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Abstract. Unsupervised Domain Adaptation (UDA) aims to leverage
the labeled source data and unlabeled target data to generalize better
in the target domain. UDA methods utilize better domain alignment
or carefully-designed regularizations to increase the discriminability of
target features. However, most methods focus on directly increasing the
distance between cluster centers of target features, i.e., enlarging inter-
class variance, which intuitively increases the discriminability of target
features and is easy to implement. However, due to intra-class variance
optimization being under-explored, there are still some samples of the
same class are prone to be classified into several classes. To handle this
problem, we aim to equip UDA methods with the high smoothness con-
straint. We first define the model’s smoothness as the predictions sim-
ilarity within each class, and propose a simple yet effective technique
LeCo (impLicit smoothness Constraint) to promote the smoothness.
We construct the weak and strong “views” of each target sample and
enforce the model predictions of these two views to be consistent. Be-
sides, a new uncertainty measure named Instance Class Confusion condi-
tions the consistency is proposed to guarantee the transferability. LeCo
implicitly reduces the model sensitivity to perturbations for target sam-
ples and guarantees smaller intra-class variance. Extensive experiments
show that the proposed technique improves various baseline approaches
by a large margin, and helps yield comparable results to the state-of-
the-arts on four public datasets. Our codes are publicly available at
https://github.com/Wang-Xiaodong1899/LeCo UDA.

1 Introduction

Deep learning methods have achieved great success on a wide variety of tasks,
and show surprising performances even without labels [1,2,3]. However, when the
training set and test set are drawn from different data distributions, the deep
learning models would usually have poor generalization performance on the test
set. To handle this problem, the Unsupervised Domain Adaptation (UDA) [5,6,7]
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Fig. 1: Illustration of (a) the intra-class variance, and (b) the inter-class variance
on VisDA-C [4]. Different colors indicate the results of different models.

technique was proposed. In the UDA scenario, the model is trained on a labeled
source domain (training set) and an unlabeled target domain (test set) and
required to perform well in the target domain, where the source and target
distributions follow the Covariate Shift [8].

Recently, deep learning based UDA methods have almost dominated this
field with promising results [9,10,11,12,13,14,15,16]. One direction is to learn
domain-invariant feature. Methods [12,14] imposed adversarial training for bet-
ter domain distribution alignment, and [15,16] employed the bidirectional align-
ment. The other direction is to add specific regularization items on the tar-
get data, which could obtain a striking performance [9,10,11] as the properties
of target data are well exploited. For example, [9,10] added regularizations on
classification responses for insuring larger prediction diversity or small predic-
tion confusion. However, existing methods did not alleviate error accumulation
well, and sometimes, the prediction confidence of wrongly classified examples
also increases during training. Such accumulation of misclassification harms the
learning process and affects those correctly classified examples with low predic-
tion confidence. The above issue is very common in UDA methods, and recent
methods like [15,16] expect to alleviate the accumulation problem by the better
feature matching, or by using a target domain-oriented classifier [17] to generate
more accurate pseudo labels. However, they relied on better models and did not
explicitly reduce the sensitivity of models to sample disturbances, and are not
generic.

In this paper, we revisit the UDA models in a new perspective: smoothness.
Given some samples within a class or the augmented data of a sample, the model
predictions should be similar. We define smoothness as the intra-class variance,
which is a measure of how far a set of features (predictions) within a class is
spread out from their average value. Obviously, the intra-class variance will be
smaller if the predictions of the same class are more consistent. As shown in Fig 1,
compared with the CDAN [14], MCC [9] shows smaller intra-class variance and
larger inter-class variance. Besides, when equipped with high smoothness, they
both show smaller intra-class and larger inter-class variances.

However, smoothness is hard to insured in UDA, as the labels of the target
samples are not available. Inspired by semi-supervised learning methods [18,19]
or self-supervised methods [1,2], we proposed a technique LeCo (impLicit smoothness
Constraint). The key is to create new strongly perturbed samples which come
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from the same instance (of course the same class) as original samples of the
target domain, so construct a large number of such pairs to estimate and reduce
the intra-class variance, insuring the high smoothness. Specifically, two “views”
of the same target sample under the weak and strong augmentations pass the
same network to generate the two predictions, and we minimize the L2-distance
of them on all class predictions, which is regarded as näıve constraint.

Furthermore, avoiding the hard-to-transfer samples to deteriorate the opti-
mization, we quantify the uncertainty of samples using a novel Instance Class
Confusion to condition the constraint. Instance class confusion of a certain sam-
ple is defined as the sum of all cross-class confusion by the class predictions of
it. We consider the cross-class information and the probabilities of all classes,
which is better to measure the transferability than only considering the proba-
bilities of all classes [20]. We utilize the instance class confusion to condition the
näıve constraint so that we can achieve a better training convergence for domain
adaptation. Additionally, we provide theoretical analysis which reveals that our
technique could approximate the more expected target risk.

We finally summarize our contributions as follows:

• We analyze the existing UDA methods with a novel perspective: smooth-
ness. We introduce the reciprocal of intra-class variance as the indicator of
smoothness. To promote the smoothness of models, we propose a simple yet
effective technique named LeCo.

• LeCo could implicitly encourage the model to generate consistent predictions
on the target domain. It is generic and can be applied to various UDA
methods, reducing the intra-class variance effectively, also increasing the
inter-class variance.

• We validate the effectiveness of LeCo on the image classification task of
UDA. Extensive experiments demonstrate the effectiveness and we achieve
results comparable to the state-of-the-arts on four public datasets.

2 Related Work

Domain adaptation aims to transfer source domain knowledge to the related
but different target domain, and there are various settings in this field, such as
Unsupervised Domain Adaptation [12,21,22], Semi-Supervised Domain Adapta-
tion [23,24,25,26], Model Adaptation [27,28,29], Noisy Domain Adaptation [30,31]
etc. Most of the works focus on UDA which is adopted in this paper. We also
review regularization based methods and consistency learning based methods.

Unsupervised Domain Adaptation: The deep unsupervised domain
adaptation methods have made a success without any labels in the target do-
main. These methods can be mainly divided into domain alignment methods
and regularization-based methods. For the domain alignment methods, the early
methods [21,22,32,33,34] are based on feature distribution matching. MMD [35] is
often used [21,22] in the deep neural network to deal with the domain adaptation
by aligning the distribution. For better aligning the distributions, JAN [33] con-
sidered the joint feature distributions, and CMD [34] proposed the new domain
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discrepancy metric. Due to the potential of GANs [36], various works [12,14,37,38,39]
performed better domain alignment by using adversarial learning. DANN [37]
firstly designed a novel adversarial pipeline. It imposed a domain classifier, and
used adversarial training to learn domain-invariant representations. CDAN [14]
conducted adversarial learning on the covariance of feature representations and
classifier predictions. MCD [38] explicitly utilized two task-specific classifiers to
measure the domain discrepancy and minimized it according to the H∆H the-
ory [6]. MDD [12] proposed a novel margin disparity discrepancy that firstly
leveraged the scoring function and margin loss to bound the gap caused by
domain shift. Recently, the bidirectional domain matching methods [15,16] ex-
ploited a novel and effective domain alignment strategy. Method [15] utilized
mixup to augment intermediate domains for the bidirectional matching, while
method [16] constructed virtual mirrors for both source and target domains.

Regularization Based Methods: Inspired by Semi-Supervised Learning
(SSL), researchers [9,10,11,13,40] are more interested in exploring target data
properties in UDA. Early, Entropy Minimization (EntMin) [20] is widely used
in UDA and semi-supervised domain adaptation [14,28]. In recent years, some
regularization based methods are proposed to hold the discriminability of the
target domain. AFN [11] investigated that those task-specific features with larger
norms are more transferable. BNM [10] proved that the batch nuclear-norm max-
imization can lead to the improvement on both the prediction discriminability
and diversity, which works well in domain adaptation, SSL, and open domain
recognition [41]. In [42], the authors proposed domain conditioned adaptation
network, with a designed domain conditioned channel attention module to excite
channel activation separately for each domain. In [43], a transferable semantic
augmentation approach was proposed to enhance the classifier adaptation ability
via implicitly generating source features toward target semantics. MCC [9] can
be regarded as a regularization-based method that restrains the inter-class con-
fusion of unlabeled data. These techniques can be considered as the self-training
of target data, cooperating well with source supervised training. The regular-
ization can also be the consistency regularization in self-ensembling [13,44] and
achieved superior performance on VisDA-C [4].

Consistency Learning: We review related consistency learning methods
in SSL and self-supervised learning. Consistency learning [44,45,46] or data aug-
mentation [18,19] methods that have achieved good performance in SSL, as well
as regularization methods [20,47]. Temporal ensembling [47] by constraining the
consistency of different training epochs enabled the model to better learn un-
labeled data. In [48], authors conceptually explored the regularization methods
by comparing the gradient norms between regularization loss and cross-entropy
loss in SSL. Our constraint is similar to FixMatch [18] using different augmen-
tations [1,2], but we exploits all class predictions even the low confidence in-
formation which is shown to be effective for domain adaptation [15,49]. Our
method utilizes all class predictions to maintain the consistency of two augmen-
tations’ predictions, rather than using the confidence thresholding. Nowadays,
self-supervised learning makes a remarkable success due to large-scale data and
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instance discrimination learning. Contrastive learning methods [1,2] utilized two
random augmentations for images and encouraged predictions to be consistent,
which aim to learn the instance discrimination. Domain adaptation can be con-
sidered as a special case of SSL, where labeled and unlabeled data are drawn
from different distributions. Methods in SSL aim to learn the consistency in a
single domain, and the sparse labels or pseudo labels share the same domain with
unlabeled data, whereas UDA is a cross-domain task. We focus on the intra-class
consistency, which is related to the intra-domain consistency adopted in [50]. [50]
attempted to use primary and auxiliary classifiers that share the same feature
extractor to force the model to generate more similar predictions. We first use
different augmentations to construct the inconsistency for each instance and re-
duce it, and then we use instance class confusion to guide the model to focus on
more reliable instances which will be helpful for cross-domain training.

3 method

3.1 Preliminaries

In UDA, we are given source domain data Ds = {(xsi , ysi )}
ns
i=1 of ns labeled sam-

ples from X s×Ys and target domain dataDt = {(xti)}
nt
i=1 of nt unlabeled samples

from X t. The two domains share the same K categories and their distributions
follow the Covariate Shift [8]. Specifically, the input marginal distribution P (X )
changes (P (X s) 6= P (X t)) but the conditional P (Y|X ) remains the same.

The model in our method is equipped with a feature extractor and a classifier.
Here, the feature extractor ψ consists of the deep convolution networks and a
bottleneck layer that is introduced to reduce the dimension of features, and the
features are passed through the classifier f to generate predictions.

3.2 Recap of UDA Baselines

Domain-alignment Methods. Explicit domain alignment methods [22,33] use
the discrepancy metrics such as [34,35]. To better align the source and target do-
mains, methods [12,14,37] utilize the adversarial training. Recently, bidirectional
alignment shows great performances [15,16] in this field. These methods try to
simultaneously optimize the source classification loss Ls and domain alignment
loss Ldom. First, using the randomly sampled batch labeled examples {Xs, Y s}
from the source domain Ds of size B, we can obtain the supervised classification
objective:

Ls =
1

B

B∑
i=1

CE (Y si , f(ψ(Xs
i ))) (1)

where the CE (·, ·) is the cross-entropy loss. As for the domain alignment
methods using the discrepancy metrics such as the MMD [35], given the ran-
domly sampled a batch of labeled examples {Xt} from the target domain Dt,
the domain alignment loss Ldom is defined as below:

Ldom = MMD(ψ(Xs), ψ(Xt)) (2)
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where MMD(·, ·) matches the feature distributions of Ds and Dt. And the general
optimization objective can be formulated as:

min
ψ,f
Ls + Ldom (3)

As for the adversarial methods that introduce a domain discriminator D, if
the inputs of D are the features, the domain alignment loss could be defined as
below:

Ldom =
1

B

B∑
i=1

log(D(ψ(Xs
i ))) +

1

B

B∑
i=1

log(1−D(ψ(Xt
i ))) (4)

And the optimization objective is formulated as:

min
ψ,f
Ls + Ldom

max
D
Ldom

(5)

Regularization-based Methods. The properties of the target domain can
be modeled by some regularization methods [9,10,11,20], which aim to enhance
the discriminability of target samples. We denote the Lreg as the regularization
loss in these methods. And Lreg often only depends on target features, which is
defined as below:

Lreg =
1

B

B∑
i=1

∥∥ψ(Xt
i )
∥∥
∗ (6)

where the symbol ∗ can be replaced by the specific norm such as adaptive feature
norm [11], nuclear norm [10], entropy [20], and class confusion [9]. And the
general optimization objective in regularization based methods is formulated as:

min
ψ,f
Ls + Lreg (7)

In this paper, we aim to equip both domain-alignment and regularization-
based UDA methods with an effective technique about smoothness constraint.
Our method can bring remarkable improvements to these methods.

3.3 Implicit Smoothness Constraint

We noticed that the prediction intra-class variance is relatively large, i.e. lower
smoothness. The core problem is that the model is sensitive to image pertur-
bations in the target domain, so it is prone to misclassify images of the same
class to different classes. Therefore, to reduce the sensitivity of the model, we
directly impose the model to generate more consistent predictions from original
and perturbed images. Specifically, we impose the constraint that the predictions
of weak and strong augmentations should be close enough. Although the idea is
simple, it can effectively contribute to more consistent predictions.

We aim to enhance the smoothness of the domain alignment and regular-
ization based models. Given the randomly sampled batch of unlabeled examples
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{Xt} from target domain Dt, we take two “views” of these examples by the weak
augmentation (random flipping and cropping) and strong augmentation (Ran-
dAug [51]). We denote the weak and strong views as Xt

w and Xt
str, respectively.

Then, both the two views are passed through the feature extractor ψ and
classifier f to generate the classification responses, respectively, as follows:

Ŷ tw = σ
(
f(ψ(Xt

w))
)
, Ŷ tstr = σ

(
f(ψ(Xt

str))
)

(8)

where σ(·) is the softmax function. For each xt ∈ Xt, we have the corresponding
classification responses ŷtw ∈ Ŷ tw, and ŷtstr ∈ Ŷ tstr. The difference between ŷtw and
ŷtstr can be measured as below:

d(xt) =
1

K

∥∥ŷtw − ŷtstr∥∥22 (9)

where the ‖·‖2 denotes L2-distance under K classes. Here we make full use
of the low confident probabilities of all classes, rather than the most confident
probability [18] to teach the strong one. We claim that more information includ-
ing low confidence information [15,49] could promote the model transferability.
Although we can not access the target labels, this can be regarded as an implicit
smoothness constraint. Then, we can define the näıve constraint loss:

Lnc =
1

B

∑
xt∈Xt

d(xt). (10)

If we impose equal importance on all samples, we obtain the average on the
sample level. Then, we can introduce the näıve constraint loss to both domain-
alignment and regularization-based methods as follows,

min
ψ,f
Ls + Ldom + λLnc

min
ψ,f
Ls + Lreg + λLnc,

(11)

where λ denotes the tradeoff parameter.
Confusion Conditioning. The näıve constraint imposes equal importance

for different samples. However, samples are not equally important, enforcing the
optimization on all samples may harm the training convergence. Some meth-
ods [14,9] noticed this issue and utilized the entropy of samples to reweight the
loss function. We should pay more attention to reliable samples, and noticed
that the class confusion of a sample can be a good measure of the uncertainty of
it. Different from the technique in [9], we model the class confusion on instance
level, and then propose the Instance Class Confusion.

Given a target sample xt ∈ Xt and the corresponding classification response
ŷt ∈ Ŷ t, the class confusion matrix of xt is defined as below:

M = ŷt × ŷt
>
, (12)

where M ∈ RK×K . It is possible to walk from one class to another for each sam-
ple when it is easy to be misclassified, often asymmetrically, and we investigated
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Fig. 2: Illustration of proposed LeCo framework.

that this category-normalization technique is the key to MCC [9]. Following
MCC, the class confusion between class i and j is normalized as follows:

M̃i,j =
Mi,j∑K

j′=1Mi,j′
. (13)

Since normalized, it contains comprehensive information of confidence and
cross-class, better reflecting the uncertainty than only considering the confidence
such as entropy [20]. The Instance Class Confusion of a sample xt is as below:

I(xt) =

K∑
i=1

K∑
j 6=i

M̃i,j . (14)

The lower instance class confusion indicates the lower uncertainty of this sample.
We assume that discarding unlabeled samples with too low confidence will not
lead to information loss but reduce the learning pressure of the model. So we
condition the loss in Eq (10) as below:

Lleco =
1

B

∑
xt∈Xt

1(I(xt) < τ)d(xt), (15)

where 1 is the indicator function, and τ is the uncertainty threshold. We do not
use the fixed threshold, because it can not properly reflect the changing uncer-
tainty during training. We adopt an adaptive τ using the mean of the instance
class confusion of mini-batch target samples. Finally, the proposed LeCo loss is
pluggable to domain alignment and regularization based methods as follows:

min
ψ,f
Ls + Ldom + λLleco

min
ψ,f
Ls + Lreg + λLleco.

(16)

The illustration of proposed LeCo framework is shown clearly in Fig 2.
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4 Theoretical Guarantees

We present the theoretical analysis for the implicit smoothness constraint fol-
lowing the theory of [6]. Let H be the hypothesis class, given the source and
target distribution S and T , and a ideal hypothesis h∗ = argmin

h∈H
εS(h) + εT (h).

source risk εS and target risk εT are defined as follows:

εS(h) = εS(h, y) = E(x,y)∼S |h(x)− y|
εT (h) = εT (h, y) = E(x,y)∼T |h(x)− y|

(17)

Given the two hypotheses h1 and h2, the disagreement under the data dis-
tribution D is defined as below:

εD(h1, h2) = E(x,y)∼D|h1(x)− h2(x)| (18)

The target risk can be bounded following the theory of [6] as:
Theorem 1 For any hypothesis h ∈ H, we have the target risk

εT (h) ≤ εS(h) + εT (h∗) + εS(h∗) + |εT (h, h∗)− εS(h, h∗)| (19)

Generally, the hypothesis h uses the normal transforms (same as the weak
augmentation in this paper), so h(x) = h(w(x)), w(·) is the weak augmentation.
We define the different hypotheses h1 and h2 as below:

h1 = h(w(x)), h2 = h(s(x)) (20)

where the s(·) is the strong augmentation in this paper.
In the Theorem 1, for a hypothesis h which is well trained in source domain

S, the first item εS(h) is small enough. And the second and third items εT (h∗),
εS(h∗) are small enough for the ideal hypothesis h∗. We bound the last item
using the two hypothesis h1 and h2 as below:

|εT (h, h∗)− εS(h, h∗)| ≤ |εT (h1, h
∗)− εS(h1, h

∗)|
+|εT (h2, h

∗)− εS(h2, h
∗)|

(21)

We using h1 to approximate any hypothesis in H, the proof of Eq (21) is obvious.
We jointly optimize the hypotheses h1 and h2 in our method. Hence, the domain
discrepancy |εT (h, h∗) − εS(h, h∗)| can be bounded using our optimization. We
denote 4(h1, h2) as |εT (h1, h

∗)− εS(h1, h
∗)|+ |εT (h2, h

∗)− εS(h2, h
∗)|.

Because of the perturbation of strong augmentation, the risk of h2 in target is
close but larger than the h1, and they share the source classifier, i.e., |εT (h1, h

∗)−
εS(h1, h

∗)| ≤ |εT (h2, h
∗)− εS(h2, h

∗)|. So we have the follow:

4(h1, h2) ≤ 2 |εT (h2, h
∗)− εS(h2, h

∗)|
≤ 2 sup

h,h′∈H
|εT (h, h′)− εS(h, h′)|

= dH4H(S, T )

(22)

The goal in UDA is to approximate the target risk εT (h), and then optimize it
to a low value. The objective in our technique is to minimize 4(h1, h2), which is
more close to the supremum of H4H divergence, and this approximation does
not undermine the UDA theory according to our experiments.
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5 Experiment

5.1 Setup

Dataset. We apply our technique to various baselines and compare with many
state-of-the-art methods on four public datasets, i.e., Office-31 [52], Office-Home
[53], VisDA-C [4] and DomainNet [54]. Details about datasets can be found in
supplementary material.

Implementation details. Following the protocol for UDA in previous meth-
ods [10,9], we use the same backbone networks for fair comparisons. All baseline
methods are reproduced in our codebase. All methods are trained with 10k it-
erations, and use same learning rate scheduler adopted in [10]. For DomainNet,
we evaluated various methods following the settings in [55]. We fix the batch
size as 36, and use the SGD optimizer. We set the same tradeoff as 1 for transfer
loss both in domain-alignment and regularization-based methods. We choosed
the best λ for LeCo loss by [56]. Each task was randomly repeated three times.

Table 1: Accuracy (%) on Office-Home for UDA using the ResNet-50 backbone.
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 [57] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [22] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
MCD [38] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
EntMin [20] 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
AFN [11] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
SRDC [58] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
ATDOC [17] 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
FixBi [15] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
Mirror [16] 57.6 77.6 81.6 71.9 77.8 78.7 72.0 56.3 82.5 77.9 61.3 85.3 73.4

DANN [37] 44.2 64.2 73.5 53.2 61.1 64.5 52.2 40.7 73.5 66.4 47.6 77.3 59.9
+LeCo 47.3↑ 70.0↑ 74.9↑ 59.0↑ 69.0↑ 68.4↑ 59.3↑ 47.6↑ 76.8↑ 70.8↑ 53.2↑ 81.1↑ 64.8↑

CDAN [14] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
+LeCo 55.4↑ 71.3↑ 79.1↑ 64.2↑ 72.8↑ 74.3↑ 64.4↑ 55.9↑ 81.4↑ 74.0↑ 61.3↑ 84.6↑ 69.9↑

BNM [10] 57.3 74.1 80.6 66.2 76.1 76.8 65.8 51.9 81.1 73.0 59.3 83.4 70.5
+LeCo 59.3↑ 74.8↑ 80.9↑ 66.8↑ 77.0↑ 76.7 67.0↑ 53.8↑ 81.1 74.2↑ 60.6↑ 83.8↑ 71.3↑

MCC [9] 56.3 77.3 80.3 67.0 77.1 77.0 66.2 55.1 81.2 73.5 57.4 84.1 71.0
+LeCo 59.4↑ 79.2↑ 82.7↑ 68.3↑ 78.0↑ 79.1↑ 68.3↑ 55.7↑ 83.7↑ 75.8↑ 62.1↑ 86.2↑ 73.2↑

5.2 Results

We verify the effectiveness of applying our technique over various baselines, and
compare with state-of-the-art methods on four public datasets. The results of
Office-Home [53], VisDA-C [4], Office-31 [52], and DomainNet [54] are reported
in Tables 1, 2, 3, and 4, respectively.

Office-Home. We evaluated various methods on the total of 12 tasks on
Office-Home [53] shown in Tab 1. We apply our LeCo to various methods includ-
ing DANN [37], CDAN [14], BNM [10], and MCC [9]. For regularization-based
methods (BNM and MCC), our technique both improves the results, with aver-
age accuracy improvements of 0.8% and 2.2%, respectively. Compared with the
SOTA Mirror [16], we help MCC to achieve the comparable average accuracy
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Revisiting UDA Models: a Smoothness Perspective 11

of 73.2% and achieves the best accuracy on 5 out of 12 tasks, bringing im-
provements to all tasks. Meanwhile, the proposed LeCo brings large margins to
domain alignment methods. Based on methods DANN and CDAN, our method
surprisingly improves the accuracies of all tasks, with the large average accuracy
improvements of 4.9% and 4.1%, respectively. In general, the improvements to all
baselines are shown in almost all tasks, demonstrating the robustness of LeCo.

Table 2: Accuracy (%) on VisDA-C for UDA using the ResNet-101 backbone.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Mean

ResNet-101 [57] 67.7 27.4 50.0 61.7 69.5 13.7 85.9 11.5 64.4 34.4 84.2 19.2 49.1
DAN [22] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
MCD [38] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
AFN [11] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
ATDOC [17] 93.7 83.0 76.9 58.7 89.7 95.1 84.4 71.4 89.4 80.0 86.7 55.1 80.3
BCDM [59] 95.1 87.6 81.2 73.2 92.7 95.4 86.9 82.5 95.1 84.8 88.1 39.5 83.4
FixBi [15] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 87.2 94.2 90.9 25.7 87.2
CAN [60] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
CAN+Mirror [16] 97.2 88.2 84.9 76.0 97.2 95.8 89.2 86.4 96.1 96.6 85.9 61.2 87.9

DANN [37] 90.4 36.1 84.5 40.7 55.9 63.6 80.9 56.5 78.9 58.9 70.3 21.6 61.5
+LeCo 93.4↑ 30.0 87.5↑ 55.2↑ 89.4↑ 93.0↑ 88.3↑ 41.3 80.1↑ 38.5 68.7 19.1 65.4↑

CDAN [14] 91.8 73.8 83.6 57.6 82.2 76.9 88.4 76.9 88.9 83.0 76.1 36.1 76.3
+LeCo 95.0↑ 72.1 88.8↑ 78.6↑ 92.0↑ 93.4↑ 91.1↑ 77.1↑ 91.5↑ 87.4↑ 78.6↑ 27.7 81.1↑

BNM [10] 94.8 84.1 74.3 52.7 89.2 93.0 81.3 82.5 88.7 65.9 81.9 49.0 78.1
+LeCo 95.8↑ 91.0↑ 75.5↑ 75.9↑ 96.6↑ 97.3↑ 80.4 80.0 95.3↑ 87.0↑ 80.3 51.0↑ 83.8↑

MCC [9] 93.7 82.2 75.3 62.3 91.6 87.7 84.8 79.3 88.1 87.5 81.8 54.4 80.7
+LeCo 96.4↑ 86.4↑ 83.2↑ 90.6↑ 96.2↑ 96.9↑ 90.9↑ 80.3↑ 95.5↑ 92.0↑ 85.8↑ 40.8 86.3↑

VisDA-C. We report classification accuracy in the synthetic-to-real trans-
fer task as shown in Tab 2. We apply our LeCo to various methods including
DANN [37], CDAN [14], BNM [10], and MCC [9]. It is noteworthy that the pro-
posed LeCo achieved surprising improvements on these methods. We claim that
due to the smaller number of categories, the intra-class variance can be effectively
reduced by imposing our method. We can see that LeCo brings large improve-
ments to these baselines in almost all tasks. Using our method, MCC can achieve
a mean accuracy of 86.3%. It is worth noting that we get the highest accuracy of
90.6% on car class against the 90.3% of FixBi. However, the domain-alignment
methods (FixBi, CAN and Mirror) beat our best result of 86.3%. Although our
method achieved 4.5% improvement over MCC on average, it could lead to some
class cluster overlap, resulting in a decrease in the accuracy of some classes. The
reason is that our method does not explicitly reduce the inter-class variances,
and results will be better if we cooperate with more powerful methods. Overall,
our method can reasonably promote these baselines to reduce the intra-class
variance, thus bringing considerable improvements.

Office-31. We compare various methods in this classic dataset. We apply our
LeCo to methods DANN [37], BNM [10], CDAN [14], and MCC [9]. As shown in
Tab 3, each method could obtain improvements by imposing our method. These
methods do not directly consider the optimization for intra-class variance, and
left room for improvements. Our method aims to lower the intra-class variance
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by using implicit smoothness constraint. The results validate the effectiveness
of our method. However, Mirror and FixBi got 91.7% and 91.4% accuracies,
respectively, and both surpassed our best result of 90.0%. The reason may be
that the images are fewer and the diversity of this dataset is relatively low, so
it is hard to learn the instance discriminability, and the intra-class variances
are lower naturally. We only achieve marginal improvements in this dataset.

Table 3: Accuracy (%) on Office-31 for
UDA using the ResNet-50 backbone.

Method A→D A → W D→A D→W W→A W→D Avg
ResNet-50 [57] 78.3 70.4 57.3 93.4 61.5 98.1 76.5
DAN [22] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
AFN [11] 87.7 88.8 69.8 98.4 69.7 99.8 85.7
BCDM [59] 93.8 95.4 73.1 98.6 73.0 100.0 89.0
ATDOC [17] 94.4 94.3 75.6 98.9 75.2 99.6 89.7
FixBi [15] 95.0 96.1 78.7 99.3 79.4 100.0 91.4
Mirror [16] 96.2 98.5 77.0 99.3 78.9 100.0 91.7

DANN [37] 85.7 90.2 68.3 97.6 66.4 99.2 84.6
+LeCo 86.8↑ 90.8↑ 70.9↑ 98.0↑ 73.2↑ 100.0↑ 86.6↑
BNM [10] 90.3 91.4 71.4 97.9 71.7 100.0 87.1
+LeCo 92.8↑ 92.8↑ 73.7↑ 98.6↑ 73.2↑ 100.0 88.5↑
CDAN [14] 92.9 93.1 71.0 98.6 69.3 100.0 87.5
+LeCo 91.6 91.1 75.6↑ 98.4 74.9↑ 100.0 88.6↑
MCC [9] 95.6 96.1 73.5 98.1 73.6 100.0 89.5
+LeCo 95.4 96.2↑ 73.8↑ 98.5↑ 75.9↑ 100.0 90.0↑

DomainNet. Following the settings
in [55], we compare various methods
for 12 tasks among Clp, Pnt, Rel, and
Skt domains on original DomainNet.
The results are shown in Tab 4. Our
method improves the average accuracy
of MCC [9] by 2.9%. Specifically, our
method brings improvements to CDAN
on all tasks. Our method also improves
MCC on 10 of 12 tasks. And we achieve
the best average accuracy of 52.6% on
this public benchmark.

According to these extensive exper-
iments, we believe that LeCo could ex-
ploit the underlying property of UDA about the intra-class variance, and then
lead to promising performance from this perspective. Above all, our method is
pluggable to various methods, and it brings remarkable improvements to these
methods on different public datasets. Based on some widely-used baselines, we
achieve comparable results against SOTA methods on four public datasets. These
observations indicate that our technique is very effective for UDA setting.

Table 4: Accuracy (%) on DomainNet for UDA using the ResNet-101 backbone.
Method Clp→Pnt Clp→Rel Clp→Skt Pnt→Clp Pnt→Rel Pnt→Skt Rel→Clp Rel→Pnt Rel→Skt Skt→Clp Skt→Pnt Skt→Rel Avg

ResNet-101 [57] 32.7 50.6 39.4 41.1 56.8 35.0 48.6 48.8 36.1 49.0 34.8 46.1 43.3
DANN [37] 37.9 54.3 44.4 41.7 55.6 36.8 50.7 50.8 40.1 55.0 45.0 54.5 47.2
BCDM [59] 38.5 53.2 43.9 42.5 54.5 38.5 51.9 51.2 40.6 53.7 46.0 53.4 47.3
MCD [38] 37.5 52.9 44.0 44.6 54.5 41.6 52.0 51.5 39.7 55.5 44.6 52.0 47.5
ADDA [61] 38.4 54.1 44.1 43.5 56.7 39.2 52.8 51.3 40.9 55.0 45.4 54.5 48.0
DAN [22] 38.8 55.2 43.9 45.9 59.0 40.8 50.8 49.8 38.9 56.1 45.9 55.5 48.4
JAN [33] 40.5 56.7 45.1 47.2 59.9 43.0 54.2 52.6 41.9 56.6 46.2 55.5 50.0
MDD [12] 42.9 59.5 47.5 48.6 59.4 42.6 58.3 53.7 46.2 58.7 46.5 57.7 51.8

CDAN [14] 39.9 55.6 45.9 44.8 57.4 40.7 56.3 52.5 44.2 55.1 43.1 53.2 49.1
+LeCo 40.0↑ 56.5↑ 46.6↑ 45.3↑ 58.2↑ 41.6↑ 56.9↑ 53.1↑ 46.0↑ 55.5↑ 44.3↑ 53.3↑ 49.8↑

MCC [9] 40.1 56.5 44.9 46.9 57.7 41.4 56.0 53.7 40.6 58.2 45.1 55.9 49.7
+LeCo 44.1↑ 55.3 48.5↑ 49.4↑ 57.5 45.5↑ 58.8↑ 55.4↑ 46.8↑ 61.3↑ 51.1↑ 57.7↑ 52.6↑

5.3 Ablation Study

Training strategy. In the training process, the warm-up of supervised source
training is important. For example, we set warm-up iteration to 3k on VisDA-
C [4]. We show the classification accuracy of the synthetic-to-real task on VisDA-
C during the training in Fig 3 (a). The accuracy at 0% denotes the accuracy of
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the pre-trained ResNet-101 model, which has been finetuned with source labeled
data. We compare the results of the MCC baseline and MCC+LeCo. In fact,
during the warm-up phase, the differences only depend on the randomness of
training. We can see that using our LeCo, the classification accuracy of the
model is promoted stably. With our method, MCC outperforms the original
baseline by a large margin.

(a) Training process. (b) t-SNE: MCC. (c) t-SNE: MCC+LeCo.

Fig. 3: (a): Training process. The start point denotes that the pre-trained ResNet-
101 which has been source-only finetuned on VisDA-C, a random experiment.
(b) and (c) correspond to the t-SNE embedding visualization of MCC and
MCC+LeCo on VisDA-C.

Feature Visualization. To better illustrate that LeCo can reduce the intra-
class variance of target features, we visualize the features learned by MCC and
MCC+LeCo on VisDA-C. We employ the t-SNE method [62] for feature visual-
ization. We randomly select 2000 samples across 12 categories from the real-world
domain in VisDA-C, and extract the corresponding learned features. As shown
in Fig 3 (b), (c), compared with the MCC, our method better separate the tar-
get samples in the feature space. These class centers become more compact by
using our method, especially the centers marked by black rectangles. The results
indicate small intra-class variances by using our method.

Effects of the components. We conduct the ablation study on the two
components of LeCo. NC denotes the Näıve smoothness Constraint, and Cond
denotes the näıve smoothness constraint conditioned by instance class confusion.
We report the results on VisDA-C and Office-Home shown in Tab 5a. We analyze
the effects of components of LeCo for CDAN [14] and MCC [9], and we observe
stable improvements over the two datasets. Each component shows a positive
effect, and proposed technique is verified to be very effective on various settings.
In Tab 5b, We also compare the common technique entropy (Ent) with the
instance class confusion (ICC) as the condition way. The results show the large
improvements of the latter, and prove that it is more suitable for our technique.

Choice of constraint. The default choice of LeCo is using the L2-distance
between the weak and strong predictions. We claimed that using the L2-distance
considers the all class probabilities, and is better to transfer knowledge. We use
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Table 5: Detailed ablations. (a) analyses the effectiveness of the components.
(b) compares two condition ways. (c) analyses parameter sensitivity, and (d)
evaluates different constraint types.

(a)

VisDA-C Office-Home

CDAN NC Cond acc CDAN NC Cond acc

X 76.3 X 65.8
X X 79.6 X X 68.9
X X X 81.1 X X X 69.9

MCC NC Cond acc MCC NC Cond acc

X 80.7 X 71.1
X X 85.3 X X 72.7
X X X 86.3 X X X 73.2

(b)

VisDA-C

MCC acc

+LeCo (Ent) 85.5
+LeCo (ICC) 86.3

Office-Home

MCC acc

+LeCo (Ent) 72.5
+LeCo (ICC) 73.2

(c)

VisDA-C Office-Home

method acc method acc

MCC 80.7 MCC 71.1
+cos. 84.1 +cos. 71.2
+sup. 84.0 +sup. 69.0
+L1 85.0 +L1 72.4
+L2 85.3 +L2 72.7

(d)

VisDA-C Office-Home

λ acc λ acc

1 85.8 1 73.1
2 85.6 2 73.2
3 86.3 3 72.8
4 85.6 4 72.7
5 85.1 5 71.8

other choices to construct the smoothness constraint, including L1-distance (L1),
cosine distance (cos.), and weak supervising strong (sup.) [18]. The results are
shown in Tab 5c. For fair comparisons, we select the proper λ to tradeoff the
implicit smoothness constraint loss. As we can see, cosine distance and weak
supervising show less improvement, and even worse on Office-Home. Selected L2-
distance show stable and considerable performance, so we think the L2-distance
is a good choice for implicit smoothness constraint.

Parameter sensitivity. We set the different values of the tradeoff for LeCo,
i.e. the value of λ, and it is often sensitive in UDA scenario. In order to test the
robustness, we simply change the values of λ ∈ [1, 5] for MCC both on Office-
Home and VisDA-C. The results are shown in Tab 5d. On VisDA-C, the mean
accuracy of the synthetic-to-real task is more sensitive to the tradeoff. On Office-
Home, we find the accuracy sensitivity with regard to λ is relatively small. In a
word, the proper trade-off of LeCo could bring large improvements to baselines.

6 Conclusion

In this paper, we investigated the previous methods in Unsupervised Domain
Adaptation (UDA) from a new perspective: smoothness. We dived into the
domain-alignment and regularization-based methods. These methods aim to in-
crease the distance between cluster centers, i.e., enlarge inter-class variance, but
also cause cluster overlapping and error accumulation. We propose a simple yet
effective technique named LeCo (impLicit smoothness Constraint), to implic-
itly increase the smoothness of baseline models, i.e., lower intra-class variance.
The keys are consistency on all class probabilities over weak and strong aug-
mentations and a novel uncertainty measure named Instance Class Confusion
to condition the consistency. LeCo guarantees the lower sensitivity to perturba-
tions of samples. Extensive experiments demonstrate that LeCo is applicable to
various domain-alignment and regularization-based baseline approaches.
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