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Abstract. Online hashing methods aim to update hash functions with
newly arriving data streams, which can process large-scale data online.
To this end, most existing methods update projection functions online
and adopt a single-bit quantization strategy that quantizes each pro-
jected component with one bit. However, single-bit quantization results
in large information loss in the quantization process and thus cannot
preserve the similarity information of original data well. In this paper,
we propose a novel unsupervised online hashing method with multi-bit
quantization towards solving this problem, which consists of online data
sketching and online quantizer learning. By maintaining a small-size data
sketch to preserve the streaming data information, an orthogonal trans-
formation is learned from the data sketch to make the components of
the streaming data independent. Then, an optimal quantizer is learned
to adaptively quantize each component with multiple bits by modeling
the data distribution. Therefore, our method can quantize each compo-
nent with multiple bits rather than one bit to better preserve the data
similarity online. The experiments show that our method can achieve
better search accuracy than the relevant online methods for approximate
nearest neighbor search.

Keywords: online hashing · unsupervised hashing · multi-bit quantiza-
tion.

1 Introduction

With the development of feature representation methods, especially deep learn-
ing methods [12, 24], images and videos are represented by high-dimensional
features that can obtain high-level semantic information. Conventional nearest
neighbor search methods [1, 23] are ine�cient for high-dimensional features as
a consequence of the curse of dimensionality. The di�culty of �nding the ex-
act nearest neighbors in the high-dimensional space leads to the emergence of
Approximate Nearest Neighbor (ANN) search methods [19, 25] using a compact
data representation for high-dimensional data. Hashing methods [27, 26] are one
type of widely-used ANN search methods. The goal of hashing methods is to
learn a binary-code representation which can preserve the similarity structure
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Fig. 1. A comparison example between Single-Bit Quantization (SBQ) and Multi-Bit
Quantization (MBQ) for the projected component. Here MBQ adopts two bits. ci is a
group centroid to represent the data points in the group.

of data in the original feature space. Using a binary representation for data can
not only reduce the database storage but also improve the search e�ciency.

Traditional hashing methods [25, 21, 22, 3, 6] are mostly designed to learn
hash functions o�ine from a �xed collection of training data. However, they
cannot deal with the streaming data. In many real-world applications, data is
available continuously in streaming fashion. When new data arrives, the data dis-
tribution changes and these methods have to accumulate all the data to re-learn
hash functions, which is time-consuming. Therefore, online hashing methods [4,
8, 16, 33, 16, 31, 17, 28] have attracted much research attention recently, which
can learn the hash functions online from the streaming data.

According to whether there is label information provided in the learning
process, online hashing methods can be categorized into two groups, supervised
online hashing methods [16, 31, 17, 28, 36, 32] and unsupervised online hashing
methods [13, 33]. In this paper, we focus on unsupervised online hashing methods
as it is expensive to collect a large number of labeled samples in real-world
applications.

Unsupervised online hashing methods [13, 33] usually adopt a learning strat-
egy containing two stages: projection stage and quantization stage [11]. They
maintain a small-size data matrix to preserve the characters of streaming data
online and learn the projection functions from the data matrix. Then, a Single-
Bit Quantization (SBQ) strategy is adopted to quantize each projected compo-
nent with one bit. However, the recent research [30, 5] shows that SBQ results
in large information loss in the quantization process and cannot preserve the
similarity structure of original data well, as shown in Fig. 1.

In this paper, we propose an unsupervised online hashing method with Multi-
Bit Quantization (MBQ) to address the above problem. In our method, a data
sketch is maintained from the streaming data and an orthogonal transformation
is learned from the data sketch to reduce statistical dependence among the data
components. By modeling the distribution of each component, a bit allocation
algorithm is designed to adaptively allocate bits to each component, and an
optimal quantizer is learned by independently quantizing each component. As
shown in Fig. 1, by learning to quantize each component with multiple bits
rather than one bit online, our method have a much bigger distance space than
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online hashing methods with SBQ and can better preserve the data similarity.
The experiments on two widely-used datasets validate the e�ectiveness of our
method.

2 Related Work

Since directly learning best binary codes for a given database is proven as a NP-
hard problem [29], most hashing methods adopt a learning strategy containing
two stages: projection stage and quantization stage [11]. In the projection stage,
several projected components of real values are generated. In the quantization
stage, the components generated from the projection stage are quantized into
binary codes. Many hashing methods focus on the projection stage and adopt
the widely-used SBQ strategy to quantize each projected component [25, 21, 22,
3]. However, the recent research [11, 10, 30, 34, 5] shows that replacing the SBQ
strategy by the MBQ strategy can result in a better search accuracy. For ex-
ample, the literature [11] quantizes each projected component with multiple bits
and calculates Manhattan distance between the binary codes for nearest neighbor
search. In addition to quantize each component with the same number of bits,
some methods [30, 5] develop quantizers to adaptively quantize each projected
component with a certain number of bits according to the data distribution.
Although the above hashing methods with MBQ can obtain the satisfactory
search performance for the static database, they cannot deal with the stream-
ing data. When new data arrives, the data distribution changes and these MBQ
methods have to accumulate all the data to re-learn the quantizer, which is time-
consuming. Therefore, we propose an novel unsupervised online hashing method
to learn the multi-bit quantizer online. To our best knowledge, this is the �rst
work to adopt the MBQ strategy for online hashing.

In parallel to hashing methods, Product Quantization (PQ) methods [19] are
another type of ANN search methods. PQ methods [9, 2, 19, 7] represent each
high-dimensional feature vector by a Cartesian product of several quantized
values. Recently, some online PQ methods [14, 35, 18] are also developed for
streaming data. As PQ methods are related to hashing methods, we will compare
our method with online unsupervised PQ methods to validate the e�ectiveness
of our method.

3 Online Hashing with Multi-Bit Quantization

This section presents the proposed method, Online Hashing with Multi-Bit
Quantization (OHMBQ), to quantize streaming data with multiple bits. The
proposed OHMBQ consists of two key designs. The �rst is to reduce the depen-
dence among data components by learning an orthogonal transformation from
streaming data. The second is to learn an optimal quantizer by modeling the
data distribution of the transformed components. A theoretical proof for learn-
ing the optimal quantizer is provided. More details are described in the following
subsections.
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3.1 Preliminary about multi-bit quantization

Assume there is a set of data points X = [x1, ...,xN ],x ∈ RD, where N is the
number of data points and D is the data dimensionality. Quantization is the
process of dividing a large set (or a continuous set) of data points into groups
and learning the group's centroid to represent the group. Given the quantization
level m, the quantizer q : RD → Z where Z = {0, 1, ...,m − 1} is characterized
by the input space partition Q(z) = {x : q(x) = z} and the group centroid
c(z) ∈ RD for z ∈ Z. To obtain a binary representation for the data point, the
index z is transformed to be a binary expression t(z) ∈ {0, 1}b where b is the
number of bits, and m = 2b.

The quality of the quantization is measured in terms of its average distortion,

A = E[d(x, c(q(x)))], (1)

where d : RD × RD → R is the distortion function which takes on the metric of
Euclidean distance in the nearest neighbor search.

As [3] denotes, to minimize the average distortion A, the optimal quantizer
is characterized by the following properties:{

Q(z) = {x : d(x, c(z)) ≤ d(x, c(z′)),∀z′ ∈ Z}
c(z) = argminx′Ex[d(x,x

′)|x ∈ Q(z)]
. (2)

It is a challenging problem to quantize the high-dimensional data into hun-
dreds of groups. Especially, the quantization level of the quantizer m = 2b grows
exponentially on the bit number b. It is impossible to collect a su�cient number
of training examples to span the quantized space which comprises hundreds of
bits.

To address the challenge, multi-bit quantization methods assume the data
distribution p(x) is independent in its components after projecting the data onto
a new space with the projection matrix learned in the projection stage. Then,
the metric is of the form d(x,x′) =

∑
i di(xi, x

′
i), where xi are the components

of x. Therefore, a minimum distortion quantizer can be obtained by forming the
Cartesian product of the independently quantized components. That is, let

q(x) = (q1(x1), q2(x2), ..., qD(xD)) = z, (3)

where z = (z1, ..., zD), zi = qi(xi)
Given a query x̃, the distance between the query and the data point is cal-

culated as

d(x̃,q(x)) =
∑

i
di(x̃i, ci(qi(xi))). (4)

According to Eqn. (4) and Fig. 1, hashing methods with MBQ obviously
have a much bigger distance space than hashing methods with SBQ and thus
can achieve better search accuracy.

Although multi-bit quantization methods have achieved promising search
performance on the static database, they cannot be directly applied on the
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Algorithm 1 Zero-Mean Sketching

Input: data chunk D, sketch matrix P, mean value µ, cumulative number n
Output: sketch matrix P

1: Sketch [D− D̄,
√

nnD
n+nD

(D̄− µ)] into P with FD where D̄ is the mean value of D

and nD is the size of the sketch D
2: µ = nµ

n+nD
+ nDD̄

n+nD

3: n = n+ nD

streaming environment where the data distribution varies when data keeps grow-
ing. Speci�cally, the existing techniques for reducing the dependence between
data components and learning an optimal quantizer require knowing the data
distribution in advance. In the following, we describe how to reduce the depen-
dence between data components and learn an optimal quantizer online in our
method.

3.2 Online transform coding

For the static database, the assumption that the components of x are indepen-
dent can be addressed by transform coding [3], which seeks a transformation
to reduce statistical dependence among the components. This is typically done
through Principal Component Analysis (PCA) where an orthogonal transforma-
tion matrix U is obtained by concatenating the top eigenvectors of covariance
matrix XXT . Here, X is zero-mean data. To learn an orthogonal transformation
from the streaming data that can approximate the orthogonal transformation
in PCA, we adopt Online Sketching Hashing (OSH) [13] to maintain a small-
size sketch online to preserve the character of the streaming data and learn the
transformation matrix from the data sketch.

Assume data comes in chunks. New data chunk Dt arrives at round t. Xt =
[D1, ...,Dt] denotes the data matrix accumulated from round 1 to round t, µt is
the mean of Xt. Since the data should be zero-mean in PCA, Online Sketching
Hashing (OSH) [13] develops a zero-mean data sketching method based on Fre-
quent Directions(FD) [15] to learn a small-size sketch P ∈ RD×k where k is the
size of the sketch such that PPT ≈ (Xt − µt)(Xt − µt)

T , which is summarized
in Algorithm 1. The input to Algorithm 1 is the data chunk D, the data sketch
P, the mean value of the cumulative data µ, and the cumulative number of the
data n. More details can be found in [13]

By applying Algorithm 1 we can obtain an orthogonal transformation matrix
U by taking the top eigenvectors from PPT for learning the quantizer.

3.3 Online quantizer learning

Assume the data has been transformed by the transformation matrix U learnt
from the data sketch and the dependence among the components has been re-
duced. To obtain a b-bit binary code for representing the data point, we need
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to determine the bit number for each component, i.e., the quantization level for
each component, at �rst. Then, for each component, we need to separate the
input space into groups and learn the centroid of each group.

Bit allocation is a process of determining the number of data components
and determining the quantization level of each component. The number of the
bits is �xed. When more bits are allocated to the component to preserve the
information of the single component, the number of the selected components
become smaller, which results in the information loss, and vice versa. The liter-
ature [30] determines the bit number for each component according to the data
distribution of each component. In the streaming environment, since the data
distribution keeps changing and accumulating all the data is time-consuming,
this bit allocation algorithm cannot be used for the streaming data. The litera-
ture [3] allocates bits to each component proportionally according to the stan-
dard deviation of the component. It can be used in the streaming environment.
However, this method treats each component independently. In our method, we
design a new bit allocation algorithm from the perspective of the accumulative
component energy.

Since b bits can be allocated to at most b components, i.e., one bit for one
component, b components that have the maximum information are chosen by
Y = UT (Xt − µt) where U ∈ RD×b is obtained by taking the top b eigenvector
from PPT . The standard deviation δi of the ith component corresponds to the
ith eigenvalue. Each column y ∈ Rb of Y has b components.

As it is time-consuming to obtain the data distribution by accumulating all
the data when new data arrives, we hope to model the data distribution of
each component. Fig. 2 shows the data distribution of each component after
transformation on the CIFAR-10 dataset [20] for each round. From the �gure,
we can see that the data distribution for the component tends to be a Gaussian
distribution after a few rounds. Hence, we assume each component is subject to
the Gaussian distribution N(0, δ2i ). Inspired by PCA which selects eigenvectors
according to the accumulative component energy, we want to choose a small
number of components L while achieving a reasonably high percentage α ∈ [0, 1]
of accumulative component energy (standard deviation). The total energy of the

components is G =
b∑

i=1

δi. And the smallest L is chosen so that the cumulative

energy g for L components is above the certain threshold, which is

g =

L∑
i=1

δi ≥ αG. (5)

Since each component has the identical distribution after normalizing the
variance, the remaining b−L bits are allocated proportionally on the remaining
standard deviations of the components, which is summarized on Algorithm 2.
After choosing L components and allocating one bit to each component, the
remaining b − L bits are allocated for b − L rounds. In each round, we can
�nd the component index i that has the largest remaining standard deviation
hi by enumeration. Then, the allocated bit number for the ith component is
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round 1 round t round t+1

dim 1

dim i

⁞

⁞

Fig. 2. The data distribution of each component after transformation on CIFAR-10
with the rounds increasing.

Algorithm 2 Bit Allocation

Input: standard deviations of components {δi}bi=1, α
Output: bit allocation {li}Li=1

1: Find the smallest L such that
∑L

i=1 δi ≥ α
∑b

i=1 δi
2: Initialize hi ← δi

2
and li ← 1

3: for each round in b− L rounds do
4: i← arg maxi′ hi′

5: li ← li + 1
6: hi ← hi/2
7: end for

incremented by 1 and the remaining standard deviation hi is divided by 2 as the
quantization level is doubled.

After bit allocation, we need to �nd the optimal quantizer for each compo-
nent. [3] and [30] �nd the space division and the centroids by using all the data
points, which is di�cult in the streaming environment. As each component is
subject to the Gaussian distribution, we have the following theorem to minimize
the quantization error for each component.

Theorem 1. Assume X be a random variable subject to a Gaussian dis-
tribution N(0, δ2) and FX is the cumulative distribution function. Then, the
quantizer that minimizes the quantization error is obtained by{

Q(z) = {X : F−1
X ( z

2l
) ≤ X ≤ F−1

X ( z+1
2l

)}
c(z) = F−1

X ( z×2+1
2l+1 )

, (6)
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Algorithm 3 Online Hashing with Multi-Bit Quantization

Input: data chunk D
Output: quantizer q
1: Maintain a data sketch according to Algorithm 1
2: Learn an transform matrix from the data sketch
3: Perform bit allocation according to Algorithm 2
4: Obtain an optimal quantizer q by independently minimize each component accord-

ing to Theorem 1

where l is the number of bits allocated to the component, z ∈ Z = {0, 1, ..., 2l−1},
and F−1

X is the inverse cumulative distribution function.

Proof. As FX is strictly increasing on the possible values of X, FX has an in-
verse function F−1

X which is one-to-one function. F−1
X is the inverse cumulative

distribution function. Let U = FX(X). Then, for u ∈ [0, 1],

P{U ≤ u} = P{FX(X) ≤ u}
= P{U ≤ F−1

X (u)}
= FX(F−1

X (u)) = u.

(7)

Obviously, U is uniform random variable on [0,1]. For U , according to Eqn.(2),
the optimal quantizer is obviously characterized by{

Q(z) = {U : z
m ≤ U ≤ z+1

m }
c(z) = z×2+1

m×2

, (8)

where z ∈ Z = {0, 1, ...,m− 1} and m is the quantization level.
Therefore, as FX has an one-to-one inverse function F−1

X and U = FX(X),
the optimal quantizer for X is characterized by{

Q(z) = {X : F−1
X ( z

m ) ≤ X ≤ F−1
X ( z+1

m )}
c(z) = F−1

X ( z×2+1
m×2 )

. (9)

3.4 Algorithm analysis

Our method, Online Hashing with Multi-Bit Quantization (OHMBQ), is sum-
marized in Algorithm 3. OHMBQ includes four steps, data sketching, learning
a transform matrix, bit allocation, and learning optimal quantizers. Speci�cally,
assume there is a stream of data chunks, D1,D2, ...,Dt. For each chunk, our
method learns a data sketch from the streaming data according to Algorithm 1.
With the data sketch, a transform matrix is learned to reduce the dependence
among streaming data components. Then, the bit allocation for each component
is learned to make a good tradeo� between the information loss arising from
reducing data components and the quantization error arising from quantization
level per data component according to Algorithm 2. With the quantization level
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(i.e., bit number) for each component, the optimal quantizer for each component
to minimize the quantization error is learned according to Theorem 1.

Time complexity. As shown in Algorithm 3, OHMBQ includes four steps.
As indicated in [13], the time complexity of data sketching is O(Dknt), where
nt is the size of accumulated time at round t, D is the data dimensionality, and
k is the size of data sketch. For each round, the time complexity of learning a
transform matrix is O(Dk2 + k3). The time complexity of bit allocation at one
round is O(bL) where L is the number of components and b is the number of
bits. For the step of quantizing each component, the inverse cumulative distri-
bution function is implemented by the icdf function in MATLAB, and the time
complexity of quantizing L components at one round is O(2lL) where l is the
maximum bit number for the component. In the experiments, the largest value
of l is 5. Therefore, the cumulative time complexity of learning the quantizer at
round t is O(Dknt+ tDk2+ tk3+ tbL+2ltL) where l is usually smaller or equal
to 5. The time complexity is close to that of OSH [13].

The process of encoding the database in our method is composed of projecting
the data into a low-dimensional space and mapping each component value to the
corresponding quantized value. Assume the size of the database is N . The time
complexity of projection is O(NDL) and the time complexity of mapping is
O(2lNL). Therefore, the time complexity of encoding the database is O(NDL+
2lNL) where l is usually smaller or equal to 5 in the experiments.

4 Experiments

4.1 Experimental setting

We adopt two widely-used datasets to evaluate the proposed method: CIFAR-
10 [20] and GIST1M [9]. CIFAR-10 dataset includes 60,000 32×32 images. Each
image is represented by a 4096-dimensional feature extracted from the last con-
volutional layer in the VGG-net [24]. In CIFAR-10, 10,000 images are randomly
selected as the queries, and the rest is used for training and search. GIST1M
includes 1,000,000 960-dimensional GIST features and 1,000 queries. For each
query, the top K Euclidean nearest neighbors is set as the ground-truth. For
both datasets, K is set to 1,000. Following [35, 33], mean Average Precision
(mAP) and pre@100 are used as the measurements to evaluate the performance
of ANN search. pre@100 is the precision of the top 100 retrieved data points.
The experiments are repeated �ve times and the average results are reported.

4.2 Comparison to other online methods

We compare our method, OHMBQ, with Online Product Quantization (OPQ) [35],
Online Optimized Product Quantization (OOPQ) [18], Online Sketching Hash-
ing (OSH) [13] and Online Spherical Hashing (OSpH) [33]. OPQ and OOPQ
are online unsupervised product quantization method for Approximate Nearest
Neighbor (ANN) search. We carefully implement OPQ and OOPQ according to
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Fig. 3. The search results of di�erent methods for the early 100 chunks on CIFAR-10.

the descriptions from [35] and [18], respectively. OSH and OSpH are online unsu-
pervised hashing methods for ANN search. The source codes of OSH and OSpH
are publicly available. The experiments in [33, 35] show that Mutual Information
Hashing (MIH) [4] and Online Kernel Hashing (OKH) [8], two state-of-the-art
online supervised hashing methods that take the pairwise pseudo-labels as the
input, are inferior to OPQ and OSpH in the unsupervised environment. Hence,
we do not compare our method with these online supervised hashing methods
in the unsupervised environment.

Following the setting in [13, 33], we divide the training data evenly into
chunks of 100 data points for both datasets to simulate the streaming envi-
ronment. Fig. 3 shows the search results of the online methods in the early
100 chunks from 32 bits to 128 bits on CIFAR-10. We can see that OHMBQ
has achieved better search accuracy than other methods from the beginning for
mAP and pre@100. For pre@100, OOPQ and OPQ are inferior to OSH at �rst
and better than OSH later for 32bits. For mAP, OOPQ and OPQ are better
than OSH from the beginning. The gap between OHMBQ and other methods
is huge on CIFAR-10. Fig. 4 shows the search results of the online methods in
the early 100 chunks from 32 bits to 128 bits on GIST1M. According to Fig. 3
and Fig. 4, we can see that OHMBQ can achieve a better performance since the
beginning compared to other methods as OHMBQ combines the advantages of
online sketching from OSH and large distance space from online product quan-
tization methods.

Table 1 shows the search results of online methods on CIFAR-10 after all the
chunks are received. According to the results in the table, OHMBQ, OOPQ, and
OPQ are better than OSH and OSpH for both mAP and pre@100. Compared
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Fig. 4. The search results of di�erent methods for the early 100 chunks on GIST1M.

Table 1. The search results on CIFAR-10.

mAP pre@100
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

OHMBQ 0.423 0.562 0.711 0.687 0.843 0.941

OOPQ 0.361 0.425 0.498 0.574 0.683 0.784

OPQ 0.348 0.406 0.474 0.554 0.656 0.757

OSpH 0.228 0.324 0.434 0.468 0.427 0.596

OSH 0.273 0.348 0.437 0.537 0.428 0.570

Table 2. The search results on GIST1M.

mAP pre@100
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

OHMBQ 0.129 0.263 0.403 0.296 0.542 0.721

OOPQ 0.091 0.147 0.265 0.208 0.336 0.547

OPQ 0.084 0.140 0.260 0.195 0.323 0.542

OSpH 0.041 0.078 0.120 0.136 0.120 0.206

OSH 0.043 0.072 0.105 0.147 0.099 0.159

with OOPQ and OPQ, OHMBQ further improves the performance by more
than 10 percent for both mAP and pre@100. Table 2 shows the search results of
online methods on GIST1M after all the chunks are received. According to the
results in the table, OHMBQ, OOPQ and OPQ are also better than OSH and
OSpH for both mAP and pre@100. As denoted by [3], the distance between the
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Fig. 5. The accumulated time of di�erent methods for the early 100 chunks on
GIST1M.

original data can be better estimated by using the quantized values than using
the Hamming distance due to the sparseness of the code space and the limited
range of Hamming distance. OHMBQ is obviously better than other methods
on GIST1M which includes one million data points. Compared with OPQ and
OOPQ, OHMBQ further improves the performance by more than 20 percent
for both mAP and pre@100 on GIST1M. According to the results, as OHMBQ,
OPQ, and OOPQ have a larger distance space than OSH and OSpH, OHMBQ,
OPQ, and OOPQ achieve better search accuracy. Compared with OPQ and
OOPQ, OHMBQ can achieve better search accuracy, which demonstrates the
e�ectiveness of OHMBQ.

Apart from search accuracy, we compare OHMBQ with OOPQ and OSH in
terms of the accumulated time of online learning from streaming data. Accord-
ing to the above results, OOPQ is the second best method in terms of search
accuracy. OHMBQ and OSH both maintain the data sketch from the streaming
and learn the functions from the data sketch. Fig. 5 shows the accumulated time
of the online methods learning from streaming data in the early 100 chunks from
32 bits to 128 bits on GIST1M. The experiments are run on a computer with a
CPU of Intel(R) Xeon(R)W-2223 at 3.60 GHz with 32 GB RAM. According to
the results in the �gure, we can �nd that although three methods have similar
time costs for initialization at the beginning, OOPQ is obviously slower than
OHMBQ and OSH when the chunks of data increase. OHMBQ and OSH have
close time costs from 32 bits and 128 bits, which justi�es the time complexity
analysis from Sec 3.4.

4.3 Bit allocation analysis

As described in Sec. 3.3, bit allocation is a tradeo� between dimension reduction
and quantization levels. The number of bits is �xed. When more components are
selected, the number of bits allocated to each component is smaller, resulting
in more information loss in quantizing the component. When more bits are al-
located to each component, the number of the selected components is smaller,
resulting in more information loss in dimension reduction. Fig. 6 and Fig. 7
shows the search performance comparison with di�erent α values on CIFAR-10
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Fig. 6. The search results of OHMBQ with di�erent α values on CIFAR-10.
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Fig. 7. The search results of OHMBQ with di�erent α values on GIST1M.

and GIST1M, respectively. The number of the selected components is increasing
from α = 0.7 to α = 1. Meanwhile, the search accuracy increases at �rst and
then decreases. From the results, we can see that taking α = 0.8 can achieve
good performance. For simplicity, we take α = 0.8 for all the experiments in this
paper.

Meanwhile, we compare our method with the bit allocation algorithm in
Transform Coding (TC) [3], a bit allocation algorithm for the static database.
Fig. 8 and Fig. 9 show the comparison between OHMBQ and TC on CIFAR-10
and GIST1M, respectively. From Fig. 8(a)(b) and Fig. 9(a)(b), we can see that
the bit allocation algorithm in our method can achieve higher search accuracy
than that in TC in terms of mAP and pre@100. Fig. 8(c) and Fig. 9(c) shows
the distribution of various numbers of allocated bits over data components. The
number in the legend denotes the number of the allocated bits. From Fig. 8(c)
and Fig. 9(c), we can see that the number of the selected components in our
method is smaller than that in TC, and each component can have more bits in our
method. Among the bit distribution for the components, 2 bits per component
takes a majority in our method while 1 bit per component takes a majority in
TC.
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Fig. 8. The bit allocation algorithm comparison between OHMBQ and TC on CIFAR-
10. (a) and (b) denote the search results. (c) denotes the distribution of various numbers
of allocated bits over data components. The number in the legend of (c) denotes the
number of allocated bits.
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Fig. 9. The bit allocation algorithm comparison between OHMBQ and TC on GIST1M.
(a) and (b) denote the search results. (c) denotes the distribution of various numbers
of allocated bits over data components. The number in the legend of (c) denotes the
number of allocated bits.

5 Conclusions

In this paper, we propose a simple but e�ective online hashing method with
multi-bit quantization for approximate nearest neighbor search. By learning an
orthogonal transformation to make the components of the streaming data inde-
pendent and modelling the statistical properties of the components, our method
can learn the optimal quantizer online from the streaming data. The complexity
analysis shows that the time complexity of learning the quantizer and encoding
the database in our method is close to that of Online Sketching Hashing [13].
The experiments show that our method can achieve a huge search accuracy im-
provement compared with other online hashing methods based on SBQ as our
method has a larger distance space. At the same time, compared with the online
product quantization methods, our method can improve the search accuracy on
the high-dimensional feature vectors by more than 10 percent in most of the
cases, especially on the dataset that includes one million feature vectors.
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