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Abstract. Multiple Object Tracking (MOT) usually adopts the Tracking-
by-Detection paradigm, which transforms the problem into data associ-
ation. However, these methods are restricted by detector performance,
especially in dense scenes. In this paper, we propose a novel group-guided
data association, which improves the robustness of MOT to error detec-
tions and increases tracking accuracy in occlusion areas. The tracklets
are firstly clustered into groups of related motion patterns by a graph
neural network. Using the idea of grouping, the data association is di-
vided into two stages: intra-group and inter-group. For the intra-group,
based on the structural relationship between objects, detections are re-
covered and associated by min-cost network flow. For inter-group, the
tracklets are associated with the proposed hypotheses to solve long-term
occlusion and reduce false positives. The experiments on the MOTChal-
lenge benchmark prove our method’s effects, which achieves competitive
results over state-of-the-art methods.

Keywords: Multiple Object Tracking · Target Grouping · Data Asso-
ciation.

1 Introduction

Multi-Object Tracking (MOT) is an essential topic in computer vision and is
widely used in video understanding, intelligent transportation[30], and surveil-
lance systems. Benefiting from the progress of detectors, MOT methods usually
adopt the Tracking-by-Detection paradigm, which associates detections with ob-
ject identities. However, in the case of frequent object interaction and dense
occlusion in practical applications, detetors are often performed with errors.
Consequently, it is difficult for trackers to recover the missed detection; on the
other hand, appearance metrics are no longer reliable when objects overlapped.
These problem become the main challenge for the MOT methods.
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2 Y. Wu et al.

(a) A group with missed detections (b) Two group intersect

Fig. 1. The examples of object groups, where frame numbers are colored in yellow. (a)
The red boxes denotes detections while the blue dashed boxes denotes missed detec-
tions. (b) The red and green boxes represent two different groups of objects respectively.

According to the different needs of online[38, 29] and batch processing[36,
35], association algorithms are generally divided into two types: the one is lo-
cal optimization, such as Bipartite Graph[3], and Heuristic Hypothesis[8]. The
other is global optimization, such as Network Flow[40], and Conditional Ran-
dom Field[21]. The local optimization algorithms are more robust to cumulative
detection errors but at the expense of the ability to handle long trajectories.
The achievements of these methods are mainly attributed to recovering missed
detections by regression and searching with additional detectors. The global
optimization algorithms maintain higher trajectory integrity but are disturbed
by detection errors due to delayed decisions. These methods focus on feature
modeling of long trajectories for the anti-occlusion association.

Motivation: Aiming at the above problems, we designed a novel data asso-
ciation method with group information. As the main target of MOT, pedestrians
often move as different groups by companions and roads. As shown in Fig. 1 (a),
a group of pedestrians have a similar movement pattern and maintain a stable
relative position for a short time. In addition to entering and leaving the scene,
the number of pedestrians in the group also remained stable. This inspired us to
recover the missed detections (blue dashed boxes in Fig. 1 (a)) by position and
number constraints when occlusion occurs. As shown in Fig. 1 (b), pedestrians in
different groups continue to move independently after a short occlusion. There-
fore, associating pedestrians with groups respectively can avoid the interference
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Group Guided Data Association for Multiple Object Tracking 3

caused by occlusion. In summary, this requires a data association method with
group granularity.

In this paper, we propose a data association method guided by group in-
formation for better tracking accuracy in dense scenes. In the MOT problem,
objects association can be naturally transformed into a graph problem. Based
on previous work[34], we design a graph network to cluster objects into groups.
For intra-group association, the method assumes the number and relative posi-
tion of objects are maintained stable. We construct dummy detections for the
intra-group association to meet the constraints and use the min-cost network
flow model to obtain the tracklets. Although the dummy nodes recover missing
detection, it brings some false positives in tracklets. Therefore, in the inter-group
association, we establish the association hypotheses for tracklets. Before solving
the hypotheses, the pruning strategy is used to reduce the false positives, and
then the algorithm measure appearance affinity to get complete trajectories. Ex-
periments show that our method significant improvement in detection recovery
and long-term association.

In summary, our main contributions include:

– Design a graph network to obtain tracklets group by aggregating objects
motion information.

– Propose Intra-Group association by min-cost network flow, which recover
missing detection by constraint in group.

– Propose Inter-Group association by hypotheses proposal of tracklets, which
use pruning to reduce false positives and measure appearance affinity to solve
long-term occlusion problem.

2 Related Work

The data association problem in multi-target tracking aims to distinguish multi-
ple identity tags of detections. In association measurement, one kind of method
can achieve better tracking by adopting multi-stage[13] and multi-granularity as-
sociation strategy[27]. The other method uses multiple features[28] to constrain
the feasible solution space in each decision window[22, 41], so as to reduce the
computational overhead and difficulty. We consider combining the advantages
of these two types of methods. The proposed method uses group-guided two-
stage association from different granularity and distinguishes different occluded
targets, which reduces the interference in the calculation. To achieve higher ac-
curacy, grouping and two-step association rely on global information, so our
method is batched and not designed for real-time systems.

Motion pattern analysis based on social groups contributes to improving the
accuracy of MOT in dense scenes. Pellegrini. et al[23] proposed data association
by joint modeling of pedestrian trajectories and groupings. Zhao. et al[44] pro-
posed a tracking method using motion patterns for very crowded scenes. Kratz.
et al[16] proposed a tracking method using local spatio-temporal motion patterns
in extremely crowded scenes. These methods mainly study the use of groups to
predict the future movement of targets and the structural information of the
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Fig. 2. The general framework of group-guided data association. (1) Initial tracklets
are clustered into tracklet groups by the graph network. (2) Intra-group tracklets are
associated with the min-cost network flow model. (3) Inter-group trajectories are as-
sociated by solving the hypotheses tree.

group is not fully utilized. Chen. et al[6] proposed an online learned elementary
grouping model for multi-target tracking. Chen. et al[5] proposed PSTG-based
multi-label optimization for multi-target tracking. This method uses the group
structure for tracking, but the method is only designed for pairwise target model-
ing. For tracking problems in more complex scenes, the grouping method of such
methods is not robust enough. Sadeghian.[26] using interaction model of object
position for affinity measurement. Liu.[18] associates objects by graph matching
which considers group structure in measurement. These methods model the rel-
ative position structure and do not use the group as the unit for the association.
Based on previous research, we use the group structure to recover detection and
achieve reliable tracklets, and on the other hand, we use groups as a unit to con-
duct intra-group and inter-group association of two steps. The method makes
full use of group information and achieves accurate tracking in dense scenes.

3 Proposed Method

As shown in Fig. 2, the proposed method consists of three steps. Initial tracklets
{T1, T2, · · · , Tn} provide motion information for the graph network. Through
embedding aggregation and classification, the network gives the grouping score
between tracklets. By measuring scores with the threshold, tracklets can be
clustered into groups.

To build the optimization model across multiple frames, we use the minimum
cost network flow model for the intra-group association. We propose an algorithm
to estimate the maximum number of target IDs and only use motion metrics to
achieve better computational performance. The dummy nodes in the association
graph recover a large number of candidate missed detection.
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Group Guided Data Association for Multiple Object Tracking 5

To obtain long trajectories and eliminate false positives in dummy nodes, we
take each trajectory as the root node, establish the association hypothesis and
solve the optimal branch. The inter-group association can further reduce the
fragments of trajectories and provide long-distance modeling capability for the
method.

3.1 Graph Network for Group Clustering

The structure of graph network for group clustering is shown in Fig. 2. To
model data association as a graph G = (V,E), vertex set V is consist of all
initial tracklets {T1, T2, · · · , Tn} in intra-group association window Wintra. For
tracklet Tj of length p, motion feature Mj is defined as follows:

Mj = {m1,m2, · · · ,mp} (1)

mi = (
xi/W − µx

σx
,
yi/H − µy

σy
,
wi/W − µw

σw

hi/H − µh

σh
), i ∈ [1, p], (2)

where mi denotes motion feature of detection Di in tracklet Tj . (xi, yi) denotes
detection coordinates, wi and hi are width and height of detection. W and
H are the width and height of the image, µ and σ represent the mean value
and standard deviation. Normalization based on image size makes it easier to
improve training efficiency and network performance. To obtain a fixed feature
dimension, if the length p < Wintra, the algorithm performs linear interpolation
to insure an equal length of M .

To improve the expression representation capability, the Multilayer Percep-
tron (MLP) is used to encode features to 512 dimensions, which consist of two
Full Connection layers (FC) and Rectified Linear Unit (ReLU). By embedding
aggregation, the graph network uses the context information between tracklets to
improve the discrimination. For tracklet T1, embeddings from all tracklets over-
lapped with it are averaged to update T ′

1. To avoid the problem of over smooth-
ing, we calculate the self-attention to discover the importance of other overlapped
tracklets. For tracklet pair (Ti, Tj), we follow the paradigm of GAT[34], the im-
portance Eij of tracklet Tj to tracklet Ti is formulated with shared weight W:

Eij = A(WT ′
i ,WT ′

j), (3)

where A() is a single-layer feedforward neural network, which maps the high-
dimensional features to a number as the attention coefficient. The attention
coefficient Eij is nonlinear expressed by LeakyReLU and normalized to αij by
Softmax. To balance the possible deviation of the attention, the multi-head at-
tention is used in the prediction layer. The output is averaged as follows:

T ′
i =

1

K

K∑
k=1

∑
j∈n

αk
ijT

′
j , (4)

where K is number of multi-head attention and n are first-order neighbor vertices
of j. The group score Si,j is cosine distance between T ′

i and T ′
j . The graph
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network gives a cluster probability between 0 and 1. Therefore, we set threshold
tg = 0.7, when Si,j > tg, tracklets Ti and Tj are clustered into the same group.

Tracklets initialization and training: Initial tracklets provide the basis
for group clustering. Based on the method proposed in [27], we extract initial
tracklets by affinity measurement of detections. Considering the camera frame
rate and pedestrian moving speed, longer tracklets are needed to provide motion
features for group clustering. However, the computational performance and ac-
curacy of the baseline method deteriorate with the increase in tracklet length. To
handle this problem, frames in an association window are first extracted every 5
frames to generate tracklets. Then, parallel computation is carried out on these
5-frame-long fragments for speed up.

In training, we minimize the cross-entropy loss over all tracklets between
the labeled samples and the prediction. The training data are generated from
MOT17[20] and MOT20[10] datasets. The positive samples are obtained by mea-
suring the tracklets in the relevant spatio-temporal region. For tracklet pairs, We
calculate and accumulate the relative position changes between detections frame
by frame. If the cumulative deviation is less than 50% of the object’s average
displacement, tracklets are labeled into a group. Furthermore, we also manually
marked and corrected some positive samples. We randomly shift bounding boxes
and delete detections between tracklets to simulate the deviation and missing of
the detector. The ratio of positive and negative samples is 1:3. We train for 5000
iterations with a learning rate 5 · 10−4, weight decay term 10−4 and an Adam
Optimizer with β1 and β2 set to 0.9 and 0.999, respectively. By searching the
parameters in the train set, we obtained the optimal parameters. The number
of attention head K is set to 4.

3.2 Intra-Group Data Association

In this section, we introduce the intra-group data association. By analyzing
object behavior and training data, we propose group constraints that the relative
position and number of objects in the same group remain stable for a short time.
This property can provide a basis for data association. For example, as shown
in Fig. 1 (a), detections are missing in frame 246, and group constraints can be
used to construct dummy detection for recovery.

As shown in Fig. 2, the number of object IDs in the group remains static,
which is crucial for recovering missed detection. However, there may be two kinds
of errors in the initial tracklets: one is that the same object is divided into two
different tracklets, and the other is that two different objects are associated into
one tracklet. These problems will lead to errors in the number of object IDs in
initial tracklets.

In intra-group association, the method first ensures the maximization of recall
rate, so it is needed to obtain the maximum possible number N of objects in the
window Wintra and provide motion features for dummy nodes. First, we use a
2-frame sliding window to calculate the best Perfect matchings of bipartite graph
G = (V,E,C) and use the Kuhn-Munkres algorithm to assign ID for detections
with match M. The Affinity_measure for edges Ei is based on deepsort[3]. To
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Group Guided Data Association for Multiple Object Tracking 7

Input: D1,D2, · · · ,DWintra

Output: N,D1,D2, · · · ,DWintra

N=0
foreach Di,Di+1, where i from 1 to Wintra − 1 do

Vi = {Di,Di+1}
Ei =Full connection from Di to Di+1

Ci =Affinity_measure(Ei)
Gi = (Vi,Ei,Ci)
Mi =Kuhn-Munkres(Gi)
if |Di| > |Di+1| then

Add (|Di| − |Di+1|) dummy nodes to Di+1

end
if |Di| < |Di+1| then

Add (|Di+1| − |Di|) dummy nodes to Di

end
N=Max(|Mi|, N)

end

return N,D1,D2, · · · ,DWintra

Algorithm 1: Algorithm for maximum number N of object IDs

meet the object number constraint, We add the dummy nodes as mismatched
detections replica in the subsequent or previous frames. Afterward, N is set
to the maximum number of tracklets with different IDs among all frames. The
detailed algorithm is shown in Alg. 1.

To obtain higher tracking accuracy, we use the global optimization associ-
ation. Considering the group constraints, the min-cost network flow model is
suitable for modeling the problem. The association edges between the detec-
tions are regarded as the path in the network, and the similarity between the
detections denotes the cost of the path, solving the min-cost flow of the network
between multiple frames can provide the optimal solution. The linear program-
ming problem is as follows:

argmin
∑

i,j∈D Cifi + Ci,jfi,j + Csfs,i + Ctfi,t (5)
s.t. f ∈ {0, 1} (6)

fi = fs +
∑

j∈D fj,i =
∑

j∈D fi,j + ft (7)
0 ≤

∑
i fs,i ≤ 1 (8)

0 ≤
∑

i ft,i ≤ 1 (9)∑
i∈D fi ≤ 1, (10)

where fi,j denotes flow from detection Di to Dj and fi denotes flow from detec-
tion Di to itself. fs, ft denotes the virtual source and sink flow with fixed cost
Cs and Ct. The data association edge is determined by whether f is activated,
i.e. f ∈ {0, 1}. Eq .(7) constrains the independence of each trajectory. Eq .(8)
and (9) constrain the flow of each target in the network is activated, so the total
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Fig. 3. Pruning and detection recovery example.

flow should be 1. Eq .(10) constrains that two trajectories do not cross one node.
Cost Ci denotes the negative confidence of detection Di, which means the higher
the detection confidence, the more likely the detection will be included in the
trajectory. Cost Ci,j from detection Di to Dj is as follows:

Ci,j = GIOU(Di|Dj), (11)

where GIOU(Di|Dj) denotes generalized intersection over union[24] between
detection Di and Dj . Compared with the traditional Kalman filter, GIOU rep-
resents the degree of position similarity and has higher efficiency. Limited by
the intra-group association window, the target motion state is relatively sta-
ble. Therefore, affinity measurement without appearance feature and linear or
nonlinear filter can also obtain high measurement accuracy.

3.3 Inter-Group Data Association

In this section, we introduce the inter-group data association. Due to the group
size, the intra-group association cannot model trajectories for a longer time.
There are interruptions and fragments caused by window division or occlusion
in the trajectories. Trajectories obtained in each group are associated in window
Winter. With the increase in the time interval, the error of motion prediction
will gradually accumulate. Appearance affinity has become an important basis
for tracking associations between groups. Following the tracklet level multiple
hypothesis framework[27], the appearance affinity measure S between tracklets
Ti and Tj is as follows:

S =
1

|Ti|
∑

Di∈Ti

Sapp(Di, Dj), (12)
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Group Guided Data Association for Multiple Object Tracking 9

where, Dj denotes the detection in Tj that closest to Ti in time. Sapp denotes
the cosine distance of appearance feature vectors between detection Di and Dj .
S averages the appearance of all detections in the Ti which makes it more robust
in the face of occlusion. The appearance features of detections are obtained by
the Re-Id network [33].

As shown in Fig. 1, there are 2 kinds of nodes in the tracking graph: the
original nodes and the dummy nodes. The dummy nodes are the node that is
obtained by an extended Kalman filter which predicts the position of the target
when it comes to long-term occlusion. Only the original nodes can be used as the
root of the hypothesis tree. The association hypothesis increases exponentially
with the number of targets, so effective pruning strategies are needed to improve
computational efficiency.

Pruning: we take the appearance feature and the space distance as the
evaluation branch of the multiple hypothesis tree. However, the correct associ-
ation may be cut out because of local occlusion, so the algorithm retains the
delayed decision to avoid this problem. The dummy detections used by intra-
group association can recover the missed detection, but it will cause false-positive
problems. We propose a pruning strategy to solve the problem, as shown in Fig.
3. By traversing the branches in the current association hypothesis tree, two
kinds of pruning situations are found. One is the branch of continuous dummy
detections from the beginning of the window, and the other is the branch of
continuous dummy detections from somewhere in the tracklet to the end of the
window. We truncate the trajectory according to the position of the red line in
Fig. 3. These truncated dummy detections do not match the previous or subse-
quent objects in the whole calculation window, so they can be regarded as false
positives. In addition, as shown in the green box in the figure, the detection of
occlusion in the middle is correctly restored, which improves the recall rate of
multi-target tracking results.

After pruning, we solve the multi-dimensional assignment problem for the
association hypothesis with the strategy proposed in [27] to obtain the final
trajectories. The whole MOT method can perform near-online and retain the
delay of window size Winter.

4 Experiments

4.1 Dataset and Metric

In experiments, our method is tested on MOT15[17], MOT17[20] and MOT20[10]
datasets, which are most widely used in MOT. MOT15 is a comprehensive data
set integrating KITTI, ETH, and PETS datasets. MOT17 contains three kinds
of public detectors to test the effect of the MOT method on different detectors.
Videos are collected from moving and static cameras respectively. MOT20 is
designed for ultra-dense scenes, which is more challenging for methods. CLEAR
MOT metrics[2] is used to evaluate the method. In addition, IDF1[25] is used to
measure the ID accuracy. Higher Order Tracking Accuracy (HOTA)[19] is the
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Fig. 4. Window size ratio analysis by moving and static camera videos respectively in
MOT17 training set.

Table 1. Comparison of clustering methods on MOT17 validation set

Dataset Cluster Setting mean_Acc ↑ MOTA ↑ IDF1 ↑
MOT17 val k-means++ k=

√
No. Obj. 0.69 34.3 44.7

MOT17 val agglomerative Group average 0.84 42.1 53.6
MOT17 val Our 0.89 43.2 55.0

geometric mean of detection accuracy and association accuracy. Averaged across
localization thresholds. For a fair comparison, the tests for all methods use the
public detections provided by the dataset.

4.2 Parameters Analysis

The window size of intra-group Wintra and inter-group Winter are the main
parameters in our method. We searched for the optimal setting of both window
sizes on the MOT17 training set. For different window size ratios, Multi-Object
Tracking Accuracy (MOTA) of moving and static camera videos in the MOT17
training set are shown in Fig. 4. The window size of the intra-group is related
to the object speed and video frame rate, and the window size of the inter-
group shall be an integral multiple of the intra-group. Therefore, we define α1 =

Wintra

framerate and α2 = Winter

Wintra
. As shown in Fig. 4, with the increase of α1, MOTA

increased slightly and then decreased because the object structure in the group
is no longer stable. Especially in a video with a moving camera, the movement
state of the target changes greatly, so it is necessary to use a smaller intra-
group window. With the increase of α2, MOTA increases with the inter-group
window, due to the measurement information increases, and the longer trajectory
is included in the correlation hypothesis. After α2 reaches 4, considering the
longer time interval of the tracklets is not effective. Therefore, to obtain the best
results and achieve a balance between moving and static camera videos, we set
α1 = 1 and α2 = 4 for the following experiments.
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Group Guided Data Association for Multiple Object Tracking 11

Table 2. Ablation study on MOT17 training set

Settings MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDsw ↓
TT17[41] 56.5 67.0 9,116 136,572 572
Aintra +Ainter 58.4 68.7 10,496 131,189 752
AD

intra +Ainter 60.3 70.5 27,245 100,275 581
AD

intra +AP
inter 64.2 75.1 14,232 103,587 549

Table 3. Comparison on MOT15 benchmark

Tracker MOTA ↑ IDF1 ↑ HOTA FP↓ FN↓ ID Sw. ↓
KCF [7] 38.9 44.5 33.1 7,321 29,501 720
CRFTrack [37] 40.0 49.6 37.3 10,295 25,917 658
Tracktor++v2 [1] 46.6 47.6 37.6 4,624 26,896 1,290
Lif_TsimInt [14] 47.2 57.6 43.8 7,635 24,277 554
mfi_tst [39] 49.2 52.4 41.5 8,707 21,594 912
ApLift [15] 51.1 59.0 45.7 10,070 19,288 677
MPNTrack [4] 51.5 58.6 45.0 7,620 21,780 375
Our 57.5 60.6 46.8 7,637 18,013 466

4.3 Ablation Study

Considering that only group clustering is used without data association, the
tracking results will be poor, so we did not use group cluster alone as baseline
comparison. First, we made the comparison of cluster methods in the Tab. 1.
Heuristic methods often need to manually design and measure feature metrics
and search parameters for different scenarios, which is not robust. Graph network
has become a mainstream paradigm in the field of deep clustering recently. By
embedding aggregation, the context information and high-dimensional features
of the graph structure are extracted, which can better model the interaction
and motion affinities between trajectories. We separated the validation set from
MOT17 and selected common clustering methods for comparison. Without fine-
tuning for parameters, we achieve better results on both cluster and tracking.

To verify the effect of each component of the method, we used the MOT17
training set for the ablation experiment. Since our method adopts a multi-stage
grouping association strategy based on tracklets, we select a similar tracklet
level multi-hypothesis tracking method[41] as the baseline for comparison. As
shown in second row of Tab. 2, Aintra denotes intra-group association without
dummy node, and Ainter denotes inter-group association without pruning. We
first use Aintra and Ainter instead of the tracklet generation and association
in [41]. Compared with the baseline method in the first row, the basic group
association reduces false positives and false negatives and slightly improves main
metrics. In the third row of the Tab. 2, AD

intra denotes intra-group association
with dummy node. Compared with the previous results, the false negative is
significantly reduced after the introduction of dummy nodes, indicating that
the method recovers a large number of missed detection. However, the dummy

530



12 Y. Wu et al.

Table 4. Comparison on MOT17 benchmark

Dataset Method Detection MOTA ↑ IDF1 ↑ FP+FN ↓
MOT17 Test FairMOT[43] Centernet[11] 73.7 72.3 144,984
MOT17 Test FairMOT[43]+Group Centernet[11] 74.6 76.5 141,280
MOT17 Test ByteTrack[42] YOLOX[12] 80.3 77.3 109,212
MOT17 Test Our YOLOX[12] 81.0 80.0 105,668

Table 5. Comparison on MOT20 benchmark

Method MOTA ↑ IDF1 ↑ HOTA ↑ FP ↓ FN ↓ IDsw ↓
LPC[9] 56.3 62.5 49.0 11,726 213,056 1,562
MPN[4] 57.6 59.1 46.8 16,953 201,384 126
ApLift[15] 58.9 56.5 46.6 17,739 192,736 2,241
mfi_tst[39] 59.3 59.1 47.1 36,150 172,782 1,919
TMOH[31] 60.1 61.2 48.9 38,043 165,899 2,342
MPTC[32] 60.6 59.7 48.5 45,318 153,978 4,533
Our 64.4 65.7 53.4 70,976 110,614 2,708

introduces wrong estimates resulting in higher false positives. In the fourth row
of the Tab. 2, AP

inter denotes inter-group association with pruning. By using the
pruning strategy, FP is effectively suppressed and the best result is achieved.
The focus of the model affects the preferences of FP and FN, which is a trade-
off problem. The bottleneck of the MOT method lies in the recall of the detector,
that is FN problem (FN is always one order of magnitude larger than FP in most
data sets). Therefore, our strategy is to reduce FN more and keep the sum of FN
and FP lower. It is worth mentioning that ID sw. is reduced because pruning
reduces unnecessary solution space for the association, thus avoiding ID Sw.
caused by similarity measurement ambiguity.

4.4 Benchmark Evaluation

To compare our method with other advanced methods, we chose the classic
MOT15, MOT17 benchmark and the most challenging MOT20 benchmark. To
fairly compare the performance of data association algorithms, all methods and
results use the same detector. In order to prove the generality of the method,
we add experiments of group data association method for better detectors and
tracking methods. As shown in the Tab. 4, using anchor-free detection and intro-
ducing our group association into the popular end to end method FairMOT[43],
all the main metrics have been improved. By using same YOLOX[12] detection
as ByteTrack, we have achieved SOTA results on MOT17 benchmark. As shown
in Tab. 3 and Tab. 5, the best-published results on the leaderboard are listed.
Compared with state-of-the-art methods, our method achieves the highest re-
sult for MOTA, IDF1, and HOTA. The group-based data association strategy
is conducive to achieving higher tracking and identity accuracy. In particular,
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Group Guided Data Association for Multiple Object Tracking 13

Fig. 5. The visual tracking results of MOT20 test set.

our method restores missing detection through group relationships, which has
significant advantages in reducing FN. We selected the tracking results of rep-
resentative frames from the MOT20 test set as a visual display, shown in Fig.
5. It can be observed that in this dense scene, our method can maintain a more
stable track ID. The total results can be found on the official website of the
MOTChallenge 1.

5 Conclusion

In this paper, we propose a novel group-guided data association for MOT. The
graph neural network is designed to obtain the initial groups of tracklets. By an-
alyzing the potential groups of objects, we design a two-stage data association.
Intra-group associations utilize the group constraints to achieve more accurate
trajectories in dense scenes and recover missed detection. The inter-group asso-
ciation uses the appearance features and proposes tracklets hypothesis to solve
the long-term occlusion problem, which improves the trajectory integrity. In
the MOT benchmark, the experiments prove the effectiveness of our algorithm,
which achieve better results than previous state-of-the-art methods.
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