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Abstract. Currently, carrying ultra high definition (UHD) imaging equ-
ipment to record rich environmental conditions in deep water has be-
come a hot issue in underwater exploration. However, due to the poor
light transmission in deep water spaces and the large number of impu-
rity particles, UHD underwater imaging is often plagued by low contrast
and blur. To overcome these challenges, we propose an efficient two-
path model (UHD-SFNet) that recovers the color and the texture of
an underwater blurred image in the frequency and the spatial domains.
Specifically, the method consists of two branches: in the first branch, we
use a bilateral enhancement pipeline that extracts the frequency domain
information of a degraded image to reconstruct clear textures. In the
pipeline, we embed 1D convolutional layers in the MLP-based frame-
work to capture the local characteristics of the token sequence. In the
second branch, we develop U-RSGNet to capture the color features of the
image after Gaussian blurring to generate a feature map rich in color in-
formation. Finally, the extracted texture features are fused with the color
features to produce a clear underwater image. In addition, to construct
paired high-quality underwater image enhancement dataset, we propose
UHD-CycleGAN with the help of domain adaptation to produce more
realistic UHD synthetic images. Experimental results show that our al-
gorithm outperforms existing methods significantly in underwater image
enhancement on a single GPU with 24G RAM. Codes are available at
https://github.com/wyw0112/UHD-SFNet.

1 Introduction

Over the past few years, underwater image enhancement has received increasing
attention as a fundamental task to improve advanced marine applications and
services. Especially with the popularity of ultra high definition (UHD) imag-
ing devices, there is an increasing demand for clear UHD underwater images
for marine applications and services. Unfortunately, light in deep water is af-
fected by wavelength-dependent absorption and scattering [1–4], resulting in
problems such as low contrast and color cast in underwater images. In addition,
underwater microorganisms and impurities can further enhance light scattering,
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Fig. 1. The figure shows the difference in the normalized Fourier coefficients and the
high frequency information between a pair of clear and blurred images. Where (a) is
the clear image, (b) and (c) are the real and imaginary parts of (a) in the frequency
domain after conversion to a grayscale map, respectively, (d) is the high-frequency part
of (a), (e) is the blurred image, and (f)-(h) as above.

which can seriously interfere with the subsequent analysis of the computer vi-
sion. Therefore, it is difficult but very important to design efficient underwater
image enhancement methods.

Traditional methods [3, 5–7] implement the task of underwater image en-
hancement with the help of statistical properties of the image and physical as-
sumptions. However, these methods solve the color cast of images mainly by
using manual priors, which make it difficult to correct low contrast and missing
texture information in dynamic scenes. Recently, deep learning methods have
been widely used to enhance underwater images, including standard convolu-
tion methods [8, 9], methods with physical priors [10], and GAN-based meth-
ods [11–13]. Although these methods accomplish state-of-the-art results, their
modeling pattern is to stack a large number of convolution kernels on the spatial
domain to reconstruct the missing details, the masking of impurities, and the
bluish (greenish) tones, ignoring the role of information in the frequency domain.

In order to use the spatial properties in the frequency domain to better learn
feature patterns that are difficult to learn in the spatial domain, another research
line [14–16] try to enhance images in the frequency domain, such as underwa-
ter image enhancement [16], and image deblurring [14]. These methods usually
use Fourier transform or wavelet transform to obtain the frequency domain co-
efficients of the degraded image, and later use methods such as thresholding,
filtering or deep learning to bridge the gap between the degraded image and
the clear image. However, most of these methods ignore the role played by the
real and imaginary parts of the frequency domain coefficients (complex tensor).
The common practice of these methods is to assign a weight to a set of complex
numbers, or discretize an image to obtain high-frequency and low-frequency fea-
tures and process them separately. However, using fixed weights will result in
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the model being not able to reconcile the different semantic information of the
images well, so we use a dynamic aggregation token method to process the real
and imaginary parts of the frequency domain features. The viewpoint can be
supported by Wave-MLP [17], which obtains a sizable performance benefit by
splitting the real and imaginary parts of the estimated Fourier coefficients and
refining them separately. Although PRWNet [16] deals with high-frequency and
low-frequency features after wavelet transform respectively, the recovery of the
frequency-domain characteristics of the image requires long-distance dependent
features of the image. So it needs to stack a lot of convolutions to recover vi-
brant color and textures, which results in its inability to process UHD images on
a single 24G RAM GPU. Since the framework of MLP is easy to establish long-
distance dependence on the image, in the paper, we use the MLP-based model
to extract features on the frequency domain to recover the blurred texture in-
formation. Furthermore, as shown in Figure 1, we demonstrate the difference in
the normalized Fourier coefficients and the high frequency information between
a pair of clear and blurred images.

To solve the above problems, we propose UHD-CycleGAN to generate more
realistic underwater blurred images on a single GPU with 24G RAM, and develop
UHD-SFNet to generate high quality underwater enhanced images. To better
recover the image texture information, our frequency domain perception sub-
network based on MLP extracts the frequency domain information of an image
by embedding the spatial induction bias in the bilateral technique. It is worth
noting that by using a parallel twin channel, the real and imaginary parts of the
estimated Fourier coefficients are refined separately to produce a high-quality
bilateral grid. For the spatial domain branch, we use U-RSGNet to reconstruct
the color information of the blurred underwater image by ingesting a gated
residual to enhance the channel domain properties.

The contributions of this paper are summarized as follows:

– We propose a new network framework that can enhance UHD underwater
images by extracting information in the spatial and the frequency domains.
The framework complements the frequency and the spatial domain informa-
tion of the image to better recover the color and texture information of the
image, and the framework can process UHD underwater images on a single
24G RAM GPU.

– In the frequency domain branch, we embed the 1D convolution in the MLP-
based method to capture the local features inside the image patches as a
complement to the global frequency domain information that can recover
the sharp edges of the image. In the spatial domain branch, we introduce
the gated residual to enhance the properties of the channel domain to restore
the natural color.

– We propose the novel UHD-CycleGAN to generate the U-Water100 dataset
using 100 high-quality underwater clear images of different sizes. A large
number of experimental results demonstrate the SOTA results achieved by
our underwater image enhancement method.
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2 Related Work

2.1 Underwater Image Enhancement

The early research methods were mainly physical model-free and physical model-
based methods. The physical model-free methods aim to modify the image pixel
values to improve the contrast of underwater blurred images. Iqbal et al. [18]
stretched the dynamic pixel range of RGB color space and HSV color space to
improve the contrast and saturation of underwater images. Ghani and Isa [19,20]
made improvement for the problem that Iqbal et al. [18] method causes over-
enhancement or under-enhancement. Ancuti et al. [21] recovered clear images
by mixing contrast-enhanced images and color-corrected images in a multiscale
fusion strategy. Fu et al. [22] proposed a new retinex-based enhancement method
to enhance a single underwater image.

The physical model-based methods treat underwater image enhancement as
an uncertain inverse problem where handcrafted priors are used to estimate the
potential parameters of the image formation model. Chiang et al. [5] and Drews-
Jr et al. [6] implemented underwater image enhancement by modifying the dark
channel prior (DCP) proposed by He et al. [23]. Li et al. [7] proposed a hybrid
method including color correction and underwater image deblurring to improve
the visual quality of degraded underwater images. Akkaynak et al. [3] proposed
a modified underwater image formation equation which is a physically more
accurate model.

With the continuous development of deep learning and the accumulation of
large datasets, data-driven methods have become increasingly popular in recent
years. These methods mainly use convolutional operations to extract image fea-
tures instead of using various manually extracted prior features. Due to the lack
of underwater image enhancement datasets, early work used generative adver-
sarial networks (GAN) to generate datasets or perform unpaired learning. Li
et al. [24] first applied GAN to the generation of underwater blurred images.
Jamadandi et al. [12] used wavelet transform to reconstruct the signal better.
Uplavikar et al. [13] enabled the model to better discriminate between different
types of underwater blur by introducing a classifier. Li et al. [9] constructed
an underwater image enhancement benchmark (UIEB) and proposed a convolu-
tional neural network trained on this benchmark. Li et al. [10] proposed an un-
derwater image enhancement network with multicolor spatial embedding guided
by medium transport, combining the advantages of physical models to deal with
off-color and low-contrast problems. Huo et al. [16] enabled the network to pro-
gressively refine the underwater images in the spatial and the frequency domains
by using a wavelet boosting learning strategy.

2.2 UHD Image Processing

Gabiger-Rose et al. [25] used a simultaneous field-programmable gate array im-
plementation of bilateral filters to make more efficient use of dedicated resources.
Jie et al. [26] proposed the Laplace Pyramid Translation Network (LPTN) to
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UHD-SFNet 5

avoid direct processing of high resolution images by feature extraction and fu-
sion of multiple low resolution images. Lin et al. [27] used a base network to
compute a low-resolution result and a second network to refine selected patches
at high resolution to perform image keying in real time. Wang et al. [28] used a
light weight two-head weight predictor with two outputs to perform fast image
enhancement.
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Fig. 2. In the purple region, the frequency domain coefficients are divided into the real
and imaginary parts. The real and imaginary parts are processed separately in a pair of
channel mixers to extract the frequency domain information of the image. Afterwards,
the generated pairs of frequency domain feature maps are concatenated together and
filtered using 3D convolution kernel to produce a bilateral grid. Next, the bilateral grid
is queried using the guidance map to reconstruct the texture of the clear image. In
the light green region, the spatial domain branch uses an encoder-decoder structure
with gated residuals to process the blurred image to extract the color information of
the image. Finally, the extracted frequency domain information and spatial domain
information are fused to produce a clear image.

3 Proposed Method

As shown in Figure 2, in order to efficiently reconstruct the texture and color
of a degraded image, we develop a two-path network dealing with the spatial
and the frequency features. Specifically, we first use bilinear interpolation to
downsample an underwater blurred image of arbitrary size to improve the speed
of the model in extracting features in the frequency and the spatial domains.
Next, in the spatial domain branch, we use Gaussian blur for the low-resolution
input image (focusing on reconstructing the color information [29]), and then
extract the spatial domain information of the image with the help of U-RSGNet.
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In the frequency domain branch, we use the fast Fourier transform to obtain the
Fourier coefficients of an image. In particular, we extract features from the real
and imaginary parts of the obtained Fourier coefficients using a pair of channel
mixers to construct a high-quality bilateral grid. Then we slice [30] the obtained
bilateral grid with the guidance map to obtain a frequency domain feature map
rich in texture information. Finally, the output feature maps in the spatial and
the frequency domains are fused with the input image to obtain a clear and
colorful image.

3.1 Frequency Domain Information Extraction

Inspired by Wave-MLP, the frequency domain features can easily be modelled
by MLPs to obtain accurate results. However, the MLP-based methods do not
take into account the inductive bias of the local space of patches within the im-
age, which is undoubtedly a loss for extracting local information from the image.
For this reason, we use a pair of channel mixers to extract the frequency domain
features of the degraded image. First, the input image I is converted into Fourier
coefficients F by fast Fourier transform. Next, we divide the Fourier coefficients
F into a real part real ∈ R(C×H×W ) and an imaginary part imag ∈ R(C×H×W ),
where H, W and C are the length, width and channel of the image respectively. In
addition, we divide real and imag into patches of length and width P and stretch
them into 1D sequences of token embeddings Treal ∈ R(((H/P )×(W/P ))×(C×P×P ))

and Timag ∈ R(((H/P )×(W/P ))×(C×P×P )). Then, they are processed using channel
mixers to obtain a real part feature Fr and an imaginary part feature Fi, respec-
tively. The Channel Mixer Block (CMB) consists of several LayerNorm layers,
linear layers, 1D convolutional layers, and PReLU activation function layers. The
details are as follows:

T = CN3(I + P (CN2(P (CN1(N(I)))))) , (1)

T
′
= CN4(T + P (L2(P (L1(N(T )))))) , (2)

where I is the input feature map, N is the layer normalization, CN is the 1D
convolutional layer, L is the fully connected layer, and P is the PReLU activation
function. The overall channel mixer first processes the input image by using a
linear layer, and then feeds the feature maps into twelve CMBs to extract the
image frequency domain information. The output feature map of the last CMB
is processed by using a layer normalization, two 1D convolutions and PReLU
activation functions to refine the high frequency features to obtain the final
output.

We concatenate the real part features Fr and the imaginary part features Fi.
Then we compress the frequency domain features into a four-dimensional affine
bilateral grid after filtering by a 3D convolution kernel. The coordinates of the
grid are in three dimensions. The reshaped frequency domain features can be
viewed as a 16× 16× 16 bilateral grid B, where each grid cell contains 3 digits.
We process the original resolution image using convolution blocks to generate a
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guidance map G with bootstrap functionality. We use the slicing operation [30]
to generate a high-quality feature map Ff by querying the bilateral grid through
the guidance map.
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Fig. 3. The proposed structure of the U-RSGNet block in which the gated residual is
ingested to enhance the channel domain characteristics.

3.2 Spatial Domain Information Extraction

To further utilize the rich color information in the spatial domain to recover
colorful images, we introduce the spatial domain branch. This branch utilizes
U-RSGNet to progressively enhance the channel information (color information)
of the input features. The branch is a U-shaped structure consisting of a con-
tracting path and an expansive path. The branch has five layers, in the first
four layers each path is composed of two U-RSGNet blocks, and in the last layer
twenty U-RSGNet blocks are used to mix the channel information of the low-
est resolution feature map. In order to shrink or expand the feature map, a 2D
convolution or sub-pixel convolution is inserted after each processing stage of
the path. The structure of the U-RSGNet block is shown in Figure 3. Because
gated linear unit [31] can effectively improve the ability of the model to handle
the long-distance dependence, we incorporate gated linear units in the network.
The structure of the gated linear unit is as follows:

Gate(X) = f(X)⊗ σ(g(X)) , (3)

where X is the feature map, f and g denote linear transformations, ⊗ denotes el-
ement multiplication, and σ denotes the nonlinear activation function. Although
the gating method with GELU activation function can enhance the modeling
capability of the model, this will undoubtedly lead to higher model complexity.
This runs counter to our philosophy of designing a lightweight model. To allevi-
ate this problem, we use SimpleGate (SG) [32] as the basic feature enhancement
unit to replace the traditional gating strategy. The details are as follows:

T1, T2 = Chunk(X) , (4)

O = T1 ⊗ T2 , (5)

where the Chunk operation is to cut X ∈ R(C×H×W ) directly in the channel
dimension into feature sub-images T1 ∈ R((C/2)×H×W ) and T2 ∈ R((C/2)×H×W ).
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(a) Frequency domain feature (b) Spatial domain feature

Fig. 4. (a) is the normalized output feature map of the frequency domain branch, and
(b) is the normalized output feature map of the spatial domain branch.

T1 and T2 have the same size in each dimension. To further improve the U-
RSGNet’s ability to model the channel information to reconstruct the color of a
blurred image, we propose the Residual Simple Gate (RSG) as follows:

RSG(X,Y ) = SG(Y + β ∗ SG(X)) , (6)

where X ∈ R(C×H×W ) and Y ∈ R((C/2)×H×W ) are the input feature map
of the simple gate and the output feature map of the previous layer of the
residual simple gate, respectively, ∗ is the channelwise product operation, and
β ∈ R((C/2)×1×1) is the learnable channel attention vector. To further enhance
the global attention capability of the model to obtain richer color information,
our channel attention module (CAM) performs a global average pooling opera-
tion on the feature map to turn it into a channel attention vector A ∈ R(C×1×1),
and then transposes A to AT ∈ R(1×1×C), where C is the number of channels.
Then, AT is processed through a linear layer to enhance the global attention
capability of the model. Finally, the transposed AT is multiplied in the channel
dimension with the input feature map to obtain the feature map rich in global
information. The details are as follows:

CAM(X) = X ∗ L(pooling(X)) , (7)

where X is the input feature map, L is the fully connected layer, and pooling is
the global average pooling.

The whole process can be described as an input image I is Gaussian blurred
to obtain a color image Ig, and then the color image is input to U-RSGNet to
obtain a color-enhanced feature map Fc.

3.3 Spatial-Frequency Feature Fusion

To efficiently obtain a clear and colorful enhanced image, we use a standard
feature fusion strategy at the end of the algorithm. Specifically, we concatenate
the frequency domain feature map Ff and the spatial domain feature map Fc

in the channel dimension and process them with a standard convolution block
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(containing 3×3 and 1×1 convolutions with PReLU activation functions behind)
to obtain a 3-channel feature map Fo. Finally, the final feature map Fo is summed
with the original input image I with weights to obtain an enhanced image with
sharp edges and rich color.

As seen in Figure 4(a), the output feature map of the frequency domain
branch has sharper edges. In contrast, the recovery of an image’s color requires
the network to have the ability to accurately extract channel features, which is
capable of capturing the image’s long-distance dependent features. Therefore,
we develop U-RSGNet to enhance the color characteristics of degraded images.
In detail, we add gated residuals to enhance the characteristics of the channel
domain to improve the color reconstruction capability of the model. As seen in
Figure 4(b), the spatial domain branch focuses more on the color features of the
image.

4 Experimental Results

In this section, we evaluate the proposed method by conducting experiments
on synthetic datasets and real-world images. All results are compared with six
state-of-the-art underwater image enhancement methods and one generic image
enhancement method. These include two traditional methods (Ancuti et al. [21],
Berman et al. [33]), a GAN-based method (FUnIE-GAN [11]), and four CNN-
based methods (WaterNet [9], Ucolor [10], PRWNet [16], and NAFNet [32]). In
addition, we perform ablation studies to show the effectiveness of each module
of our network.

4.1 Training Data

To train and evaluate the proposed network as well as the comparison meth-
ods, we propose UHD-CycleGAN for migrating the style of underwater clear
images to the style of blurred images on a single GPU. To generate high-quality
UHD underwater images without noise, our generator first downsamples the im-
ages and feeds them into a convolutional network with an encoding-decoding
structure (this structure can effectively mitigate the noise interference [34]). To
avoid checkerboard artifacts caused by transposed convolution, we use bilinear
interpolation for upsampling and downsampling, and add a 1 × 1 convolution
with PReLU activation function to fill the gaps after the upsampling and down-
sampling operations. Specifically, we use all the blurred images of UIEBD as
one style (including challenging images without corresponding reference) and
clear images from U-Water100 and clear images from UIEBD as another style.
We then migrate their styles to each other. Then a discriminator is used to
determine whether the conversion is realistic or not. Notably, we also convert
the converted images to the original style by a reverse generator and calculate
their L1 loss from the original images to further promote more realistic con-
version. We migrate the styles of 100 selected underwater clear images to the
styles of underwater real blurred images in the UIEB dataset [9] to generate the
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U-Water100 dataset. Our training dataset consists of a total of 890 underwater
images. Among them, 800 are from UIEBD [9],and 90 are from U-Water100 that
we produce. Accordingly, we use 90 images from UIEBD (T90) and 10 images
from U-Water100 as the test set.

4.2 Implementation Details

The models are implemented in PyTorch and the networks are trained using
the Adam optimizer. In this case, we use images of size 512×512 as input to
train networks, with the batch size of 6. The initial learning rates for UHD-
CycleGAN and UHD-SFNet are set to 0.00002 and 0.001, respectively. We train
the UHD-SFNet for 400 epochs and UHD-CycleGAN for 10 epochs respectively.
For WaterNet [9] and Ucolor [10], we fine-tune the networks using the same
training data as ours based on the official models provided by the authors. For
PRWNet [16] and NAFNet [32], we train their networks using the same dataset
and the same experimental setup as ours. Notably, to allow the network to train
and test UHD images on a single 24G RAM GPU, we downsample the inputs of
Ucolor [10], PRWNet [16], and NAFNet [32] to 512×512 resolution and upsample
them to the original resolution at the end.

Input Ancuti et al. Berman et al. FUnIE-GAN WaterNet
PSNR/SSIM 21.1890/0.9478 17.8679/0.7731 24.0565/0.8743 28.4506/0.9722

Ucolor PRWNet NAFNet Our GT
26.5661/0.8008 29.1217/0.8989 29.5221/0.9115 30.6814/0.9667 +∞/1

Fig. 5. Results of underwater image enhancement on the U-Water100 test dataset.
Compared to other state-of-the-art methods, our method obtains better visual quality
and recovers more image details.

4.3 Evaluation and Results

Quantitative Evaluation. Our proposed method is evaluated on two datasets,
namely UIEB and U-Water100 datasets. All CNN-based methods are fine-tuned
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Input Ancuti et al. Berman et al. FUnIE-GAN WaterNet
PSNR/SSIM 18.1730/0.8367 9.0343/0.3802 10.5571/0.6168 15.2046/0.8701

Ucolor PRWNet NAFNet Our GT
20.3912/0.9579 28.4639/0.9833 26.7488/0.9801 33.8658/0.9835 +∞/1

Fig. 6. Results of underwater image enhancement on the T90 dataset. Compared to
other state-of-the-art methods, our method obtains better visual quality and recovers
more image details.

or trained on UIEBD and U-Water100. We use PSNR and SSIM as evaluation
metrics for full-reference images. For the reference-free real-world images, we use
UIQM [35] as the evaluation metric. For all the three metrics, the higher score
means better image quality. As can be seen in Table 1, we achieve the best results
for both SSIM and PSNR metrics, but we only achieve the second best results
for UIQM. However, due to the limited applicability of UIQM, it can only be
used as a reference.

Qualitative Evaluation. Figures 5 and 6 show the results of the proposed
method and the comparison methods on one UHD image from the U-Water100
and one image from the UIEB dataset, respectively. Figure 7 shows the results
of the proposed method and the comparison methods on two challenging and
unreferenced images from the UIEB dataset. It can be seen that the conventional
methods [21, 33] tend to over-enhance the results and lead to color distortion.
The GAN-based method [11] has weak color recovery capability and is prone to
generate pseudo-streaks. The recent deep learning models [10, 16, 32] still have
some ambiguity and color distortion in the results due to the lack of modeling
capability. And the deep learning models [16, 32] stack a lot of convolutions
in order to have higher performance resulting in the inability to process UHD
images on a single 24G RAM GPU directly. Our algorithm is able to directly
process UHD images and better recover the color and edges of the image. The
enhanced underwater images produced by our algorithm in Figure 5-6 are close
to the ground truth clear images. The images generated by our algorithm in
Figure 7 have more realistic color and sharp edges.
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Input Ancuti et al. Berman et al. FUnIE-GAN
UIQM 1.3510 0.9143 1.4614

Ucolor PRWNet NAFNet Our
2.4534 2.6060 2.4283 2.5673

Input Ancuti et al. Berman et al. FUnIE-GAN
UIQM 2.1775 1.8867 2.3940

Ucolor PRWNet NAFNet Our
2.4745 2.4892 2.5506 2.6444

Fig. 7. Results of underwater image enhancement on the T60 dataset. Compared to
other state-of-the-art methods, our method obtains better visual quality and recovers
more image details.

4.4 Ablation Study

To demonstrate the effectiveness of each module introduced in the proposed
network, we perform an ablation study including the following six experiments.

The Effectiveness of the Network of the Frequency Domain Branch.
We keep the structure of the network of the spatial domain branch unchanged
and replace the network of the frequency domain branch with the network of
the spatial domain branch. The images are processed with the new two-branch
network to obtain the final outputs.

The Effectiveness of the Network of the Spatial Domain Branch. We
keep the structure of the network of the frequency domain branch unchanged
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Table 1. Quantitative evaluation of the T60 dataset on UIQMmetrics and quantitative
evaluation of the T90 and U-Water100 datasets on PSNR and SSIM metrics.

U-Water100 T90 T60
PSNR SSIM PSNR SSIM UIQM

Input 21.8028 0.8955 17.5543 0.8191 1.6961
Ancuti et al. [21] 20.6852 0.8779 23.1564 0.9180 2.0978
Berman et al. [33] 16.1752 0.7197 15.5902 0.7205 1.5523
FUnIE-GAN [11] 20.4901 0.7891 17.9076 0.8057 2.3789

WaterNet [9] 22.3721 0.8859 19.5718 0.9057 2.1338
Ucolor [10] 23.7193 0.8578 20.3287 0.8538 2.2145

PRWNet [16] 23.5255 0.8390 23.8358 0.9293 2.4209
NAFNet [32] 24.2579 0.8615 24.3782 0.9288 2.2959
UHD-SFNet 25.0462 0.9158 25.2020 0.9426 2.4037

Table 2. The ablation studies of the network of the frequency domain branch, the
network of the spatial domain branch, 1D convolution, residual simple gate, spatial
domain information and frequency domain information are denoted as A, B, C, D, E
and F, respectively.

U-Water100 T90
PSNR SSIM PSNR SSIM

A 20.4543 0.8741 23.6186 0.8890
B 22.9176 0.8749 19.8691 0.8997
C 24.7120 0.9085 22.0638 0.8482
D 24.4870 0.8957 24.2489 0.9210
E 16.2886 0.8599 18.9768 0.8771
F 24.5104 0.9089 24.1519 0.9229

Our 25.0462 0.9158 25.2020 0.9426

and replace the network of the spatial domain branch with the network of the
frequency domain branch. The images are processed with the new two-branch
network to obtain the final outputs.

The Effectiveness of the 1D Convolution. To ensure that the parameters
and computational complexity of the model are similar to our method, we replace
the 1D convolution in the channel mixer with the linear layer and compare it
with our proposed method.

The Effectiveness of the Residual Simple Gate. We replace the residual
simple gate with the simple gate in the network and compare it with our proposed
method.
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The Effectiveness of the Spatial Domain Information. The inputs to both
branches of the network are images in the frequency domain. In this case, the
input of the spatial domain branch is replaced by the real and imaginary parts
of the frequency domain of the image with the same resolution as the inputs of
the spatial domain branch.

The Effectiveness of the Frequency Domain Information. The inputs to
both branches of the network are images in the spatial domain. In this case, the
inputs of both the real and imaginary parts of the frequency domain branch are
replaced by the images in the spatial domain with the same resolution as the
inputs of the frequency domain branch.

Table 2 shows the results of our method compared with these six baselines on
the U-Water100 and UIEB datasets. As can be seen in Table 2, the network of
the spatial domain branch can achieve better metrics to some extent by relying
on the color features of the images, but its edge recovery capability is still insuf-
ficient. Using only the network of the frequency domain branch does not produce
satisfactory results, but its better ability to extract high-frequency information
can be complemented by the ability to recover color from the network of the
spatial-domain branch to produce enhanced images with rich color and sharp
edges. Because 1D convolution can enhance the ability of the network to extract
high-frequency features, it is used to compensate for the loss of local features
caused by processing channel features with only linear layers. RSG can further
improve the color recovery capability of the network by enhancing the channel
domain features. Using the frequency domain information and the spatial do-
main information to complement each other can further refine the image edges
and color to obtain a clearer and more colorful image.

5 Conclusion

In this paper, we propose a new framework for UHD underwater image enhance-
ment in the spatial and the frequency domains. Our algorithm learns the features
of the real and imaginary parts of the Fourier coefficients of the image to recon-
struct the details of the image with the help of the channel mixer. In addition, we
use the U-RSGNet with the RSG to recover the color information of the images.
Quantitative and qualitative results show that our proposed network compares
well with state-of-the-art underwater enhancement methods in terms of accuracy
and produces visually pleasing results on real-world underwater images.
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