validate the effectiveness of RA loss. Second, the RA loss consistently beats all
PF-based methods on both Rank-1 accuracy and mAP onDukeMTMC-ReID.
For example, RA loss suppresses DSLNet [48], one of the most recent methods,
by 0.2% (90.6% - 90.4%) for Rank-1 accuracy and 1.3% (79.8% - 78.5%) for mAP.
Moreover, the Rank-1 accuracy obtained by the RA loss is also superior to that
scored by all HF-based methods, particularly, including two recent transformer-
based methods, i.e., TransReID [15] and AAFormer [71]. These comparisons
clearly justify the overall effectiveness of RA loss. Third, the performance scored
by RA loss on CUHK03 are comparable to that obtained by other PF-based
methods: in particular, RA loss achieves the best Rank-1 accuracy of 79.6%
on the CUHK03-Labeled dataset, beating DSA-reID [57], the second best PF-
based method, by 0.7% (79.6% - 78.9%). These above comparisons convincingly
demonstrate the effectiveness of RA loss.

5 Conclusion

In this work, we propose a novel and simple-yet-effective loss function, named
RA loss, which addresses the intra-pair variance for robust ReID. The proposed
RA loss constructs a pair of constraints to explore the relation across pairs. First,
the macro-constraint improves the discrepancy between positive pairs and nega-
tive pairs. Second, the micro-constraint promotes the compactness for both the
positive pairs and negative pairs. The macro- and micro-constraints are comple-
mentary to each other and work collaboratively to address the intra-pair vari-
ance; it therefore improves the quality of pedestrian representation. We conduct
extensive experiments on three popular large-scale ReID benchmarks, thereby
demonstrating the effectiveness of the proposed RA loss.
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