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Abstract. We propose a Few-shot Learning pipeline for 3D skeleton-based ac-
tion recognition by Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE).
To factor out misalignment between query and support sequences of 3D body
joints, we propose an advanced variant of Dynamic Time Warping which jointly
models each smooth path between the query and support frames to achieve si-
multaneously the best alignment in the temporal and simulated camera view-
point spaces for end-to-end learning under the limited few-shot training data.
Sequences are encoded with a temporal block encoder based on Simple Spectral
Graph Convolution, a lightweight linear Graph Neural Network backbone. We
also include a setting with a transformer. Finally, we propose a similarity-based
loss which encourages the alignment of sequences of the same class while pre-
venting the alignment of unrelated sequences. We show state-of-the-art results on
NTU-60, NTU-120, Kinetics-skeleton and UWA3D Multiview Activity II.

1 Introduction

Action recognition is arguably among key topics in computer vision due to applications
in video surveillance [63,65], human-computer interaction, sports analysis, virtual real-
ity and robotics. Many pipelines [59,19,18,7,64,30] perform action classification given
the large amount of labeled training data. However, manually collecting and labeling
videos for 3D skeleton sequences is laborious, and such pipelines need to be retrained
or fine-tuned for new class concepts. Popular action recognition networks include two-
stream neural networks [19,18,71] and 3D convolutional networks (3D CNNs) [59,7],
which aggregate frame-wise and temporal block representations, respectively. How-
ever, such networks indeed must be trained on large-scale datasets such as Kinetics
[7,68,66,31] under a fixed set of training class concepts.

Thus, there exists a growing interest in devising effective Few-shot Learning (FSL)
for action recognition, termed Few-shot Action Recognition (FSAR), that rapidly adapts
to novel classes given a few training samples [47,73,23,14,79,5,67]. However, FSAR for
videos is scarce due to the volumetric nature of videos and large intra-class variations.

FSL for image recognition has been widely studied [46,34,20,3,17,33] including
contemporary CNN-based FSL methods [29,61,54,21,57,76], which use meta-learning,
prototype-based learning and feature representation learning. Just in 2020–2022, many
FSL methods [24,13,70,37,42,16,22,35,15,5,58,32,52,78,86,41] have been dedicated to
image classification or detection [75,77,82,84,83]. Noteworthy mentioning is the incre-
mental learning paradigm that can also tackle novel classes [51]. In this paper, we aim
at advancing few-shot recognition of articulated set of connected 3D body joints.
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Fig. 1: Our 3D skeleton-based FSAR with JEANIE. Frames from a query sequence
and a support sequence are split into short-term temporal blocks X1, ...,Xτ and
X′1, ...,X

′
τ ′ of length M given stride S. Subsequently, we generate (i) multiple rota-

tions by (∆θx, ∆θy) of each query skeleton by either Euler angles (baseline approach)
or (ii) simulated camera views (gray cameras) by camera shifts (∆θaz, ∆θalt) w.r.t. the
assumed average camera location (black camera). We pass all skeletons via Encoding
Network (with an optional transformer) to obtain feature tensors Ψ and Ψ ′, which are
directed to JEANIE. We note that the temporal-viewpoint alignment takes place in 4D
space (we show a 3D case with three views: −30◦, 0◦, 30◦). Temporally-wise, JEANIE
starts from the same t=(1, 1) and finishes at t=(τ, τ ′) (as in DTW). Viewpoint-wise,
JEANIE starts from every possible camera shift ∆θ ∈ {−30◦, 0◦, 30◦} (we do not
know the true correct pose) and finishes at one of possible camera shifts. At each step,
the path may move by no more than (±∆θaz,±∆θalt) to prevent erroneous alignments.
Finally, SoftMin picks up the smallest distance.

With an exception of very recent models [38,39,45,44,67,48], FSAR approaches
that learn from skeleton-based 3D body joints are scarce. The above situation prevails
despite action recognition from articulated sets of connected body joints, expressed as
3D coordinates, does offer a number of advantages over videos such as (i) the lack of the
background clutter, (ii) the volume of data being several orders of magnitude smaller,
and (iii) the 3D geometric manipulations of sequences being relatively friendly.

Thus, we propose a FSAR approach that learns on skeleton-based 3D body joints
via Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE). As FSL is based on
learning similarity between support-query pairs, to achieve good matching of queries
with support sequences representing the same action class, we propose to simultane-
ously model the optimal (i) temporal and (ii) viewpoint alignments. To this end, we
build on soft-DTW [11], a differentiable variant of Dynamic Time Warping (DTW)
[10]. Unlike soft-DTW, we exploit the projective camera geometry. We assume that the
best smooth path in DTW should simultaneously provide the best temporal and view-
point alignment, as sequences that are being matched might have been captured under
different camera viewpoints or subjects might have followed different trajectories.

To obtain skeletons under several viewpoints, we rotate skeletons (zero-centered by
hip) by Euler angles [1] w.r.t. x, y and z axes, or generate skeleton locations given
simulated camera positions, according to the algebra of stereo projections [2].

We note that view-adaptive models for action recognition do exist. View Adaptive
Recurrent Neural Networks [80,81] is a classification model equipped with a view-
adaptive subnetwork that contains the rotation and translation switches within its RNN
backbone, and the main LSTM-based network. Temporal Segment Network [62] mod-
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els long-range temporal structures with a new segment-based sampling and aggregation
module. However, such pipelines require a large number of training samples with vary-
ing viewpoints and temporal shifts to learn a robust model. Their limitations become
evident when a network trained under a fixed set of action classes has to be adapted to
samples of novel classes. Our JEANIE does not suffer from such a limitation.

Our pipeline consists of an MLP which takes neighboring frames to form a tempo-
ral block. Firstly, we sample desired Euler rotations or simulated camera viewpoints,
generate multiple skeleton views, and pass them to the MLP to get block-wise feature
maps, next forwarded to a Graph Neural Network (GNN), e.g., GCN [27], Fisher-Bures
GCN [56], SGC [72], APPNP [28] or S2GC [85,87], followed by an optional trans-
former [12], and an FC layer to obtain graph-based representations passed to JEANIE.

JEANIE builds on Reproducing Kernel Hilbert Spaces (RKHS) [53] which scale
gracefully to FSAR problems which, by their setting, learn to match pairs of sequences
rather than predict class labels. JEANIE builds on Optimal Transport [60] by using a
transportation plan for temporal and viewpoint alignment in skeletal action recognition.

Below are our contributions:

i. We propose a Few-shot Action Recognition approach for learning on skeleton-
based articulated 3D body joints via JEANIE, which performs the joint alignment
of temporal blocks and simulated viewpoint indexes of skeletons between support-
query sequences to select the smoothest path without abrupt jumps in matching
temporal locations and view indexes. Warping jointly temporal locations and simu-
lated viewpoint indexes helps meta-learning with limited samples of novel classes.

ii. To simulate different viewpoints of 3D skeleton sequences, we consider rotating
them (1) by Euler angles within a specified range along x and y axes, or (2) towards
the simulated camera locations based on the algebra of stereo projection.

iii. We investigate several different GNN backbones (including transformer), as well
as the optimal temporal size and stride for temporal blocks encoded by a simple
3-layer MLP unit before forwarding them to GNN.

iv. We propose a simple similarity-based loss encouraging the alignment of within-
class sequences and preventing the alignment of between-class sequences.

We achieve the state of the art on large-scale NTU-60 [50], NTU-120 [39], Kinetics-
skeleton [74] and UWA3D Multiview Activity II [49]. As far as we can tell, the simulta-
neous alignment in the joint temporal-viewpoint space for FSAR is a novel proposition.

2 Related Works

Below, we describe 3D skeleton-based action recognition, FSAR approaches and GNNs.

Action recognition (3D skeletons). 3D skeleton-based action recognition pipelines of-
ten use GCNs [27], e.g., spatio-temporal GCN [74], an a-links inference model [36],
shift-graph model [9] and multi-scale aggregation node [40]. However, such models
rely on large-scale datasets, and cannot be easily adapted to novel class concepts.
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FSAR (videos). Approaches [47,23,73] use a generative model, graph matching on 3D
coordinates and dilated networks, respectively. Approach [88] uses a compound mem-
ory network. ProtoGAN [14] generates action prototypes. Model [79] uses permutation-
invariant attention and second-order aggregation of temporal video blocks, whereas ap-
proach [5] proposes a modified temporal alignment for query-support pairs via DTW.

FSAR (3D skeletons). Few FSAR models use 3D skeletons [38,39,45,44]. Global Con-
text-Aware Attention LSTM [38] selectively focuses on informative joints. Action-Part
Semantic Relevance-aware (APSR) model [39] uses the semantic relevance between
each body part and action class at the distributed word embedding level. Signal Level
Deep Metric Learning (DML) [45] and Skeleton-DML [44] one-shot FSL approaches
encode signals into images, extract features using CNN and apply multi-similarity
miner losses. In contrast, we use temporal blocks of 3D body joints of skeletons encoded
by GNNs under multiple viewpoints of skeletons to simultaneously perform temporal
and viewpoint-wise alignment of query-support in the meta-learning regime.

Graph Neural Networks. GNNs are popular in the skeleton-based action recogni-
tion. We build on GNNs in this paper due to their excellent ability to represent graph-
structured data such as interconnected body joints. GCN [27] applies graph convolution
in the spectral domain, and enjoys the depth-efficiency when stacking multiple layers
due to non-linearities. However, depth-efficiency costs speed due to backpropagation
through consecutive layers. In contrast, a very recent family of so-called spectral filters
do not require depth-efficiency but apply filters based on heat diffusion to the graph
Laplacian. As a result, they are fast linear models as learnable weights act on filtered
node representations. SGC [72], APPNP [28] and S2GC [85] are three methods from
this family which we investigate for the backbone.

Multi-view action recognition. Multi-modal sensors enable multi-view action recog-
nition [64,80]. A Generative Multi-View Action Recognition framework [69] integrates
complementary information from RGB and depth sensors by View Correlation Dis-
covery Network. Some works exploit multiple views of the subject [50,39,81,69] to
overcome the viewpoint variations for action recognition on large training datasets. In
contrast, our JEANIE learns to perform jointly the temporal and simulated viewpoint
alignment in an end-to-end meta-learning setting. This is a novel paradigm based on
similarity learning of support-query pairs rather than learning class concepts.

3 Approach

To learn similarity/dissimilarity between pairs of sequences of 3D body joints repre-
senting query and support samples from episodes, our goal is to find a smooth joint
viewpoint-temporal alignment of query and support and minimize or maximize the
matching distance dJEANIE (end-to-end setting) for same or different support-query la-
bels, respectively. Fig. 2 (top) shows that sometimes matching of query and support
may be as easy as rotating one trajectory onto another, in order to achieve viewpoint
invariance. A viewpoint invariant distance [25] can be defined as:

dinv(Ψ ,Ψ
′)= Inf

γ,γ′∈T
d
(
γ(Ψ), γ′(Ψ ′)

)
, (1)
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Fig. 2: (top) In viewpoint-invariant learn-
ing, the distance between query features
Ψ and support features Ψ ′ has to be com-
puted. The blue arrow indicates that trajec-
tories of both actions need alignment. (bot-
tom) In real life, subject’s 3D body joints
deviate from one ideal trajectory, and so
advanced viewpoint alignment strategy is
needed.

-20
0
20

Fig. 3: JEANIE (1-max shift). We loop
over all points. At (t, t′, n) (green point)
we add its base distance to the minimum
of accumulated distances at (t, t′−1, n−1),
(t, t′−1, n), (t, t′−1, n+1) (orange plane),
(t−1, t′−1, n−1), (t−1, t′−1, n), (t−1, t′−
1, n+1) (red plane) and (t−1, t′, n−1),
(t−1, t′, n), (t−1, t′, n+1) (blue plane).

where T is a set of transformations required to achieve a viewpoint invariance, d(·, ·) is
some base distance, e.g., the Euclidean distance, and Ψ and Ψ ′ are features describing
query and support pair of sequences. Typically, T may include 3D rotations to rotate one
trajectory onto the other. However, such a global viewpoint alignment of two sequences
is suboptimal. Trajectories are unlikely to be straight 2D lines in the 3D space. Fig. 2
(bottom) shows that 3D body joints locally follow complicated non-linear paths.

Thus, we propose JEANIE that aligns and warps query/support sequences based
on the feature similarity. One can think of JEANIE as performing Eq. (1) with T con-
taining camera viewpoint rotations, and the base distance d(·, ·) being a joint temporal-
viewpoint variant of soft-DTW to account for local temporal-viewpoint variations of
3D body joint trajectories. JEANIE unit in Fig. 1 realizes such a strategy (SoftMin
operation is equivalent of Eq. (1)). While such an idea sounds simple, it is effective,
it has not been done before. Fig. 3 (discussed later in the text) shows one step of the
temporal-viewpoint computations of JEANIE.

We present a necessary background on Euler angles and the algebra of stereo pro-
jection, GNNs and the formulation of soft-DTW in Appendix Sec. A. Below, we detail
our pipeline shown in Figure 1, explain the proposed JEANIE and our loss function.

Notations. IK stands for the index set {1, 2, ...,K}. Concatenation of αi is denoted
by [αi]i∈II , whereas X:,i means we extract/access column i of matrix D. Calligraphic
mathcal fonts denote tensors (e.g., D), capitalized bold symbols are matrices (e.g.,D),
lowercase bold symbols are vectors (e.g., ψ), and regular fonts denote scalars.

Encoding Network (EN). We start by generating K×K ′ Euler rotations or K×K ′
simulated camera views (moved gradually from the estimated camera location) of query
skeletons. Our EN contains a simple 3-layer MLP unit (FC, ReLU, FC, ReLU, Dropout,
FC), GNN, optional Transformer [12] and FC. The MLP unit takes M neighboring
frames, each with J 3D skeleton body joints, forming one temporal block. In total,
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(a) soft-DTW (view-wise)
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dFVM = 2.53

(b) FVM

Viewpoints

-45o

-30o

0o
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45o Temporal

4.38
4.45
4.07
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3.99

(c) JEANIE (1-max shift)

Fig. 4: A comparison of paths in 3D for soft-DTW, Free Viewpoint Matching (FVM)
and our JEANIE. For a given support skeleton sequence (green color), we choose view-
ing angles between −45◦ and 45◦ for the camera viewpoint simulation. The support
skeleton sequence is shown in black color. (a) soft-DTW finds each individual align-
ment per viewpoint fixed throughout alignment: dshortest = 4.08. (b) FVM is a greedy
matching algorithm that in each time step seeks the best alignment pose from all view-
points which leads to unrealistic zigzag path (person cannot jump from front to back
view suddenly): dFVM=2.53. (c) Our JEANIE (1-max shift) is able to find smooth joint
viewpoint-temporal alignment between support and query sequences. We show each
optimal path for each possible starting position: dJEANIE = 3.69. While dFVM = 2.53
for FVM is overoptimistic, dshortest = 4.08 for fixed-view matching is too pessimistic,
whereas JEANIE strikes the right matching balance with dJEANIE=3.69.

depending on stride S, we obtain some τ temporal blocks which capture the short tem-
poral dependency, whereas the long temporal dependency is modeled with our JEANIE.
Each temporal block is encoded by the MLP into a d×J dimensional feature map. Sub-
sequently, query feature maps of size K×K ′×τ and support feature maps of size τ ′

are forwarded to a GNN, optional Transformer (similar to ViT [12], instead of using
image patches, we feed each body joint encoded by GNN into the transformer), and an
FC layer, which returns Ψ ∈Rd′×K×K′×τ query feature maps and Ψ ′∈Rd′×τ ′

support
feature maps. Feature maps are passed to JEANIE and the similarity classifier.

Let support maps Ψ ′ be [f(X ′1;F), ..., f(X ′τ ′ ;F)] ∈ Rd′×τ ′
and query maps Ψ

be [f(X1;F), ..., f(Xτ ;F)] ∈Rd′×K×K′×τ , for query and support frames per block
X,X′ ∈ R3×J×M . Moreover, we define f(X;F) = FC(Transf(GNN(MLP(X;FMLP );

FGNN );FTransf );FFC), F ≡ [FMLP ,FGNN ,FTransf ,FFC ] is the set of parame-
ters of EN (note optional Transformer [12]). As GNN, we try GCN [27], SGC [72],
APPNP [28] or S2GC [85].

JEANIE. Matching query-support pairs requires temporal alignment due to potential
offset in locations of discriminative parts of actions, and due to potentially different
dynamics/speed of actions taking place. The same concerns the direction of the dom-
inant action trajectory w.r.t. the camera. Thus, JEANIE, our advanced soft-DTW, has
the transportation plan A′≡Aτ,τ ′,K,K′ , where apart from temporal block counts τ and
τ ′, for query sequences, we have possible ηaz left and ηaz right steps from the ini-
tial camera azimuth, and ηalt up and ηalt down steps from the initial camera altitude.
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Thus, K=2ηaz+1, K ′=2ηalt+1. For the variant with Euler angles, we simply have
A′′≡Aτ,τ ′,K,K′ where K=2ηx+1, K ′=2ηy+1 instead. Then, JEANIE is given as:

dJEANIE(Ψ ,Ψ
′)=SoftMinγ

A∈A′
〈A,D(Ψ ,Ψ ′)〉 , (2)

where D∈RK×K
′×τ×τ ′

+ ≡ [dbase(ψm,k,k′ ,ψ
′
n)] (m,n)∈Iτ×Iτ′

(k,k′)∈IK×IK′

and D contains distances.

Figure 3 shows one step of JEANIE (1-max shift). Suppose the given viewing angle
set is {−40◦,−20◦, 0◦, 20◦, 40◦}. For 1-max shift, we loop over (t, t′, n). At location
(t, t′, n), we extract the base distance and add it together with the minimum of ag-
gregated distances at the shown 9 predecessor points. We store that total distance at
(t, t′, n), and we move to the next point. Note that for viewpoint index n, we look up
(n−1, n, n+1). Extension to the ι-max shift is straightforward.

Algorithm 1 illustrates JEANIE. For brevity, let us tackle the camera viewpoint
alignment in a single space, e.g., for some shifting steps−η, ..., η, each with size ∆θaz .
The maximum viewpoint change from block to block is ι-max shift (smoothness). As
we have no way to know the initial optimal camera shift, we initialize all possible
origins of shifts in accumulator rn,1,1 = dbase(ψn,1,ψ

′
1) for all n ∈ {−η, ..., η}. Sub-

sequently, a phase related to soft-DTW (temporal-viewpoint alignment) takes place.
Finally, we choose the path with the smallest distance over all possible viewpoint
ends by selecting a soft-minimum over [rn,τ,τ ′ ]n∈{−η,...,η}. Notice that accumulator
R ∈ R(2ι+1)×τ×τ ′

. Moreover, whenever either index n−i, t−j or t′−k in rn−i,t−j,t′−k
(see algorithm) is out of bounds, we define rn−i,t−j,t′−k =∞.

FVM. To ascertain whether JEANIE is better than performing separately the temporal
and simulated viewpoint alignments, we introduce a baseline called the Free Viewpoint
Matching (FVM). FVM, for every step of DTW, seeks the best local viewpoint align-
ment, thus realizing non-smooth temporal-viewpoint path in contrast to JEANIE. To
this end, we apply DTW in Eq. (2) with the base distance replaced by:

dFVM(ψt,ψ′
t′ )

= SoftMinγ̄
m,n,m′,n′∈{−η,...,η}

dbase(ψm,n,t,ψ
′
m′,n′,t′), (3)

where Ψ ∈Rd′×K×K′×τ and Ψ ′ ∈Rd′×K×K′×τ ′
are query and support feature maps.

We abuse the notation by writing dFVM(ψt,ψ′
t′ )

as we minimize over viewpoint indexes

in Eq. (3). We compute the distance matrixD∈Rτ×τ
′

+ ≡ [dFVM(ψt,ψ
′
t′)](t,t′)∈Iτ×Iτ′ .

Fig. 4 shows the comparison between soft-DTW (view-wise), FVM and our JEANIE.
FVM is a greedy matching method which leads to complex zigzag path in 3D space (as-
suming the camera viewpoint single space in ψn,t and no viewpoint in ψ′t′ ). Although
FVM is able to find the smallest distance path compared to soft-DTW and JEANIE, it
suffers from several issues (i) It is unreasonable for poses in a given sequence to match
under sudden jumps in viewpoints. (ii) Suppose the two sequences are from two dif-
ferent classes, FVM still yields the smallest distance (decreased inter-class variance).

Loss Function. For the N -way Z-shot problem, we have one query feature map
and N ×Z support feature maps per episode. We form a mini-batch containing B
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Algorithm 1 Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE).
Input (forward pass): Ψ ,Ψ ′, γ>0, dbase(·, ·), ι-max shift.
1: r:,:,:=∞, rn,1,1=dbase(ψn,1,ψ

′
1), ∀n∈{−η, ..., η}

2: Π ≡ {−ι, ..., 0, ..., ι} × {(0, 1), (1, 0), (1, 1)}
3: for t∈Iτ :
4: for t′∈Iτ ′ :
5: if t 6=1 or t′6=1:
6: for n∈{−η, ..., η}:
7: rn,t,t′ = dbase(ψn,t,ψ

′
t′) + SoftMinγ

(
[rn−i,t−j,t′−k](i,j,k)∈Π

)
Output: SoftMinγ

(
[rn,τ,τ ′ ]n∈{−η,...,η}

)

episodes. Thus, we have query feature maps {Ψb}b∈IB and support feature maps
{Ψ ′b,n,z}b∈IB ,n∈IN ,z∈IZ . Moreover, Ψb and Ψ ′b,1,: share the same class, one of N
classes drawn per episode, forming the subset C‡ ≡ {c1, ..., cN} ⊂ IC ≡ C. To be pre-
cise, labels y(Ψb) = y(Ψ ′b,1,z),∀b∈ IB , z ∈ IZ while y(Ψb) 6= y(Ψ ′b,n,z),∀b∈ IB , n∈
IN \{1}, z∈IZ . In most cases, y(Ψb) 6=y(Ψb′) if b 6=b′ and b, b′∈IB . Selection of C‡

per episode is random. For the N -way Z-shot protocol, we minimize:

l(d+,d−)=
(
µ(d+)−{µ(TopMinβ(d

+))}
)2

(4)

+
(
µ(d−)−{µ(TopMaxNZβ(d

−))}
)2
, (5)

where d+=[dJEANIE(Ψb,Ψ
′
b,1,z)]b∈IB

z∈IZ
and d−=[dJEANIE(Ψb,Ψ

′
b,n,z)] b∈IB ,

n∈IN\{1},z∈IZ
,

where d+ is a set of within-class distances for the mini-batch of size B given N -way
Z-shot learning protocol. By analogy, d− is a set of between-class distances. Function
µ(·) is simply the mean over coefficients of the input vector, {·} detaches the graph
during the backpropagation step, whereas TopMinβ(·) and TopMaxNZβ(·) return β
smallest andNZβ largest coefficients from the input vectors, respectively. Thus, Eq. (4)
promotes the within-class similarity while Eq. (5) reduces the between-class similarity.
Integer β≥0 controls the focus on difficult examples, e.g., β=1 encourages all within-
class distances in Eq. (4) to be close to the positive target µ(TopMinβ(·)), the smallest
observed within-class distance in the mini-batch. If β > 1, this means we relax our
positive target. By analogy, if β = 1, we encourage all between-class distances in Eq.
(5) to approach the negative target µ(TopMaxNZβ(·)), the average over the largest NZ
between-class distances. If β>1, the negative target is relaxed.

4 Experiments

We provide network configurations and training details in Appendix Sec. H. Below, we
describe the datasets and evaluation protocols on which we validate our JEANIE.
Datasets. Appendix Sec. B. and Table 9. contain details of datasets described below.

i. UWA3D Multiview Activity II [49] contains 30 actions performed by 9 people in
a cluttered environment. In this dataset, the Kinect camera was moved to different
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positions to capture the actions from 4 different views: front view (V1), left view
(V2), right view (V3), and top view (V4).

ii. NTU RGB+D (NTU-60) [50] contains 56,880 video sequences and over 4 million
frames. This dataset has variable sequence lengths and high intra-class variations.

iii. NTU RGB+D 120 (NTU-120) [39], an extension of NTU-60, contains 120 action
classes (daily/health-related), and 114,480 RGB+D video samples captured with
106 distinct human subjects from 155 different camera viewpoints.

iv. Kinetics [26] is a large-scale collection of 650,000 video clips that cover
400/600/700 human action classes. It includes human-object interactions such as
playing instruments, as well as human-human interactions such as shaking hands
and hugging. As the Kinetics-400 dataset provides only the raw videos, we follow
approach [74] and use the estimated joint locations in the pixel coordinate system
as the input to our pipeline. To obtain the joint locations, we first resize all videos
to the resolution of 340 × 256, and convert the frame rate to 30 FPS. Then we use
the publicly available OpenPose [6] toolbox to estimate the location of 18 joints on
every frame of the clips. As OpenPose produces the 2D body joint coordinates and
Kinetics-400 does not offer multiview or depth data, we use a network of Martinez
et al. [43] pre-trained on Human3.6M [8], combined with the 2D OpenPose output
to estimate 3D coordinates from 2D coordinates. The 2D OpenPose and the latter
network give us (x, y) and z coordinates, respectively.

Evaluation protocols. For the UWA3D Multiview Activity II, we use standard multi-
view classification protocol [49,63,64], but we apply it to one-shot learning as the view
combinations for training and testing sets are disjoint. For NTU-120, we follow the
standard one-shot protocol [39]. Based on this protocol, we create a similar one-shot
protocol for NTU-60, with 50/10 action classes used for training/testing respectively.
To evaluate the effectiveness of the proposed method on viewpoint alignment, we also
create two new protocols on NTU-120, for which we group the whole dataset based on
(i) horizontal camera views into left, center and right views, (ii) vertical camera views
into top, center and bottom views. We conduct two sets of experiments on such disjoint
view-wise splits: (i) using 100 action classes for training, and testing on the same 100
action classes (ii) training on 100 action classes but testing on the rest unseen 20 classes.
Appendix Sec. G details new/additional eval. protocols on NTU-60/NTU-120.

Stereo projections. For simulating different camera viewpoints, we estimate the funda-
mental matrix F (Eq. 7 in Appendix), which relies on camera parameters. Thus, we use
the Camera Calibrator from MATLAB to estimate intrinsic, extrinsic and lens distortion
parameters. For a given skeleton dataset, we compute the range of spatial coordinates x
and y, respectively. We then split them into 3 equally-sized groups to form roughly left,
center, right views and other 3 groups for bottom, center, top views. We choose ∼15
frame images from each corresponding group, upload them to the Camera Calibrator,
and export camera parameters. We then compute the average distance/depth and height
per group to estimate the camera position. On NTU-60 and NTU-120, we simply group
the whole dataset into 3 cameras, which are left, center and right views, as provided
in [39], and then we compute the average distance per camera view based on the height
and distance settings given in the table in [39].
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Fig. 5: The impact of viewing angles on NTU-60.
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Table 1: Experimental results on NTU-60 (left) and NTU-120 (right) for different cam-
era viewpoint simulations. Below the dashed line are ablated few variants of JEANIE.

NTU-60 NTU-120
# Training Classes 10 20 30 40 50 20 40 60 80 100

Euler simple (K+K′) 54.3 56.2 60.4 64.0 68.1 30.7 36.8 39.5 44.3 46.9
Euler (K×K′) 60.8 67.4 67.5 70.3 75.0 32.9 39.2 43.5 48.4 50.2
CamVPC (K×K′) 59.7 68.7 68.4 70.4 73.2 33.1 40.8 43.7 48.4 51.4
V(Euler) 54.0 56.0 60.2 63.8 67.8 30.6 36.7 39.2 44.0 47.0
2V(Euler simple) 54.3 56.2 60.4 64.0 68.1 30.7 36.8 39.5 44.3 46.9
2V(Euler) 60.8 67.4 67.5 70.3 75.0 32.9 39.2 43.5 48.4 50.2
2V(CamVPC) 59.7 68.7 68.4 70.4 73.2 33.1 40.8 43.7 48.4 51.4
2V(CamVPC+crossval.) 63.4 72.4 73.5 73.2 78.1 37.2 43.0 49.2 50.0 55.2
2V(CamVPC+crossval.)+Transf. 65.0 75.2 76.7 78.9 80.0 38.5 44.1 50.3 51.2 57.0

4.1 Ablation Study

We start our experiments by investigating the GNN backbones (Appendix Sec. C.1),
camera viewpoint simulation and their hyper-parameters (Appendix Sec. C.3, C.4, C.5).

Camera viewpoint simulations . We choose 15 degrees as the step size for the view-
points simulation. The ranges of camera azimuth/altitude are in [−90◦, 90◦]. Where
stated, we perform a grid search on camera azimuth/altitude with Hyperopt. Below, we
explore the choice of the angle ranges for both horizontal and vertical views. Fig. 5a
and 5b (evaluations on the NTU-60 dataset) show that the angle range [−45◦, 45◦] per-
forms the best, and widening the range in both views does not increase the performance
any further. Table 1 (top) shows results for the chosen range [−45◦, 45◦] of camera
viewpoint simulations. Euler simple (K+K ′) denotes a simple concatenation of fea-
tures from both horizontal and vertical views, whereas Euler/CamVPC(K×K ′) repre-
sents the grid search of all possible views. It shows that Euler angles for the viewpoint
augmentation outperform Euler simple, and CamVPC (viewpoints of query sequences
are generated by the stereo projection geometry) outperforms Euler angles in almost all
the experiments on NTU-60 and NTU-120. This proves the effectiveness of using the
stereo projection geometry for the viewpoint augmentation. More baseline experiments
with/without viewpoint alignment are in Appendix Sec. C.2.

4185



Temporal-Viewpoint Transportation Plan for Skeletal Few-shot Action Recognition 11

Table 2: Experimental results on NTU-60 (left) and NTU-120 (right) for ι-max shift.
ι-max shift is the max. viewpoint shift from block to block in JEANIE.

NTU-60 NTU-120
10 20 30 40 50 20 40 60 80 100

ι=1 60.8 70.7 72.5 72.9 75.2 36.3 42.5 48.7 50.0 54.8
ι=2 63.8 72.9 74.0 73.4 78.1 37.2 43.0 49.2 50.0 55.2
ι=3 55.2 58.9 65.7 67.1 72.5 36.7 43.0 48.5 49.0 54.9
ι=4 54.5 57.8 63.5 65.2 70.4 36.5 42.9 48.3 48.9 54.3

Table 3: The impact of the number of frames M in temporal block under stride step
S on results (NTU-60). S = pM , where 1−p describes the temporal block overlap
percentage. Higher p means fewer overlap frames between temporal blocks.

S =M S = 0.8M S = 0.6M S = 0.4M S = 0.2M
M 50-class 20-class 50-class 20-class 50-class 20-class 50-class 20-class 50-class 20-class
5 69.0 55.7 71.8 57.2 69.2 59.6 73.0 60.8 71.2 61.2
6 69.4 54.0 65.4 54.1 67.8 58.0 72.0 57.8 73.0 63.0
8 67.0 52.7 67.0 52.5 73.8 61.8 67.8 60.3 68.4 59.4
10 62.2 44.5 63.6 50.9 65.2 48.4 62.4 57.0 70.4 56.7
15 62.0 43.5 62.6 48.9 64.7 47.9 62.4 57.2 68.3 56.7
30 55.6 42.8 57.2 44.8 59.2 43.9 58.8 55.3 60.2 53.8
45 50.0 39.8 50.5 40.6 52.3 39.9 53.0 42.1 54.0 45.2

Evaluation of β . Figure 6 shows that if β =8 and 14, our loss function performs the
best on 20- and 50-class protocol, respectively, on NTU-60 for the S2GC and GCN
backbone. Moreover, β is not affected by backbone.

The ι-max shift . Table 2 shows the evaluations of ι for the maximum shift. We notice
that ι=2 yields the best results for all the experimental settings on both NTU-60 and
NTU-120. Increasing ι does not help improve the performance.

Block size and strides . Table 3 shows evaluations of block size M and stride S, and
indicates that the best performance (both 50- and 20-class) is achieved for smaller block
size (frame count in the block) and smaller stride. Longer temporal blocks decrease the
performance due to the temporal information not reaching the temporal alignment step.
Our block encoder encodes each temporal block for learning the local temporal motions,
and aggregate these block features finally to form the global temporal motion cues.
Smaller stride helps capture more local motion patterns. Considering the computational
cost and the performance, we choose M=8 and S=0.6M .

Euler vs. CamVPC . Table 1 (bottom) shows that using the viewpoint alignment si-
multaneously in two dimensions, x and y for Euler angles, or azimuth and altitude the
stereo projection geometry (CamVPC), improves the performance by 5-8% compared
to (Euler simple), a variant where the best viewpoint alignment path was chosen from
the best alignment path along x and the best alignment path along y. Euler simple is bet-
ter than Euler with y rotations only ((V) includes rotations along y while (2V) includes
rotations along two axes). Using HyperOpt [4] to search for the best angle range in
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Table 4: Results on NTU-60 (S2GC backbone). Models use temporal alignment by soft-
DTW or JEANIE (joint temporal-viewpoint alignment) except if indicated otherwise.

# Training Classes 10 20 30 40 50
Each frame to frontal view 52.9 53.3 54.6 54.2 58.3
Each block to frontal view 53.9 56.1 60.1 63.8 68.0
Traj. aligned baseline (video-level) 36.1 40.3 44.5 48.0 50.2
Traj. aligned baseline (block-level) 52.9 55.8 59.4 63.6 66.7
Matching Nets [61] 46.1 48.6 53.3 56.2 58.8
Matching Nets [61]+2V 47.2 50.7 55.4 57.7 60.2
Prototypical Net [54] 47.2 51.1 54.3 58.9 63.0
Prototypical Net [54]+2V 49.8 53.1 56.7 60.9 64.3
TAP [55] 54.2 57.3 61.7 64.7 68.3
S2GC (no soft-DTW) 50.8 54.7 58.8 60.2 62.8
soft-DTW 53.7 56.2 60.0 63.9 67.8
(no soft-DTW)+Transf. 56.0 64.2 67.3 70.2 72.9
soft-DTW+Transf. 57.3 66.1 68.8 72.3 74.0
JEANIE+Transf. 65.0 75.2 76.7 78.9 80.0

which we perform the viewpoint alignment (CamVPC+crossval.) improves results. En-
abling the viewpoint alignment for support sequences yields extra improvement. With
Transformer (2V+Transf.), JEANIE boosts results by ∼ 2%.

4.2 Comparisons With the State-of-the-Art Methods

One-shot action recognition (NTU-60). Table 4 shows that aligning query and sup-
port trajectories by the angle of torso 3D joint, denoted (Traj. aligned baseline) is not
very powerful, as alluded to in Figure 2 (top). Aligning piece-wise parts (blocks) is bet-
ter than aligning entire trajectories. In fact, aligning individual frames by torso to the
frontal view (Each frame to frontal view) and aligning block average of torso direction
to the frontal view (Each block to frontal view)) were marginally better. We note these
baselines use soft-DTW. We show more comparisons in Appendix Sec. E. Our JEANIE
with Transformer (JEANIE+Transf.) outperforms soft-DTW with Transformer (soft-
DTW+Transf.) by 7.46% on average.

One-shot action recognition (NTU-120) . Table 5 shows that JEANIE outperforms re-
cent SL-DML and Skeleton-DML by 6.1% and 2.8% respectively (100 training classes).
For comparisons, we extended the view adaptive neural networks [81] by combining
them with Prototypical Net [54]. VA-RNN+VA-CNN [81] uses 0.47M+24M parameters
with random rotation augmentations while JEANIE uses 0.25–0.5M params. Their rota-
tion+translation keys are not proven to perform smooth optimal alignment as JEANIE.
In contrast, dJEANIE performs jointly a smooth viewpoint-temporal alignment via a prin-
cipled transportation plan (≥3 dim. space) by design. Their use Euler angles which are
a worse option than the camera projection of JEANIE. We notice that ProtoNet+VA
backbones is 12% worse than our JEANIE. Even if we split skeletons into blocks to let
soft-DTW perform temporal alignment of prototypes and query, JEANIE is still 4–6%
better. JEANIE outperforms FVM by 2-4%. This shows that seeking jointly the best
temporal-viewpoint alignment is more valuable than considering viewpoint alignment
as a local task (free range alignment per each step of soft-DTW).
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Table 5: Experimental results on NTU-120 (S2GC backbone). Methods use temporal
alignment by soft-DTW or JEANIE (joint temporal-viewpoint alignment) except VA
[80,81] and other cited works. For VA∗, we used soft-DTW on temporal blocks while
VA generated temporal blocks.

# Training Classes 20 40 60 80 100
APSR [39] 29.1 34.8 39.2 42.8 45.3
SL-DML [45] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [44] 28.6 37.5 48.6 48.0 54.2
Prototypical Net+VA-RNN(aug.) [80] 25.3 28.6 32.5 35.2 38.0
Prototypical Net+VA-CNN(aug.) [81] 29.7 33.0 39.3 41.5 42.8
Prototypical Net+VA-fusion(aug.) [81] 29.8 33.2 39.5 41.7 43.0
Prototypical Net+VA∗-fusion(aug.) [81] 33.3 38.7 45.2 46.3 49.8
TAP [55] 31.2 37.7 40.9 44.5 47.3
S2GC(no soft-DTW) 30.0 35.9 39.2 43.6 46.4
soft-DTW 30.3 37.2 39.7 44.0 46.8
(no soft-DTW)+Transf. 31.2 37.5 42.3 47.0 50.1
soft-DTW+Transf. 31.6 38.0 43.2 47.8 51.3
FVM+Transf. 34.5 41.9 44.2 48.7 52.0
JEANIE+Transf. 38.5 44.1 50.3 51.2 57.0

Table 6: Experiments on 2D and 3D Kinetics-skeleton. Note that we have no results on
JEANIE or FVM for 2D coordinates (aligning viewpoints is an operation in 3D).

S2GC soft-DTW FVM JEANIE JEANIE
(no soft-DTW) +Transf.

2D skel. 32.8 34.7 - - -
3D skel. 35.9 39.6 44.1 50.3 52.5

JEANIE on the Kinetics-skeleton . We evaluate our proposed model on both 2D and
3D Kinetics-skeleton. We split the whole dataset into 200 actions for training, and the
rest half for testing. As we are unable to estimate the camera location, we simply use
Euler angles for the camera viewpoint simulation. Table 6 shows that using 3D skeletons
outperforms the use of 2D skeletons by 3-4%, and JEANIE outperforms the baseline
(temporal alignment only) and Free Viewpoint Matching (FVM, for every step of DTW,
seeks the best local viewpoint alignment, thus realizing non-smooth temporal-viewpoint
path in contrast to JEANIE) by around 5% and 6%, respectively. With the transformer,
JEANIE further boosts results by 2%.

Few-shot multiview classification . Table 7 (UWA3D Multiview Activity II) shows
that adding temporal alignment to SGC, APPNP and S2GC improves the performance,
and the big performance gain is obtained by further adding the viewpoint alignment.
As this dataset is challenging in recognizing the actions from a novel view point, our
proposed method performs consistently well on all different combinations of train-
ing/testing viewpoint variants. This is predictable as our method aligns both tempo-
ral and camera viewpoints which allows a robust classification. JEANIE outperforms
FVM by 4.2%, and outperforms the baseline (with temporal alignment only) by 7% on
average.
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Table 7: Experiments on the UWA3D Multiview Activity II.
Training view V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 MeanTesting view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

GCN 36.4 26.2 20.6 30.2 33.7 22.4 43.1 26.6 16.9 12.8 26.3 36.5 27.6
SGC 40.9 60.3 44.1 52.6 48.5 38.7 50.6 52.8 52.8 37.2 57.8 49.6 48.8
+soft-DTW 43.9 60.8 48.1 54.6 52.6 45.7 54.0 58.2 56.7 40.2 60.2 51.1 52.2
+JEANIE 47.0 62.8 50.4 57.8 53.6 47.0 57.9 62.3 57.0 44.8 61.7 52.3 54.6
APPNP 42.9 61.9 47.8 58.7 53.8 44.0 52.3 60.3 55.1 38.2 58.3 47.9 51.8
+soft-DTW 44.3 63.2 50.7 62.3 53.9 45.0 56.9 62.8 56.4 39.3 60.1 51.9 53.9
+JEANIE 46.8 64.6 51.3 65.1 54.7 46.4 58.2 65.1 58.8 43.9 60.3 52.5 55.6
S2GC 45.5 64.4 46.8 61.6 49.5 43.2 57.3 61.2 51.0 42.9 57.0 49.2 52.5
+soft-DTW 48.2 67.2 51.2 67.0 53.2 46.8 62.4 66.2 57.8 45.0 62.2 53.0 56.7
+FVM 50.7 68.8 56.3 69.2 55.8 47.1 63.7 68.8 62.5 51.4 63.8 55.7 59.5
+JEANIE 55.3 70.2 61.4 72.5 60.9 50.8 66.4 73.9 68.8 57.2 66.7 60.2 63.7

Table 8: Results on NTU-120 (multiview classification). Baseline is soft-DTW + S2GC.

Training view bott. bott. bott.& cent. left left left & cent.
Testing view cent. top top cent. right right
100/same 100 (baseline) 74.2 73.8 75.0 58.3 57.2 68.9
100/same 100 (FVM) 79.9 78.2 80.0 65.9 63.9 75.0
100/same 100 (JEANIE) 81.5 79.2 83.9 67.7 66.9 79.2
100/novel 20 (baseline) 58.2 58.2 61.3 51.3 47.2 53.7
100/novel 20 (FVM) 66.0 65.3 68.2 58.8 53.9 60.1
100/novel 20 (JEANIE) 67.8 65.8 70.8 59.5 55.0 62.7

Table 8 (NTU-120) shows that adding more camera viewpoints to the training pro-
cess helps the multiview classification. Using bottom and center views for training and
top view for testing, or using left and center views for training and the right view for test-
ing yields 4% gain (‘same 100’ means the same train/test classes but different views).
Testing on 20 novel classes (‘novel 20’ never used in training) yields 62.7% and 70.8%
for multiview classification in horizontal and vertical camera viewpoints, respectively.

5 Conclusions

We have proposed a Few-shot Action Recognition (FSAR) approach for learning on
3D skeletons via JEANIE. We have demonstrated that the joint alignment of temporal
blocks and simulated viewpoints of skeletons between support-query sequences is ef-
ficient in the meta-learning setting where the alignment has to be performed on new
action classes under the low number of samples. Our experiments have shown that us-
ing the stereo camera geometry is more efficient than simply generating multiple views
by Euler angles in the meta-learning regime. Most importantly, we have introduced a
novel FSAR approach that learns on articulated 3D body joints.
Acknowledgements We thank Dr. Jun Liu (SUTD) for discussions on FSAR for 3D
skeletons, and CSIRO’s Machine Learning and Artificial Intelligence Future Science
Platform (MLAI FSP).
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