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Abstract. In traditional digital image watermarking methods, the stren-
gth factor is calculated from the content of the carrier image, which can
find a balance between the robustness and imperceptibility of encoded
images. However, traditional methods do not consider the feature of the
message and it is also unrealistic to calculate the strength factor of each
image separately when faced with a huge number of images. In recent
years, digital image watermarking methods based on deep learning have
also introduced the strength factor. They assign the strength factor of
each image to a fixed value to better adjust the robustness and imper-
ceptibility of the image. We hope that the network can choose the most
appropriate strength factor for each image to achieve a better balance.
Therefore, we propose a staged adaptive blind watermarking scheme. We
designed a new component - the adaptor, and used two stages of training
by training different components in different stages, and improved the
robustness and imperceptibility of watermarked images. By comparing
the experimental results, our algorithmic scheme shows better results
compared to current advanced algorithms.

Keywords: Strength factor · Adaptor · Staged training.

1 Introduction

Traditional blind watermarking methods of digital watermarking is divided into
two embedding methods: Spatial domain [1–3] and Frequency domain [4–7]. [1]
was the first to embed digital image watermarking in the spatial domain. They
proposed the basic concept of digital watermarking and encoded the message in
the least significant bit (LSB) of the image pixel to realize the embedding of the
message. This method is well hidden but the robustness is poor and the message
is easy to be eliminated or detected by statistical measures. [4] chose to embed the
message in the frequency domain, transform the carrier image into the frequency
domain through DCT and modify the frequency domain components, so that the
encoded image has higher robustness and confidentiality. Later studies found
that embedding messages in DFT domain [5, 8], DCT domain [6, 9, 10], DWT
domain [7, 11, 12] and SVD domain [13, 14] works better. [15, 16, 9] achieve a
balance between the imperceptibility and robustness of image watermarking by
controlling the strength factor of the watermark. The experimental results under
different strength factors are calculated from different images. Finally, a suitable
strength factor S is manually selected. These methods have poor applicability
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and cannot be applied to large-scale image strength factor calculations. Besides,
analyzing the carrier image will ignore the unique characteristics of the message.

In recent years, deep learning has become an indispensable key technology
in the field of image research. Among them, DNN-based digital watermarking
schemes have made good progress [17–19]. Deep learning-based image water-
marking methods can be roughly divided into two types of embedding methods.
A mainstream method is end-to-end watermarking, which integrates the entire
process into an overall network, that is, the process of embedding and extract-
ing watermarks is completely handed over to DNN. The end-to-end solution can
make all components closely related and interlocked, improving the embedding
and extraction efficiency of the message. [17] proposed a relatively complete
end-to-end robust blind watermarking classical network architecture for the first
time. Given a masked image and a binary message, the encoder produces a vi-
sually indistinguishable encoded image that contains the message, which can be
recovered by a decoder with a high degree of accuracy. Later model architec-
tures related to deep learning watermark hiding are based on this and continue
to improve it. The improved framework of [18] introduced the concept of the
strength factor, multiplied the watermark W by the strength factor S to obtain
the watermark to be embedded, and then directly added the watermark and the
carrier image Ic to obtain the final encoded image Ien. The process is shown in
Eq. (1):

Ien = S ×W + Ic (1)

In view of the poor practicability of the current traditional digital watermark-
ing strength factors and the inability to carry out the mass evaluation, the digital
image watermarking algorithm based on deep learning remains in the stage of
manual selection of strength factors Our proposed staged adaptive blind water-
marking scheme can effectively solve the problems. We designed an end-to-end
phased network framework and added a new component to the classic HiDDeN
network architecture, named the adaptor. The adaptor exists independently of
the network’s main body, which can be understood as an auxiliary network. The
function of the adaptor is to extract the important features of the carrier im-
age and the message. At the same time, the staged training can fine-tune the
decoder, so that we can improve the performance of different components in
different stages of training.

2 Related Work

2.1 Deep Learning-Based Digital Image Watermarking

The rise of deep learning began in 2012. In order to prove the potential of deep
learning, Hinton’s research group participated in the ImageNet image recogni-
tion competition for the first time. It won the championship through the built
CNN network AlexNet, and crushed the second place (SVM) classification per-
formance. It is precise because of this competition that CNN has attracted the
attention of many researchers. Many scholars applied deep learning to digital
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image watermarking until [20] first applied deep learning to digital image wa-
termarking and proposed a new deep learning-based auto-encoder convolutional
neural network (CNN) for embedding and extracting non-blind watermarking,
and is far superior to traditional transform domain watermarking methods in
imperceptibility and robustness. Subsequently, in 2018, [17] first proposed an
end-to-end neural network-based blind watermark embedding scheme. The net-
work architecture of HiDDeN is composed of four components: encoder, noise
layer, discriminator, and decoder. The encoder can embed the message, the noise
layer is used to improve the anti-attack ability of the watermark, and the dis-
criminator is used to distinguish whether the input image has a watermark or
not. The decoder is responsible for extracting the message in the encoded image.
[18] proposed an adaptive diffusion watermarking framework composed of two
residually connected fully convolutional neural networks, which took the image
through DCT transformation as preprocessing and proposed a differentiable ap-
proximation of the JPEG attack. With the help of the confrontation network,
the robustness of the watermark to JPEG attack is greatly improved. Not only
that, but they also proposed for the first time to use a strength factor to control
the strength of watermarking in the image. [21] hope to use a deep learning
model to realize the application of digital image watermarking in real scenes.
They simulated the distortion caused by real printing or display of images in
the real world and subsequent image capture through an image perturbation
module. The algorithm makes encoded images robust to image perturbations
distorted by real printing and photography. [22] proposed a two-stage separa-
ble watermarking structure, which trains different components in the network
in different stages, and finally achieves the optimal case of each component,
which makes the watermarked image robust and imperceptible in terms of All
achieved good results. [23] explored the research on the watermark based on the
unknown distortion, and adopted the antagonistic training mode of the unknown
distortion and the redundant channel coding mode to improve the robustness of
the watermark against the unknown distortion. [19] proposed a new mini-batch
method for simulated and real JPEG compression, which improved the noise
layer of the attack simulation, after each batch training, from simulated JPEG,
real JPEG, and no JPEG as one of the noise layers is randomly selected as the
noise layer of the next mini-batch. The experimental results show that the end-
to-end algorithm is very robust to JPEG and other attacks. According to the
characteristics of [19] and [22]. This paper designs a staged and separable blind
watermarking method based on an adaptive strength factor auxiliary network
that can significantly improve the imperceptibility of encoded images.

2.2 Strength factor

The strength factor S first emerged in traditional digital watermarking. [15]
made a specific description of the estimation of the watermarking strength of
the watermark in the article. Calculating the optimal S based on the content of
the cover image is aimed to achieve a balance between robustness and impercep-
tibility. In many subsequent traditional watermarking methods, the evaluation
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method of the S has also been improved, but the robustness or imperceptibility
will be reduced. At present, the digital watermarking methods based on deep
learning have not conducted in-depth research on S [18, 19]. S is regarded as
a tool for experiments and the artificially assigned fixed value is used to con-
trol the watermarking strength of the watermark to change the robustness and
imperceptibility.

2.3 Staged separable training

In order to overcome the situation that traditional end-to-end training is sen-
sitive to hyperparameters, it is necessary to jointly train multiple components
and the encoder needs to take into account the balance between robustness and
imperceptibility during training, which can easily cause S to be overvalued. Ex-
treme cases of too high or too low, and the selection of strength factor S is
extremely unstable. We employ a staged training approach to help the model
train and tune better. In stage one, the adaptor does not participate in train-
ing and the fixed S is 1, and only the encoder, discriminator, and decoder are
trained, where noise is added for attack simulation to enhance the robustness
of the encoded image. Thus, what we get is the best encoder capable of redun-
dantly embedding a message into images. In the second stage, the parameters of
the encoder are frozen to keep the weights unchanged, and the adaptor is added
for training. The purpose is to enable the adaptor to comprehensively evaluate
the carrier image and message to obtain an optimal S. The S should be the
maximum value that can improve the image quality without reducing the bit
error rate. After the attack simulation is performed, the encoder is fine-tuned
to obtain the best decoder under noise attack. Compared with the traditional
methods that use manual determination of watermarking strength, our staged
training scheme can adjust the overall network in time while S changes.

3 Proposed framework

3.1 Model Architecture

As shown in Fig. 1, the entire model architecture consists of five components:
1.Encoder, the encoder with parameters θen receives the message, carrier image,
and S obtained by the adaptor, then outputs the encoded image with water-
mark. 2.Adaptor, the adaptor with parameters θad outputs an S by receiving
the carrier image and the reshaped message. 3.Noise layer, the noise layer re-
ceives the encoded image output by the encoder, performs attack simulation
on it, and outputs the encoded image with noise. 4.Decoder, the decoder with
parameters θde receives the noise image output by the noise layer and decodes
it, and outputs the message contained in the watermark. 5.Discriminator, the
discriminator with parameters θdi receives the encoded image output by the en-
coder and discriminates whether the image is encoded. Next, each component
will be described in detail.
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Fig. 1. The network model and training process of the network. The overall framework
consists of an encoder, an adaptor, a noise layer, a decoder, and a discriminator. The
training phase is divided into a no-adapter training phase and an adaptive factor overall
fine-tuning phase.

Encoder The encoder is divided into two parts: message processing and car-
rier image processing. First, the one-dimensional message M ∈ {0, 1}L needs to
be preprocessed for calculation. According to the calculation formula obtained in
MBRS[19], we can reshape M into M ′ ∈ {0, 1}1×h×w, after a 3×3 convolutional
layer for preliminary feature extraction, n times of 2× 2 upsampling operations
with a stride of 2 are performed to make its size equal to the carrier image Ic, to
make the message spread over the entire feature map. Finally, pass the diffused
feature map through n SE blocks that do not change the shape of the feature
map to obtain a more delicate message feature Im ∈ RC×H×W . The message
reshaping announcement is shown in Eq. (2):

L = h× w = (H/2n)× (W/2n) Im ∈ RC×H×W (2)

where L is the message length (integer), h,w are the length and width of the
reshaped message, and H,W are the length and width of the carrier image.

For the image processing part, Ic goes through a convolution layer and four
SE blocks for feature extraction, and then the obtained image features Icf ∈
RC×H×W are concatenated with Im to obtain the total feature Ig. Then, Ig
are further extracted through a 3 × 3 dilated convolution to obtain features,
and adding a receptive field is used to obtain more feature information. Finally,
Ic combines S with Im and encodes through a 3 × 3 dilated convolution. The
encoded image is Ien = Ic+S ∗Im. Since the encoder needs to make the encoded
image Ien as similar to the carrier image Ic as possible, it chooses to use the mean
square error between Ien and Ic as the loss function Len to update the value of
θen:

Len =
1

M ×N

M∑
i=1

N∑
j=1

(f(Ic)− f(Ien)) (3)
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where M,N is the image size.
Adaptor The model architecture of the adaptor is shown in the Fig. 9. The

adaptor is essentially an auxiliary network, which is frozen in the first stage and
does not participate in training. The function of the adaptor is to determine the
optimal S that the encoder should choose according to Ic and M. Regarding the
optimal S, we think that best refers to the state where the decoder can correctly
decode the message M in the watermark and reduce the embedding strength of
the watermark to the greatest extent. In layman’s terms, it is to fully exploit
the potential of the image to enhance the imperceptibility without increasing
the Bit Error Rate(BER). Usually, researchers use Peak Signal to Noise Ra-
tio(PSNR)([24]) and Structural Similarity (SSIM)([25]) to evaluate watermark
imperceptibility in digital image watermarking, so we judge watermark imper-
ceptibility according to PSNR and SSIM. The formulas of PSNR and SSIM are
shown in Eq. (4) and Eq. (5, 6, 7, 8):

PSNR = 10× log10

(
MAX2

MSE

)
(4)

where MAX is the maximum pixel value of the image, and MSE is the mean
square error.

SSIM =
[
a(x, y)α × b(x, y)β × c(x, y)γ

]
(5)

where x, y are samples, α, β are constants, µ is the mean, σ2 is the variance, σxy

is the covariance, k is a constant, and Eq. (6,7,8) are the brightness, contrast,
and structure of the image, respectively. Together they form SSIM.

a(x, y) =
2µxµy + k1
µ2
x + µ2

y + k1
(6)

b(x, y) =
2σxσy + k2
σ2
x + σ2

y + k2
(7)

c(x, y) =
2σxy + k3
σxσy + k3

(8)

In the past, the effect of S was to achieve a balance between robustness and
imperceptibility of the watermarked image. However, through our experiments,
we found that each image has its unique S that can increase its imperceptibility.
We redefine S as the embedding strength that maximizes the potential of image
imperceptibility while maintaining robustness. The framework of the adaptor is
shown in Fig. 9. The M of the extracted features is preprocessed by the same
reshaping operation as in the encoder, and then through a convolutional layer,
multiple upsampling and three SE blocks that do not change the feature size
for feature extraction to obtain the feature Iam ∈ RC×H×W . The carrier image
passes through a 3× 3 convolutional layer and a SE block to obtain the feature
Iacf ∈ RC×H×W , and after concatenating Iam and Iacf into a convolutional layer
and three SE blocks for feature extraction. Finally, the optimal S is obtained by
downsampling by an average pooling layer and sent to the encoder. Since the
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Fig. 2. Model architecture of the adaptor.

adaptor needs to be as imperceptible as possible while remaining robust, we will
use a polynomial consisting of PSNR, SSIM, and BER as the loss function Lad

to update the value of θad:

Lad = λPSNR × (p1 − PSNR) + λSSIM × (1− SSIM) + λBER ×BER (9)

where λPSNR, λSSIM , λBER, p1 is the weight factor.
Noise layer The encoded image produced by the encoder is not robust, but

the noise layer can increase its resistance to attacks. Ino is obtained by attacking
the encoded image Ien, so that encoder can robustly embed the message in a
position that is not easily destroyed by the attack.

Decoder In the decoder, we interpret the message M ′ from the noisy encoded
image Ino , and the features are extracted through a 3 × 3 convolutional layer
and downsampling by n SE blocks. To extract messages more accurately, we still
use dilated convolution in the penultimate layer to improve the receptive field.
Finally, we use a 3× 3 convolution layer to change the feature map into a single
channel, which can be obtained after reshaping message M ′. Since the decoder
needs to make M and M ′ as similar as possible, it chooses to use the mean
square error between M and M ′ as the loss function Lde to update the value of
θen:

Lde =
1

M ×N

M∑
i=1

N∑
j=1

(f(M)− f (M ′)) (10)

where M,N is the image size.
Discriminator Even though the discriminator is only composed of 3 layers

of 3× 3 convolutional layers and one pooling layer for classification, its presence
can improve the imperceptibility of images in constant adversarial. In this paper,
we use 1 to represent that the image contains a watermark, and 0 to represent
the carrier image. The discriminator uses the loss function Ldi to improve the
accuracy of the binary classification results by updating θdi:

Ldi = Ldi2 + log (Di (θdi, Ien)) (11)
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At the same time, to make the encoded image similar to the carrier image, the
loss function Ldi2 is used to improve the image quality of Ien by updating θen:

Ldi2 = log (1−Di (θdi, Ien)) (12)

3.2 Staged training

Stage 1: The no-adapter training stage In the first stage of end-to-end
encoder training, we uniformly set the adaptive factor to 1, to make the encoded
image achieve higher robustness first, which is convenient for us to further fine-
tune in the second stage. The encoded image is sent to the decoder for decoding
after attack simulation, and the discriminator will also participate in the training.
Use L1 as the total loss function to achieve the specified training goal:

L1 = λen × Len + λde × Lde + λdi × Ldi (13)

where λen, λde, λdi are weight factors.

Stage 2: The overall fine-tuning stage of the adaptive factor Through
the first stage of training, we get a strong encoder responsible for watermark
embedding, after which the model moves to the adaptive fine-tuning stage. First,
freeze the parameters of the encoder obtained by training in stage 1. In this stage,
the adaptor is added to the training, and the decoder is fine-tuned in a targeted
manner to discover the most suitable S that the encoded image can accept.
Loading the model weights obtained from the first stage as pre-trained weights
can significantly speed up the training speed of the second stage. For stage two,
we use L2 as the loss function to find the optimal S:

L2 = λdi × Ldi1 + λde × Lde + Lad (14)

where λdi, λde are weight factors.

3.3 Why use end-to-end training?

In our early experiments, we did try end-to-end training. However, the results
were very bad. Specifically, because of the existence of strength factors, the
model needs to modify too many super parameters. If we want to get a higher
image quality, it will make the model set the strength factor directly to 0, that
is, no watermark is embedded to ensure that the image is not damaged. On
the contrary, if we pursue a lower bit error rate, the image will directly set the
strength factor to a very high level, which will greatly damage the carrier image
itself. To sum up, we hope to reduce the modification of super parameters, and
finally adopt the phased training method of freezing parameters
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Fig. 3. Experimental results under various noise attacks. From top to bottom, the
images are carrier image, encoded image, noise image, watermark, and normalized
watermark. Since the pixel of the watermark itself is basically at a low value, The
human eye is difficult to observe, and we normalize it to facilitate observation.

4 Experiment

Experimental details We randomly select 10,000 128 × 128 images from the
COCO dataset as the training set, and also randomly select 5,000 128 × 128
images from the COCO validation set as the validation set, and 5,000 128× 128
images as the test set. The model framework is implemented using PyTorch
and trained and validated on NVIDIA RTX 4000. Each piece of message M is
composed of random 0, 1 with a length of 64. For the real JPEG compression in
the noise layer, we use the official JPEG compression API to call. After repeated
testing, in one stage of training, we choose λen = 1, λde = 10, λdi = 0.0001. In
the second stage,α, β, γ = 1, λPSNR = 0.75, λSSIM = 6, λBER = 10000, p1 =
100, in order to get better training results, we also set the values of λde, the
updated value is λde = 15000. To improve the convergence performance, the
two-stage gradient descent method uses Adam optimizers instead of Stochastic
Gradient Descent(SGD) optimizer, which has high computational efficiency and
low memory usage, and sets its learning rate to 10−3. At the same time, the
size of the mini-batch training is 4, and each stage is trained for 100 epochs.
For specific training, we train 18 specific decoders at different intensities using
5 traditional noises.

For combinatorial training, we train only one combinatorial decoder using a
different traditional noise attack on each mini-batch.

Metrics We employ robustness and imperceptibility, which are now com-
monly used in digital image watermarking evaluation, to evaluate our model
performance. Robustness We use the bit error rate (BER) to measure, imper-
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Table 1. Comparison of experimental results of JPEG compression under different Q.

JPEG Q=30 Q=50 Q=70
Metric BER SSIM PSNR S BER SSIM PSNR S BER SSIM PSNR S

MBRS[19] 0.61% 0.937 35.14 1 0.031% 0.947 36.41 1 0.044% 0.947 38.14 1
Ours 0.51%0.953 37.63 0.870.016%0.963 38.42 0.760.037%0.970 40.96 0.74

Table 2. Comparison of experimental results for different Crop ratios.

Crop R=0.3 R=0.5 R=0.7
Metric BER SSIM PSNR S BER SSIM PSNR S BER SSIM PSNR S

HiDDeN[17]31.46% 0.921 34.24 1 24.5% 0.943 35.77 1 15.8% 0.950 37.56 1
MBRS[19] 25.6% 0.943 37.36 1 10.5% 0.946 37.69 1 0.90% 0.963 40.40 1

Ours 24.7%0.945 37.56 1.0810.4%0.968 40.86 0.970.86%0.972 41.92 0.91

ceptibility is the quality of the image, we use and values to measure. We chose to
compare PSNR and SSIM with almost close BER to evaluate the performance
of our model.

Baseline Our experiments refer to MBRS[19], so we will add it to the com-
parison, not only that, HiDDeN[17] will also be our comparison object. Due to
the fact that [23] is biased towards agnostic distortion, and our model has a
strong pertinence to the known distortion. This is unfair, so we did not include
it in the experimental comparison.

4.1 Robustness and imperceptibility of encoded images to
non-differentiable noise

JPEG compression is a commonly used lossy compression method for digital
images. JPEG compression is implemented in five steps, color mode conver-
sion, data sampling, DCT transformation, quantization frequency coefficients,
and encoding. Since quantization makes the inverse gradient 0, JPEG is non-
differentiable. The selection of the quality factor Q in the quantization operation
is important. The larger the Q, the higher the compression degree, but the image
quality will be reduced. In the experiment, we choose Q=10, 30, 50, 70, and 90
to test against JPEG compression attacks. Because [17], [18] and [22] did not
conduct experiments on these quality factors, and the anti-JPEG compression
The capability is also far inferior to MBRS[19], so we only compare with [19].

As can be seen from Table 1, the PSNR and SSIM values increase with
increasing Q, while the BER decreases accordingly. As Q increases and image
quality improves, S also tends to choose smaller values to reduce the strength
of the embedded watermark. Our model improves PSNR and SSIM by about
2 and 0.02 on average, respectively, which fully demonstrates the potential of
watermarked images to get better.
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4.2 Robustness and imperceptibility of encoded images to
Differentiable noise

Common differentiable noises include Crop, Dropout, Gaussian noise, and Me-
dian blur.

Cropping refers to randomly cropping an image from top/bottom and left/right
and then complementing the areas where the image is lost with black pixels. We
choose the cropping ratio as 0.3, 0.5, and 0.7 for testing.Cropping can do a lot
of damage to the information embedded in the image. In the Table 2, Adapter
chooses a value greater than 1 as S for more robust watermarking, which can
improve SSIM and PSNR. This fully shows that after adjusting the watermark
strength, the entire model still has room for adjustment.

Dropout removes random pixels from noisy images and replaces them with
pixels from the cover image, we use dropout with ratios of 0.3, 0.5, and 0.7 for
testing. As shown in the Table 3, since the damage of the replacement attack to
the image is much smaller than that of the crop, the S selected by this scheme
is all less than 1, and the watermark information can be hidden with a lower
watermark strength to obtain higher imperceptibility. It can be seen that com-
pared with the second best MBRS[19], the average SSIM is improved by about
0.01, and the PSNR is also improved by about 2, which greatly enhances the
imperceptibility of the image.

Gaussian noise refers to a class of noise whose probability density function
obeys a Gaussian distribution. The main source of Gaussian noise in digital im-
ages occurs during acquisition. Due to poor lighting or sensor noise caused by
high temperature, we adopted values of 0.001, 0.005, and 0.01 four different vari-
ances to evaluate the anti-Gaussian noise performance of the model. Combining
the Table 4 and Fif. 3 analysis, it is concluded that since the Gaussian noise dam-
ages the image more and presents a Gaussian distribution, the encoder is more
inclined to regularly embed information, the embedded information presents a
regular point-like distribution, and the changed position is more obvious. At the
same time, due to the large damage to the image by Gaussian noise, the adaptor
also selects a value greater than 1 for adjustment when selecting S.

The space for the model to be adjusted also becomes limited and the imper-
ceptibility is only slightly improved. Median blurring means that for each pixel,
in the window centered on it, the median pixel value of the neighboring pixel
is taken to replace the pixel value of the position. For median blur, due to the
smoothing attack method of median filtering sliding window, the encoder chooses
the embedding method of block embedding and the size of the block is related
to the size of the filter. The adaptor of our scheme chooses the watermarking
strength with an average value of about 0.9, which makes the model performance
more excellent. Compared with MBRS[19], SSIM and PSNR value are improved
by 0.1 and 2 on average. Greatly improved imperceptibility in the event of a
drop in BER. This method is median smoothing, also known as median filtering.
We selected different window sizes, the filtering windows of 3 × 3, 5 × 5, 7 × 7.
The specific results of the experiment are shown in Fig. 3 and Table 5.
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Table 3. Comparison of experimental results of Dropout at different ratios.

Dropout R=0.3 R=0.5 R=0.7
Metric BER SSIMPSNR S BER SSIMPSNR S BER SSIMPSNR S

HiDDeN[17] 40.60% 0.937 34.82 1 26.1% 0.923 34.69 1 23.5% 0.902 32.58 1
MBRS[19] 0.0052% 0.961 41.39 1 0.0021% 0.977 44.45 1 0.00051% 0.983 46.64 1

Ours 0.0052%0.97143.200.870.0018%0.98948.470.790.00050%0.99348.890.76

Table 4. Comparison of experimental results of Gaussian noise under different σ2.

Gaussian noise σ2=0.001 σ2=0.005 σ2=0.010
Metric BER SSIM PSNR S BER SSIM PSNR S BER SSIM PSNR S

HiDDeN[17] 23.2% 0.910 34.60 1 28.1% 0.930 33.47 1 30.3% 0.908 32.86 1
MBRS[19] 0.031% 0.957 41.08 1 0.052% 0.923 38.03 1 0.10% 0.911 37.25 1

Ours 0.016%0.97043.560.770.052%0.93739.300.840.084%0.92438.630.91

4.3 Combined noise

In addition to specific encoders, we also experiment with a combination of various
noises We add several differentiable and non-differentiable attacks used above
to the noise layer, and perform random combined attacks on each image. Com-
bined noises include: Crop (R=0.3), Dropout (R=0.3), Gaussian noise (σ2=0.01),
Median blur (W=30), JPEG compression (Q=50).The experimental results are
shown in Table 6. The adaptor selects an average value of 0.9 as the best S for
watermark embedding in the face of a combination of various noises. Although
the effect is not as good as the 18 specific decoders described above, it also shows
that compared with MBRS[19] for better results.

4.4 Ablation experiment

To further validate our idea, we will conduct ablation experiments. One option
is training without stages. In the first 100 stages of training, we still choose 1 as
the value of S. In the second stage, we leave the model unchanged to continue
training for 100 stages and add the staged training of the adaptor, respectively.
Another option is to train with a fixed strength factor in stages. We take the
average value of each image strength factor output by the adaptor as a fixed
strength factor and put it into the model without an adaptor for 100 stages of
training.

The experimental results are shown in Table 7. We found that after con-
tinuing to use 1 for 100 training sessions, the performance of the model was
not improved because the model had converged. When we use a fixed S for
each image to perform fixed S training in stages, although the model has been
improved to a certain extent, different images should choose different optimal
S, and the fixed S will The watermarking strength of the actual watermark is
slightly deviated from the optimal strength, making its final effect inferior to the
experimental results of our staged and adaptive training scheme.
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Table 5. Comparison of experimental results of median smoothing under different
window sizes.

Median blur W=3 W=5 W=7
Metric BER SSIM PSNR S BER SSIM PSNR S BER SSIM PSNR S

HiDDeN[17] 23.00% 0.892 32.74 1 27.6% 0.900 33.66 1 28.57% 0.888 31.33 1
MBRS[19] 0.0015% 0.963 39.55 1 0.17% 0.952 37.76 1 0.20% 0.941 35.60 1

Ours 0.0010%0.977 42.03 0.880.14%0.965 39.16 0.90 0.14%0.952 37.76 0.91

Table 6. Comparison of experimental results against each noise under combined noise.
Among them, MBRS[19]: SSIM=0.905,PSNR=34.94,S=1.00, Ours: SSIM=0.925,
PSNR=38.55, S=0.92

Noise Model BER
JPEG MBRS[19] 0.42%

(Q=50) Ours 0.26%
Crop MBRS[19] 27.8%

(R=0.3) Ours 26.4%
Dropout MBRS[19] 0.60%
(R=0.3) Ours 0.090%

Gaussian noise MBRS[19] 0.87%
(σ2=0.01) Ours 0.72%

Median blur MBRS[19] 0.096%
(W=3) Ours 0.068%

4.5 Disadvantages of the model

Our model adopts a phased training mode, which will increase the training time.
We compare the time complexity of the algorithm by training the average time
spent(s) for an epoch of 10000 images on NVIDIA RTX 4000. Because the time
spent in different noises is different, we only show the average training time in
JPEG compression(Q=50). It can be seen from the Table 8 that our model takes
longer than other models. And because the encoder parameters are frozen in the
second stage of training, the training time in the second stage is lower than that
in the first stage.

5 Conclusion

In this paper, we propose an adaptive watermarking strength factor embedding
scheme with a two-stage training scheme. The training scheme consists of two
stages: the no-adapter training stage and the adaptive factor overall fine-tuning
stage. The first stage is responsible for training the overall network framework,
adding the noise layer to the training to obtain images with higher robustness.
In the second stage, the scheme introduces an adaptor into the component to
adjust the model and improve the imperceptibility by selecting different S for
each image. A large number of experiments show that the proposed watermark
embedding scheme has excellent robustness and imperceptibility and stands out
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Table 7. Comparison of experimental results of different training methods.

Noise Metric No staged
training (S=1)

Staged Fixed Strength
Factor Training

Staged and
adaptive training

BER 0.029% 0.019% 0.016%
JPEG(Q=50) SSIM 0.944 0.954 0.963

PSNR 36.51 37.52 38.42
BER 0.90% 0.89% 0.86%

Crop(R=0.7) SSIM 0.962 0.971 0.972
PSNR 40.24 41.54 41.92
BER 0.00052% 0.00052% 0.00050%

Dropout(R=0.7) SSIM 0.982 0.992 0.993
PSNR 46.60 48.19 48.89
BER 0.0048% 0.0048% 0.0047%

Gaussian noise(σ2=0.5) SSIM 0.879 0.880 0.880
PSNR 25.17 25.71 25.74
BER 0.20% 0.16% 0.14%

Median blur(W=5) SSIM 0.938 0.960 0.965
PSNR 35.28 38.30 39.16

Table 8. Time complexity comparison of different models

Model HiDDeN[17] MBRS[19] Ours(step1) Ours(step2) Ours(step1+step2)
Time spent 583 870 708 474 1182

among various current excellent watermark embedding algorithms. However, due
to the staged training method, the cost of training has also increased.
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