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Abstract. The addition of depth maps improves the performance of
salient object detection (SOD). However, most existing RGB-D SOD
methods are inefficient. We observe that existing models take into ac-
count the respective advantages of the two modalities but do not fully
explore the roles of cross-modality features of various levels. To this end,
we remodel the relationship between RGB features and depth features
from a new perspective of the feature encoding stage and propose a three-
stage bidirectional interaction network (TBINet). Specifically, to obtain
robust feature representations, we propose three interaction strategies:
bidirectional attention guidance (BAG), bidirectional feature supplement
(BFS), and shared network, and use them for the three stages of feature
encoder, respectively. In addition, we propose a cross-modality feature
aggregation (CFA) module for feature aggregation and refinement. Our
model is lightweight (3.7 M parameters) and fast (329 ms on CPU).
Experiments on six benchmark datasets show that TBINet outperforms
other SOTA methods. Our model achieves the best performance and
efficiency trade-off.

1 Introduction

Salient object detection (SOD) aims to locate the object(s) most concerned by
human eyes from a given scene. It is the pre-task of many computer vision tasks,
such as semantic segmentation [1, 2], tracking [3, 4], image/video compression [5,
6], and image retrieval [7]. Although significant progress has been made in SOD
in recent years, it is still challenged to accurately locate objects in complex
scenes, such as complex textures, cluttered backgrounds, and low contrast.

With the wide use of depth sensors in smartphones and other devices, RGB-
D SOD has attracted the attention of researchers [8–13]. The depth map has
illumination invariance and internal consistency, which can provide complemen-
tary spatial information for RGB images and improve saliency detection perfor-
mance. As we all know, RGB and depth are two different modalities. An effec-
tive interaction strategy for a two-stream feature encoder can obtain more robust
saliency-related features and thereby help the subsequent decoder generate more
accurate saliency maps. The existing interaction strategies can be roughly di-
vided into four categories: (i) No interaction mode [9, 13, 14] shown in Fig. 1(a),
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Fig. 1. Comparison of network interaction strategies between existing models and our
model. (a) No interaction. (b) Unidirectional interaction. (c) Bidirectional interaction.
(d) Cross-modality discrepant interaction. (e) Proposed three-stage bidirectional inter-
action.

which uses two independent branches to learn features of the two modalities
separately, and then feds the features into subsequent feature fusion modules or
the decoder. (ii) Unidirectional interaction mode [8, 10, 15] shown in Fig. 1(b),
which integrates depth cues into RGB branch, and then feds the integrated fea-
tures into decoder. (iii) Bidirectional interaction mode [16] shown in Fig. 1(c),
which performs the same bidirectional operation on the hierarchical features of
the two modalities. (iv) Cross-modality discrepant interaction mode [17] shown
in Fig. 1(d), which gives full play to the respective advantages of the two modal-
ities. Most of these interaction strategies are designed based on the modality
perspective, while we try to explore the relationship between RGB features and
depth features from the perspective of feature encoding stage. The basic obser-
vation of hierarchical cross-modality features is that high-level features contain
rich global context information, which is conducive to locating salient regions,
low-level features contain detailed information that can contribute significantly
to refining the boundaries of salient regions [8].

To this end, we propose a novel three-stage bidirectional interaction net-
work (TBINet) for RGB-D SOD. Specifically, the interaction of feature encoding
process is divided into three stages (as shown in Fig. 1(e)): the interaction of
low-level features in first stage, the interaction of middle-level features in sec-
ond stage, and the interaction of high-level features in thrid stage. Low-level
cross-modality features have specific boundary details, such as RGB image will
be difficult to distinguish between salient objects and background in the case of
complex texture and low contrast, and depth map will contain misleading infor-
mation when salient objects and non-salient objects have the same spatial depth.
Therefore, in first stage, we propose a bidirectional attention guidance (BAG)
module, which can guide the two branches to focus on the important regions of
each other while maintaining the modality-specific low-level features. The qual-
ity of depth maps tends to be uneven. Decreasing the influence of misleading
information from low-quality depth maps is a key and hot issue in RGB-D SOD.
We noticed that middle-level features contain approximate location informa-
tion and rough boundary information. Therefore, in second stage, we propose a
bidirectional feature supplement (BFS) module, which extracts cross-modality
fusion features and transfers them to two branches separately. The BFS module
effectively suppresses the low-quality features of deep branches and helps purify
saliency-oriented feature representations. High-level features have the lowest res-
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olution and can locate salient objects. After the abstraction of cross-modality
information by the previous layers, the high-level cross-modality features have
similar global context information, and the features of the two modalities have
strong commonality. Inspired by JL-DCF [18], in thrid stage, we use shared net-
work based on shared CNN layers, which can extract high-level cross-modality
features with fewer parameters. The three-stage bidirectional interaction strat-
egy effectively utilizes the characteristics of the three encoding stages. It helps
the encoder finally generate multi-level cross-modality feature representations
with specificity, purity, and commonality.

In addition, to integrate multi-level cross-modality features, we implement
a three-stage refinement decoder. The three stages correspond one-to-one with
the three stages of the encoder. Each decoder stage contains a cross-modality
feature aggregation (CFA) module. The CFA module performs alternate feature
fusion and refinement through two steps to effectively fuse and refine cross-
modality features. The decoder generates final accurate saliency maps through
feature fusion and refinement of the three CFA modules. Inspired by the channel
split and channel shuffle operations in ShuffleNet-v2 [19], we redesign an efficient
receptive field block (ERFB) module for the CFA module to expand the receptive
field and extract multi-scale features.

Our network adopts the lightweight MobileNet-v3 [20] as the backbone net-
work, and all modules adopt a lightweight design. Our model is lightweight (15.1
MB model size and 3.7 M parameters) and fast (329 ms inference time on CPU
and 93 FPS inference speed on GPU). Our main contributions are as follows:

1. We propose a novel three-stage bidirectional interaction network (TBINet)
for RGB-D SOD. TBINet adopts different interaction strategies in different
stages of the feature encoding process so that the cross-modality features of
various levels can give full play to their advantages.

2. We propose a three-stage refinement decoder and a cross-modality feature
aggregation (CFA) module. Each decoding stage utilizes a CFA module for
feature aggregation. The decoder continuously refines the saliency-oriented
feature representation through three-stage feature aggregation and finally
generates accurate saliency maps.

3. Our model is based on a lightweight design with fewer parameters and faster
speed than cumbersome models. Experiments on six public datasets show
that our model outperforms 15 state-of-the-art models and achieves a good
balance between efficiency and performance.

2 Related Work

2.1 RGB-D SOD

In some complex scenes, salient objects in RGB images are indistinguishable from
the background. Adding depth information may help overcome this challenge.
Traditional RGB-D SOD models extract handcrafted features from RGB images
and depth maps and fuse them for saliency detection [21–24]. However, due to the
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limited expressive power of handcrafted features, the performance of traditional
methods is not satisfactory.

With the rapid development of deep convolutional neural networks (CNNs),
researchers have begun to focus on CNNs-based RGB-D SOD work and push the
performance to new peaks [8, 12, 13, 18, 25–28]. Two key challenges facing current
RGB-D SOD research are dealing with low-quality depth maps and effectively
aggregating cross-modality multi-level features. For low-quality depth maps, for
example, Fan et al. [29] proposed a depth depurator unit to filter low-quality
depth maps. Jin et al. [9] proposed a complementary depth network, which es-
timates a depth map from the RGB image, and fuses the estimated depth map
with the original depth map. Ji et al. [26] proposed a depth calibration and fusion
framework capable of calibrating the depth image and correcting the latent bias
in the original depth maps. Zhang et al. [15] proposed a depth feature manipula-
tion network that can control depth features and avoid feeding misleading depth
features. For cross-modality multi-level feature aggregation, for example, Fu et
al. [18] developed a densely cooperative fusion strategy that uses dense connec-
tions to facilitate the fusion of depth and RGB features at different scales. Li
et al. [30] proposed an adaptive feature selection module that emphasizes the
importance of channel features in self-modality and cross-modality while fusing
multi-modality spatial features. For more inspiring related works, refer to the
recent survey [31, 32].

2.2 Efficient RGB-D SOD

Efficiency is also important for models besides performance. Recently, researchers
have started to propose some efficient models for RGB-D SOD with lighter size
and faster speed. Zhao et al. [33] proposed an early fusion single-stream net-
work to make the network lighter. Chen et al. [34] constructed a lightweight
deep stream to make the network more compact and efficient. More and more
computer vision applications are adapting to mobile devices. To this end, many
lightweight networks for image classification have been proposed, such as Mo-
bileNets [20, 35, 36] and ShuffleNets [19, 37]. Unlike classic cumbersome networks,
such as VGG [38] and ResNet [39], lightweight networks can be well adapted
to mobile devices due to their extremely high efficiency. Some RGB-D SOD
models attempt to use a lightweight network as the backbone network. Wu et
al. [40] proposed a network named MobileSal, which uses MobileNet-v2 [36] as
the backbone network and fuses RGB features with depth features only on the
coarsest layers. Zhang et al. [15] proposed an efficient model DFMNet based on
MobileNet-v2 [36] and a tailored depth backbone. The current efficient RGB-D
SOD models still lacks performance compared with cumbersome models. In this
paper, we propose an efficient model that uses MobileNet-v3 [20] as the model
backbone network and achieves a good balance between accuracy and efficiency.
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Fig. 2. Overview of our network architecture. Three-stage bidirectional interaction is
shown in the upper part of this illustration, and the three stages use the BAG module,
BFS module and shared network as the interaction strategy respectively. Three-stage
refinement decoder is shown in the lower part of this illustration, and it consists of
three CFA modules.

3 Proposed Method

3.1 Overiew

Fig. 2 shows the framework of the proposed three-stage bidirectional interaction
network for RGB-D SOD. Our network consists of encoder and decoder. The
encoder generates saliency-related features through a three-stage bidirectional
interaction strategy, and the decoder aggregates these features and generates the
final saliency map. MobileNet-v3 large [20] is used to build the feature encoder.
we divide the encoder into six layers, the output stride is 2 for each layer except
1 for the 5th layer, this means that the feature resolution does not change in
the 5th layer, so the 5th layer has the same output resolution as the fourth
layer. We denote the features output by the i-th layer of the RGB branch and
the depth branch as f i

M (M ∈ {R,D}, i = 1, ..., 6). We take the 1st and 2nd

layers as first stage, the 3rd and 4th layers as second stage, and the 5th and 6th

layers as thrid stage. We use bidirectional attention guidance (BAG) strategy
in first stage and bidirectional feature supplement (BFS) strategy in second
stage. The features output by the BAG module or BFS module are denoted as
bf i

M (M ∈ {R,D}, i = 1, ..., 4). After encoding, bf i
M (M ∈ {R,D}, i = 1, ..., 4)

and f i
M (M ∈ {R,D}, i = 5, 6) are fed into the three-stage refinement decoder. As

3676



6 Y. Wang and Y. Zhang

Conv

Conv

Conv

AFF

Conv

Sigmoid

(a) 

MultiplicationAddition

��
�

��
�

���
�

���
�

��
�

��
�

���
�

���
�

1×1Conv

DSConvC

1×1Conv

C Concatenation

BAG BFS AFF

(b) (c) 

Fig. 3. Illustration of the proposed bidirectional attention guidance (BAG) module,
bidirectional feature supplement (BFS) module, and adaptive feature fusion (AFF)
module.

shown in Fig. 2, the decoder consists of three cross-modality feature aggregation
(CFA) modules, denoted as CFA-high, CFA-middle and CFA-low, respectively.

3.2 Three-Stage Bidirectional Interation (TBI)

The encoder part of Fig. 2 shows the TBI strategy. For the processing of features
output by two encoders at different levels, previous works such as SPNet [13],
CMWNet [41] and DCFNet [26] tend to fuse the cross-modality features and feed
them directly to the decoder. Unlike these works, we process the cross-modality
features at each layer and then fed them to the next layer, which enables the use
of cross-modality information to improve the network in the feature encoding
stage.

First Stage: Bidirectional Attention Guidance (BAG). The detailed
structure of the BAG module is shown in Fig. 3(a). The BAG module is based on
the spatial attention mechanism. Given the features f i

R(i = 1, 2) or f i
D(i = 1, 2),

we use a 3 × 3 convolutional (output channel number is 1) with Sigmoid ac-
tivation function to generate the spatial attention map. To guide one modality
to focus on important areas of the other modality. The attention map from one
modality is used to enhance another modality. Then, a residual connection is
used to combine the enhanced features with their original features. Take the
case that depth information enhances RGB information as an example. The
process can be described as:

bf i
R = f i

R + σ(Conv3×3(f
i
D))⊗ f i

R, (1)

where Conv3×3(·) denotes a 3 × 3 convolution, σ(·) is the Sigmoid actication
function, and ⊗ represents element-wise multiplication. The features bf i

R(i =
1, 2) and bf i

D(i = 1, 2) will be fed into the decoder and the next layer of encoder.

The low-level features of the two modalities have complementary boundary
details, so modality specificity should be maintained. The BAG module ensures
that the modality specificity is not destroyed while mining more modality cor-
relations.
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Second Stage: Bidirectional Feature Supplement (BFS). The detailed
structure of the BFS module is shown in Fig. 3(b), an adaptive feature fusion
(AFF) module is included in a BFS module. As shown in Fig. 3(c), AFF module
is simple and effective, it can adaptively fuse cross-modality features. Given the
features f i

R(i = 3, 4) and f i
D(i = 3, 4), they are first fed into a 1× 1 convolution

layer with BatchNorm and ReLU activation to adjust their channel number and

obtain their smooth feature representations (i.e., f̂ i
R = Conv1×1(f

i
R) and f̂ i

D =
Conv1×1(f

i
D), where Conv1×1(·) denotes a 1 × 1 convolution with BatchNorm

and ReLU activation). Then, we use element-wise multiplication to emphasize

the shared feature representation, which can be described as f̂ i
F = f̂ i

R ⊗ f̂ i
D,

where ⊗ represents element-wise multiplication. We add f̂ i
F with f̂ i

R and f̂ i
D

respectively to get the enhanced features. Finally, the enhanced features are
concatenated and fed into a depth-wise separable convolution layer to obtain
the final fused features, the process can be described as:

f i
F = DSConv3×3([f̂ i

F + f̂ i
R, f̂

i
F + f̂ i

D]), (2)

where DSConv3×3(·) denotes a 3 × 3 depth-wise separable convolution with
BatchNorm and ReLU activation, and [·] donates feature concatenation. After
these operations, the AFF module adaptively fuses cross-modality features. Af-
ter obtaining the fused features f i

F , we use the spatial attention mechanism to
enhance f i

F and then combine the enhanced features with the original features
of the two modalities. The entire process can be described as:{

bf i
R = f i

R + σ(Conv3×3(f
i
R))⊗ f i

F ,

bf i
D = f i

D + σ(Conv3×3(f
i
D))⊗ f i

F ,
(3)

the features bf i
R(i = 3, 4) and bf i

D(i = 3, 4) will be fed into the decoder and the
next layer of encoder.

In a word, we first adaptively fuse cross-modality features to obtain pure
fused features, then use spatial attention mechanism to enhance the fused fea-
tures, and finally transfer them to the two modality branches as supplements.
The BFS module can effectively suppress low-quality depth information and
transfer high-quality cross-modality shared information between branches.

Third Stage: Shared Network. High-level features have rich global contex-
tual information, which is beneficial for localizing salient objects. The saliency-
related high-level features of the two modalities have strong commonality. In-
spired by JL-DCF [18], we adopt shared network in the third stage as shown
in Fig. 2. Unlike JL-DCF, which uses the strategy of the shared network on
the entire feature encoding network, we only share parameters in the most ap-
propriate third stage. Following [18], we concatenate RGB features and depth
features in the 4th dimension. The features generated by the 5th and 6th layers
of the encoder will be split in the 4th dimension for the decoder. By employing
shared network, the two branches share the same parameters in the final stage of
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the encoder, so the parameters are greatly reduced. Shared network can exploit
cross-modality commonality and complementarity, which match the properties
of high-level cross-modality features.

3.3 Three-Stage Refinement Decoder

Fig. 2 shows the three-stage refinement decoder, whose three stages correspond
one-to-one with the three stages of the encoder. The CFA-high module aggre-
gates high-level cross-modality features, CFA-middle and CFA-low are the same.

Cross-Modality Feature Aggregation (CFA). The detailed structure of
the CFA module is shown in Fig. 4(a), which consists of AFF modules and
efficient receptive field block (ERFB) modules. There are three branches in the
CFA module, namely RGB branch, depth branch, and fusion branch. Take CFA-
middle as an example, we first fuse the features bf3

M with bf4
M (M ∈ R,D), and

obtain the features: {
bfm

R = AFF (bf3
R, bf

4
R),

bfm
D = AFF (bf3

D, bf4
D),

(4)

where AFF (·) is the AFF module. Note that when fusing features of different
layers of the same modality, we added squeeze-and-excitation (SE) modules [42]
after the 1× 1 convolution layer of the AFF module.

After fusing the features from two levels, we conduct the first-step cross-
modality feature fusion (“fusion before refinement”):

bfm
F = AFF (bfm

R , bfm
D), (5)

we concatenate bfm
M (M ∈ R,D,F ) with the features fh

M (M ∈ R,D,F ) gener-
ated by the CFA-high of the previous stage. Then, we do channel shuffle [37]
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operations and finally feed them into the ERFB modules of the three branches.
The outputs of the three ERFB modules in the CFA-middle are defined by:

fm
R = ERFB([bfm

R , up(fh
R)]),

fm
D = ERFB([bfm

D , up(fh
D)]),

fm1
F = ERFB([bfm

F , up(fh
F )]),

(6)

where ERFB(·) is the ERFB module, and up(·) represents upsample operation.
fm
R and fm

D are the final refined features of the RGB branch and the depth
branch, respectively.

ERFB is a variant of receptive field block (RFB) module [43] as shown in
Fig.4(b). It has the basic function of the RFB module and has a lower compu-
tational cost. Inspired by ShuffleNet-v2 [19], we use channel split and channel
shuffle operations on the ERFB module. Features are divided into two parts in
the channel dimension. One half is fed into 1 × 1 convolution as residuals, and
the other half is fed into a dilated convolution block with multiple branches to
extract multi-scale features. Finally, we concatenate these two parts and use the
channel shuffle operation to ensure information communication between different
groups of channels.

We conduct the second-step cross-modality feature fusion (“fusion after re-
finement”), fusing features fm

R and fm
D , and obtain the fused features:

fm2
F = AFF (fm

R , fm
D ), (7)

then, the features fm1
F and fm2

F are concatenated, and we use a 1×1 convolution
to generate the final fused features of the fusion branch:

fm
F = Conv1×1([f

m1
F , fm2

F ]), (8)

where Conv1×1(·) denotes a 1× 1 convolution with BatchNorm and ReLU acti-
vation. Finally, take the fusion branch as an example, the model generates the
final saliency maps:

SF = up(σ(Conv1×1(f
l
F ))), (9)

where Conv1×1(·) denotes a 1× 1 convolution layer.
Two cross-modality feature fusion steps are included in the CFA module,

these two steps serve different purposes. The first step fuses the original cross-
modality features and uses them to refine the coarse features generated by the
previous stage’s fusion branch (“fusion before refinement”), the second step fuses
the refined features of the current stage’s RGB branch and depth branch (“fu-
sion after refinement”). Finally, cross-modality features are effectively fused and
refined.

3.4 Loss Function

We employ the pixel position aware loss Lppa [44] to implement supervision on
the three prediction maps SF , SR and SD.

Ltotal = Lppa(SF , G) + Lppa(SR, G) + Lppa(SD, G), (10)

where Ltotal is the overall loss and G is the ground truth.
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Table 1. Quantitative results on seven widely-used datasets. Red, blue and bold
indicate the best, second best, and third best performances respectively. ↑/↓ for a
metric denotes that a larger/smaller value is better

Non-efficient model Efficient model
Model D3Net UCNet S2MA BBSNet JL-DCF HAINet CDINet DCFNet DSA2F RD3D SPNet DANet PGAR MobileSal DFMNet TBINet

2020 2020 2020 2020 2021 2021 2021 2021 2021 2021 2021 2020 2020 2021 2021 Ours

Params (M) ↓ 45.2 31.3 86.6 49.8 70.7 59.8 54.4 108.5 36.5 46.9 175.3 26.7 16.2 6.5 2.2 3.7
CPU (ms) ↓ 862 471 2097 633 3136 3019 1585 1069 2288 701 1217 1139 709 115 87 329

GPU (FPS) ↑ 52 99 25 54 6 9 37 36 21 28 31 46 69 227 299 93

STERE

Fmax
β ↑ .891 .899 .882 .903 .904 .906 .901 .901 .900 .906 .906 .881 .898 .892 .892 .910

Emax
ξ ↑ .938 .944 .932 .942 .947 .944 .942 .945 .942 .947 .949 .930 .939 .939 .941 .952
Sα ↑ .899 .903 .890 .908 .903 .907 .905 .902 .898 .911 .907 .892 .907 .901 .898 .911

MAE ↓ .046 .039 .051 .041 .040 .040 .040 .039 .039 .037 .037 .048 .041 .042 .045 .034

NJU2K

Fmax
β ↑ .900 .895 .889 .920 .904 .915 .921 .915 .907 .914 .928 .893 .907 .895 .910 .928

Emax
ξ ↑ .938 .936 .929 .949 .943 .944 .951 .951 .939 .947 .957 .936 .940 .937 .947 .958
Sα ↑ .900 .897 .894 .921 .902 .912 .919 .912 .904 .916 .925 .897 .909 .896 .906 .924

MAE ↓ .047 .043 .054 .035 .041 .038 .035 .036 .039 .036 .028 .047 .042 .045 .042 .029

NLPR

Fmax
β ↑ .897 .903 .902 .918 .918 .915 .916 .912 .906 .919 .919 .893 .916 .907 .908 .932

Emax
ξ ↑ .953 .956 .953 .961 .963 .960 .960 .963 .952 .965 .962 .949 .961 .957 .957 .970
Sα ↑ .912 .920 .916 .930 .925 .924 .927 .924 .919 .930 .927 .909 .930 .919 .923 .937

MAE ↓ .030 .025 .030 .023 .022 .024 .024 .022 .024 .022 .021 .031 .024 .025 .026 .018

SIP

Fmax
β ↑ .861 .879 .877 .883 .889 .892 .884 .884 .875 .889 .904 .884 .876 .872 .887 .905

Emax
ξ ↑ .909 .919 .918 .922 .924 .922 .915 .922 .912 .924 .933 .920 .915 .911 .926 .937
Sα ↑ .860 .875 .872 .879 .880 .880 .875 .876 .862 .885 .894 .878 .876 .866 .883 .894

MAE ↓ .063 .051 .057 .055 .049 .053 .054 .052 .057 .048 .043 .054 .055 .058 .051 .041

SSD

Fmax
β ↑ .834 .854 .847 .859 .832 .838 .846 .851 .863 .772 .863 .849 .798 .835 .851 .872

Emax
ξ ↑ .911 .907 .909 .919 .902 .903 .899 .909 .913 .859 .920 .905 .872 .905 .918 .921
Sα ↑ .857 .865 .868 .882 .860 .857 .853 .864 .877 .803 .871 .868 .832 .861 .865 .874

MAE ↓ .059 .049 .053 .044 .053 .052 .056 .050 .048 .082 .044 .050 .068 .053 .051 .042

DES

Fmax
β ↑ .884 .930 .934 .927 .923 .936 .934 .893 .915 .929 .946 .894 .902 .899 .922 .934

Emax
ξ ↑ .945 .976 .973 .966 .968 .973 .970 .951 .954 .972 .983 .957 .945 .951 .972 .974
Sα ↑ .897 .934 .940 .934 .931 .935 .937 .905 .917 .935 .945 .904 .913 .909 .931 .935

MAE ↓ .031 .018 .021 .021 .020 .018 .020 .024 .023 .019 .014 .029 .026 .025 .021 .018

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate the proposed model on
six widely-used datasets to validate its effectiveness, inculding STERE [45],
NJU2K [46], NLPR [47], SIP [29], SSD [48] and DES [49]. Following previ-
ous works [8, 13, 29], we use 1,485 samples of NJU2K [46] and 700 samples of
NLPR [47] for training, and the remaining samples of NJU2K (500) and NLPR
(300) for testing. The datasets of STERE (1,000), SIP (929), SSD (80), and DES
(135) are used for testing.

We employ four metrics to evaluate various methods, including maximum F-
measure (Fmax

β ) [50], maximum E-measure (Emax
ξ ) [51], S-measure (Sα) [52], and

mean absolute error (MAE) [53]. Model parameters, CPU inference time (ms,
millisecond) and GPU inference FPS (frame-per-second) are used to evaluate
the efficiency of the model.

Implementation Details. We implement our model in PyTorch [54]. Param-
eters of the backbone network (MobileNet-v3 large [20]) are initialized from the
model pre-trained on ImageNet [55]. RGB and depth images are both resized
to 352×352 for input. We use a single Nvidia Tesla P100-16GB for training and
testing and Intel Xeon (4) @2.199GHz for CPU inference speed test. The train-
ing images are augmented using various strategies, including random flipping,
rotating, colour enhancement, and border clipping. The initial learning rate is
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Fig. 5. PR curves [56] and F-measure curves on STERE [45], NJU2K [46], NLPR [47],
and SIP [29].

set to 1e-4 and is divided by 5 every 60 epochs. The Adam optimizer is used, and
the batch size is 10. It takes about 5 hours to train our model for 160 epochs.

4.2 Comparisons with SOTA Methods

Quantitative Evaluation. We compare the proposed method with 15 RGB-D
SOD methods, including 11 non-efficient models (i.e., D3Net [29], UCNet [57],
S2MA [58], BBSNet [8], JL-DCF [18], HAINet [14], CDINet [17], DCFNet [26],
DSA2F [27], RD3D [25], and SPNet [13]), and 4 efficient models (i.e., DANet [33],
PGAR [34], MobileSal [40], and DFMNet [15]). As shown in Table 1, our method
outperforms all of the comparison state-of-the-art methods. On the STERE,
NLPR, and SIP datasets, our method achieves the best performance on all four
evaluation metrics. Our model outperforms most compared RGB-D SOD meth-
ods on the NJU2K and SSD datasets except SPNet and BBSNet. As shown in
Fig. 5, we plot the PR curves [56] and F-measure curves. For readability, We
chose the larger four datasets of the six datasets. The comparison method is still
the 15 methods mentioned earlier. In terms of efficiency, among all the compared
methods, our method ranks 2nd, 3rd and 4th in model parameters, CPU inference
speed, and GPU inference speed, respectively, and is more efficient than most
of the compared methods. Overall, our RGB-D SOD method (TBINet) achieves
promising performance and efficiency.

Qualitative Evaluation. Fig. 6 shows the saliency maps predicted by the
proposed method and several state-of-the-art methods on six representative ex-
amples. The first row shows a simple example with a single salient object but
some misleading information in the depth map. The salient objects predicted by
our method, MobileSal, RD3D, and CDINet, have complete boundary details,
while results of other methods appear smeared and incomplete to varying de-
grees. The 2nd and 3rd rows show multiple salient objects, and it is not easy
to detect all salient objects accurately. Only our method, DFMNet, and S2MA
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RGB Depth GT Ours DFMNet MobileSal SPNet RD3D DSA2F DCFNet CDINet HAINet JL-DCF PGAR S2MA D3Net

Fig. 6. Visual comparisons of our method (TBINet) with SOTA methods includ-
ing DFMNet [15],MobileSal [40], SPNet [13], RD3D [25], DSA2F [27], DCFNet [26],
CDINet [17], HAINet [14], JL-DCF [18], PGAR [34], S2MA [58], D3Net [29].

can completely detect three salient objects in the second row. At the same time,
other compared models have missing objects or incomplete segmentation, and
the third row is similar. The 4th row shows a salient object with a complex
structure. Thanks to the clear depth map, most methods achieve good results.
However, some compared methods make poor use of depth information and con-
fuse the background as a salient object. The 5th row shows the low-contrast
scene, and it can be observed that our model segments salient objects sharply.
The 6th row shows a scene with complex textures. In this example, the depth
map is ambiguous. Our model is not misled by low-quality depth information,
and accurately locates salient objects.

4.3 Ablation Studies

To verify the effectiveness of the modules and strategies we use in the model,
we conduct ablation studies by removing or replacing relevant modules from the
full model and reformulating the strategies. We conduct experiments on NJU2K
dataset and NLPR dataset.

Table 2. The effectiveness analyses of TBI strategy.

Strategy Ours A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 E1 E2 E3 E4
First Stage BAG UAG-r UAG-d BFS BAG BAG BAG BAG BAG BAG UAG-r UAG-d BAG BFS shared
Second Stage BFS BFS BFS BFS BFS UFS-r UFS-d BAG BFS BFS UFS-r UFS-d BAG BFS shared
Thrid Stage shared shared shared shared shared shared shared shared shared BFS shared shared BAG BFS shared
Param (M) 3.7 3.7 3.7 3.7 3.8 3.7 3.7 3.7 3.7 6.4 6.5 3.7 3.7 6.3 6.3 6.5 3.5

NJU2K
Fmax
β ↑ .928 .926 .925 .925 .927 .920 .921 .926 .925 .926 .924 .921 .926 .919 .923 .924 .914

MAE ↓ .029 .029 .031 .030 .030 .032 .033 .031 .032 .029 .031 .033 .031 .033 .032 .030 .034

NLPR
Fmax
β ↑ .932 .929 .931 .929 .926 .923 .923 .929 .927 .932 .928 .923 .929 .929 .932 .928 .924

MAE ↓ .018 .020 .019 .019 .021 .022 .021 .019 .021 .019 .019 .021 .019 .020 .019 .019 .021
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Effectiveness of TBI Strategy. Our three-stage interaction strategy uses
BAG, BFS, and shared network strategies in the first, second and third stages of
the encoding process, respectively. For first stage, we first remove the BAG mod-
ule, this evaluation is denoted as ‘A1’ in Table 2. Then, we replace the BAG mod-
ules with unidirectional attention guidance (UAG) modules. The RGB-enhanced
UAG module is abbreviated as UAG-r, and the depth-enhanced UAG module
is abbreviated as UAG-d. We denote the RGB-enhanced and depth-enhanced
strategies as ‘A2’ and ‘A3’, respectively. Finally, the replacement of the BAG
module with the BFS module is denoted as ‘A4’. Table 2 shows that the BAG
module is effective in guiding the network to learn cross-modality correlations.
second stage is similar to first stage, we compare the BFS module with four base-
lines: removing the BFS module (denoted as ‘B1’), replacing the BFS module
with a unidirectional feature supplement (UFS) module (denoted as ‘B2’ and
‘B3’), and replacing the BFS module with a BAG module (denoted as ‘B4’).
Table 2 shows the effectiveness of the BFS module. It is worth noting that the
performance of ‘B3’ is significantly better than that of ‘B2’ and ‘B1’, which
shows that feature supplement to the deep branch can improve the performance
very well. The deep reason may be that the BFS module reduces the interference
of low-quality depth information. For thrid stage, we do not use shared network
strategy (denoted as ‘C1’) or change to use the BFS module (denoted as ‘C2’),
the performance of ‘C1’ is not much different from our strategy, but the param-
eters are much more. We also changed the BAG module and BFS module to
unidirectional interaction at the same time (denoted as ‘D1’ and ‘D2’). These
strategies have gaps compared with our strategy. Finally, we evaluate the cases
of using the same interaction strategy in all stages (denoted as ‘E1’, ‘E2’, ‘E3’,
and ‘E4’). As shown in the Table 2, our three-stage bidirectional interaction
strategy outperforms the ordinary bidirectional interaction strategy.
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Fig. 7. Illustration of other feature aggregation strategies compared with the CFA
module. Channel shuffle operations are hidden for a clear view.

Effectiveness of CFA Module. The CFA module is proposed to aggregate
and refine cross-modality features, which adopts a two-step feature fusion and
refinement. To verify the effectiveness of the CFA module, we evaluate some
different cross-modality feature aggregation strategies, as shown in Fig. 7. We
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Table 3. The effectiveness analyses of CFA module.

Strategy Ours F1 F2 F3 F4 F5 F6
Param(M) 3.7 3.5 3.7 3.7 3.7 3.7 3.6

NJU2K
Fmax
β ↑ .928 .927 .925 .924 .917 .919 .921

MAE ↓ .029 .030 .031 .031 .052 .032 .032

NLPR
Fmax
β ↑ .932 .928 .931 .930 .914 .923 .923

MAE ↓ .018 .020 .020 .019 .037 .021 .021

first remove the step of “fusion before refinement” (denoted as ‘F1’) as shown
in Fig. 7(a) or remove the step of “fusion after refinement” (denoted as ‘F2’) as
shown in Fig. 7(b). Table 3 shows that the performance of ‘F1’ and ‘F2’ is reduced
to varying degrees. Our proposed two-step cross-modality fusion strategy can
better fuse and refine cross-modality features. We formulate a strategy denoted
as ‘F3’ as shown in Fig. 7(c): we fuse the refined features of the RGB branch
with the refined features of the depth branch and then use the fused features to
refine the features generated by the previous stage‘s fusion branch. The result
shows that our strategy outperforms this “refinement-by-refinement” strategy.
We remove the supervision of the saliency maps generated by the RGB branch
and the depth branch (denoted as ‘F4’), the result shows that the supervision of
the RGB branch and the depth branch is effective. The direct removal of the RGB
branch and the depth branch in the CFA module is denoted as ‘F5’ as shown in
Fig. 7(d), and Table 3 shows the effectiveness of the three branches in the CFA
module. The above evaluation of different cross-modality feature aggregation
strategies can conclude that our CFA module can effectively aggregate and refine
cross-modality features and generate more accurate saliency maps.

5 Conclusion

We propose a three-stage bidirectional interaction network for RGB-D SOD.
Existing works have not explored the relationship between cross-modality fea-
tures of various levels. Our model employs appropriate interaction strategies at
different stages of the encoding process to generate more robust feature repre-
sentations. In addition, our proposed cross-modality feature aggregation module
can effectively aggregate and refine saliency-oriented features to generate ac-
curate saliency maps. Evaluations on six benchmark datasets show promising
performance of our TBINet. Our model is lightweight and efficient, which may
help the application of RGB-D SOD on mobile devices.
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