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Abstract. Human eye contact is a form of non-verbal communication
and can have a great influence on social behavior. Since the location
and size of the eye contact targets vary across different videos, learning
a generic video-independent eye contact detector is still a challenging
task. In this work, we address the task of one-way eye contact detection
for videos in the wild. Our goal is to build a unified model that can iden-
tify when a person is looking at his gaze targets in an arbitrary input
video. Considering that this requires time-series relative eye movement
information, we propose to formulate the task as a temporal segmen-
tation. Due to the scarcity of labeled training data, we further propose
a gaze target discovery method to generate pseudo-labels for unlabeled
videos, which allows us to train a generic eye contact segmentation model
in an unsupervised way using in-the-wild videos. To evaluate our pro-
posed approach, we manually annotated a test dataset consisting of 52
videos of human conversations. Experimental results show that our eye
contact segmentation model outperforms the previous video-dependent
eye contact detector and can achieve 71.88% framewise accuracy on our
annotated test set. Our code and evaluation dataset are available at
https://github.com/ut-vision/Video-Independent-ECS.
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1 Introduction

Human gaze and eye contact have strong social meaning and are considered
key to understanding human dyadic interactions. Studies have shown that eye
contact functions as a signaling mechanism [6, 19], indicates interest and atten-
tion [22, 2], and is related to certain psychiatric conditions [3, 37, 35]. The impor-
tance of human gazes in general has also been well recognized in the computer
vision community, leading to a series of related research work on vision-based
gaze estimation techniques [61, 47, 56, 7, 38, 8, 59, 62, 60, 57, 39]. Recent advances
in vision-based gaze estimation have the potential to enable robust analyses of
gaze behavior, including one-way eye contact. However, gaze estimation is still
challenging in images with extreme head poses and lighting conditions, and it is
not a trivial task to robustly detect eye contacts in in-the-wild situations.
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Fig. 1: Illustration of our proposed task of video-independent eye contact seg-
mentation. Given a video sequence and a target person, the goal is to segment
the video into fragments of the target person having and not having eye contact
with his potential gaze targets.

Several previous studies have attempted to directly address the task of de-
tecting one-way eye contact [58, 36, 46, 54, 9]. Given its binary classification na-
ture, one-way eye contact detection can be a simpler task than regressing gaze
directions. However, unconstrained eye contact detection remains a challenge.
Fundamentally speaking, one-way eye contact detection is an ill-posed task if
the gaze targets are not identified beforehand. Fully supervised approaches [46,
54, 9] necessarily result in environment-dependent models that cannot be ap-
plied to eye contact targets with different positions and sizes. Although there
have been some work that address this task using unsupervised approaches that
automatically detect the position of gaze targets relative to the camera [58, 36],
they still require a sufficient amount of unlabeled training data from the tar-
get environment. Learning a model that can detect one-way eye contact from
arbitrary inputs independently of the environment is still a challenging task.

This work aims to address the task of unconstrained video-independent one-
way eye contact detection. We aim to train a unified model that can be applied to
arbitrary videos in the wild to obtain one-way eye contact moments of the target
person without knowing his gaze targets beforehand. Since the position and size
of the eye contact targets vary from video to video, it is nearly impossible to
approach this task frame by frame. However, we humans can recognize when
eye contact occurs from temporal eye movements, even when the target object
is not visible in the scene. Inspired by this observation, we instead formulate
the problem as a segmentation task utilizing the target person’s temporal face
appearance information from the input video (Fig. 1). The remaining challenge
here is that this approach requires a large amount of eye contact training data.
It is undoubtedly difficult to manually annotate training videos covering a wide
variety of environmental and lighting conditions.

To train the eye contact segmentation model, we propose an unsupervised
gaze target discovery method to generate eye contact pseudo-labels from noisy
appearance-based gaze estimation results. Since online videos often contain cam-
era movements and artificial edits, it is not a trivial task to locate eye contact
targets relative to the camera. Instead of making a strong assumption about a
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stationary camera, we assume only that the relative positions of the eye contact
target and the person are fixed. Our method analyzes human gazes in the body
coordinate system and treats high-density gaze point regions as positive samples.
By applying our gaze target discovery method to the VoxCeleb2 dataset [12],
we obtain a large-scale pseudo-labeled training dataset. Based on the initial
pseudo-labels, our segmentation model is trained iteratively using the original
facial features as input. We also manually annotated 52 videos with eye contact
segmentation labels for evaluation, and experiments show that our approach
can achieve 71.88% framewise accuracy on our test set and outperforms video-
dependent baselines.

Our contributions are threefold. First, to the best of our knowledge, we are
the first to formulate one-way eye contact detection as a segmentation task. This
formulation allows us to naturally leverage the target person’s face and gaze fea-
tures temporally, leading to a video-independent eye contact detector that can
be applied to arbitrary videos. Second, we propose a novel gaze target discov-
ery method robust to videos in the wild. This leads to high-quality eye contact
pseudo-labels that can be further used for both video-dependent eye contact de-
tection and video-independent eye contact segmentation. Finally, we create and
release a manually annotated evaluation dataset for eye contact segmentation
based on the VoxCeleb2 dataset.

2 Related work

2.1 Gaze Estimation and Analysis

Appearance-based Gaze Estimation Appearance-based gaze estimation directly
regresses the input image into the gaze direction and only requires an off-the-
shelf camera. Although most of the work take the eye region as input [61, 47, 56,
7, 38, 8], some demonstrated the advantage of using the full face as input [63, 59,
62, 60, 57, 39]. If the eye region is hardly visible, possibly due to low resolution,
extreme head poses, and poor lighting conditions, the full-face gaze model can be
expected to infer the direction of the human gaze from the rest of the face. Since
most gaze estimation datasets are collected in controlled laboratory settings [57,
16, 17], in-the-wild appearance-based gaze estimation remains a challenge. Some
recent efforts have been made to address this issue by domain adaptation [29, 44]
or using synthetic data [39, 55, 64]. Note that eye contact detection is a different
task from gaze estimation and is still difficult even with a perfect gaze estimator
due to the unknown gaze target locations. The goal of this work is to improve the
accuracy of eye contact detection on top of the state-of-the-art appearance-based
gaze estimation method.

Gaze Following and Mutual Gaze Detection First proposed by Recasens et al. [40],
gaze following aims to estimate the object where the person gazes in an image [41,
49, 51, 14, 52, 10, 11]. Another line of work is mutual gaze detection, which aims
to locate moments when two people are looking at each other. Mutual gaze is
an even stronger signal than one-way eye contact in reflecting the relationship
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between two people [31–33]. The problem of mutual gaze detection was first pro-
posed by Marin-Jimenez et al. [30]. Our target differs from these tasks in two
ways. First, we are interested in finding the moments in which one-way eye con-
tact occurs to gaze targets, rather than determining the location of gaze targets
on a frame-by-frame basis or detecting mutual gazes. Second, since our proposed
method performs eye contact detection by segmenting the video based on the
person’s facial appearance, it can handle the cases where the gaze targets are
not visible from the scene. Although some gaze following work [10, 11] can tell
when gaze targets are outside the image, most of them are designed with the
implicit assumption that the gaze target is included in the image.

2.2 Eye Contact Detection

Several previous works address the task of detecting eye contact specifically with
the camera [46, 54, 9]. However, such pre-trained models cannot be applied to
videos with the target person attending to gaze targets of different sizes and po-
sitions. Recent progress in appearance-based gaze estimation allows unsupervised
detection of one-way eye contacts in third-person videos using an off-the-shelf
camera [58, 36]. Zhang et al. assume a setting in which the camera is placed next
to the gaze target and propose an unsupervised gaze target discovery method
to locate the gaze target region relative to the camera [58]. They first run the
appearance-based gaze estimator on all input sequences of human faces to get
3D gaze directions and then compute gaze points in the camera plane. This is
followed by density-based clustering, which identifies high-density gaze point re-
gions as the locations of gaze targets. Based on this idea, Müller et al. studies
eye contact detection in a group of 3 - 4 people having conversations [36]. Based
on the assumption that all listeners would look at the speaker most of the time,
they use audio clues to more accurately locate gaze targets in the camera plane.

There are two major limitations that make these two approaches inapplicable
to videos in the wild. First, in many online videos, camera movements and jump
cuts are common, making the camera coordinate system inconsistent throughout
the video. Meanwhile, since gaze points are essentially the intersection between
the gaze ray and the plane z = 0 in the camera coordinate system, the gaze
points corresponding to gaze targets far from the camera will naturally be more
scattered than those corresponding to gaze targets close to the camera when
receiving the same amount of eye gazes. Consequently, density-based clustering
would fail to identify potential gaze targets far from the camera on the camera
plane. Second, both works only explored video-dependent eye contact detection,
i.e., training one model for each test video. Instead, we study the feasibility
of training a video-independent eye contact segmentation model that can be
applied to different videos in the wild.

2.3 Action Segmentation

Action segmentation is the task of detecting and segmenting actions in a given
video. Various research works have focused on designing the network archi-
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Fig. 2: An overview of our proposed unsupervised training pipeline for video-
independent eye contact segmentation.

tecture for the task. Singh et al. [45] propose to feed spatial-temporal video
representations learned by a two-stream network to a bi-directional LSTM to
capture dependencies between temporal fragments. Lea et al. [24] propose a net-
work that performs temporal convolutions with the encoder-decoder architecture
(ED-TCN). Recently, many works have tried to modify ED-TCN by introduc-
ing deformable convolutions [25], dilated residual layers [15], and dual dilated
layers [28]. In this work, we adopt MS-TCN++ [28] as our segmentation model.

Since labeling action classes and defining their temporal boundaries to cre-
ate annotations for action segmentation can be difficult and costly, some work
explored unsupervised action segmentation [43, 23, 50, 27, 48]. Based on the ob-
servation that similar actions tend to appear in a similar temporal position in
a video, most of these works rely on learning framewise representations through
the self-supervised task of time stamp prediction [23, 50, 27, 48]. However, it is
difficult to apply these methods directly to our scenario because eye contact is a
sporadic activity that can occur randomly over time. We instead leverage human
gaze information and deduce the gaze target position from gaze point statistics.

3 Proposed Method

Our proposed eye contact segmentation network takes input a tracklet, i.e., a
sequence of video frames in which the target person is tracked and outputs
framewise eye contact predictions. Formally, given a tracklet with I frames T =
{Ii}Ii=1, our objective is to train a model to produce framewise binary predictions
of one-way eye contacts Y = {yi}Ii=1 of the person, where yi ∈ [0, 1]2 is a two-
dimensional one-hot vector. We define gaze targets as physical targets with which
the person interacts, such as the camera and another person in the conversation.
These gaze targets do not have to be visible in the video.

Fig. 2 shows an overview of the proposed unsupervised approach to train
the segmentation network. Our method consists of two stages, i.e., pseudo-label
generation and iterative model training. We start by collecting a large set of
M unlabeled conversation videos V = {Vm}Mm=1 from online. For each video
Vm with Jm frames, we first generate framewise pseudo-labels {pj}Jm

j=1, where
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Fig. 3: An overview of the pseudo-label generation stage using our proposed
method of gaze target discovery.

pj ∈ [0, 1]2, using our proposed method of gaze target discovery. We also track
the target person to extract a set of tracklets {Tk}Km

k=1 from each video Vm. The
pseudo-labels {pj} are also split and assigned to each corresponding tracklet as a
tracklet-wise set of pseudo-labels Pk. The collection of all tracklets T = {Tn}Nn=1

obtained from V, where N =
∑

mKm, and their corresponding collection of
pseudo-labels P = {Pn}Nn=1 are then used to train our eye contact segmentation
model. Since our proposed gaze target discovery does not leverage temporal
information, we propose an iterative training strategy that iteratively updates
the pseudo-labels using the trained segmentation model that has learned rich
temporal information. In the following sections, we describe details of our pseudo-
label generation and iterative model training processes.

3.1 Pseudo Label Generation

We generate framewise pseudo-labels {pj} for each training video Vm using our
proposed gaze target discovery, which automatically locates the position of the
gaze targets in the body coordinate system. An overview is illustrated in Fig. 3.
In a nutshell, our proposed gaze target discovery obtains the target person’s 3D
gaze direction in the body coordinate system and identifies the high-density gaze
regions. Since eye contact targets tend to form dense gaze clusters, these gaze
regions are treated as potential gaze target locations. In the following sections,
we give details of our proposed gaze target discovery and body pose estimation.

Gaze Target Discovery For each frame Ij of the video Vm, we run an
appearance-based gaze estimator to obtain the gaze vector gc

j of the person of
our interest in the camera coordinate system. Through the data normalization
process for gaze estimation [59], we also obtain the center of the face oc

j as the
origin of the gaze vector. We also perform body pose estimation to obtain the
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translation vector tj and the rotation matrix Rj from the body coordinate sys-
tem to the camera coordinate system. gc

j and oc
j are then transformed from the

camera coordinate system to the body coordinate system through gb
j = R−1j gc

j

and ob
j = R−1j (oc

j−tj), where ob
j indicates the face center in the body coordinate

system. Therefore, ob
j +βgb

j defines the gaze ray in the body coordinate system.

For each video Vm, we then compute a set of intersection points {uj} between
the gaze rays and a cylinder centered at the origin of the body coordinate system
with a radius of r and convert these 3D intersection points to 2D gaze points {vj}
on the cylinder plane by cutting the cylinder along the line (0, y, r) parameterized
with y. We apply OPTICS clustering [1] on the set of 2D gaze points {vj} and
treat the identified clusters as eye contact regions for the m-th video Vm. We
generate pseudo-labels {pj} for Vm by treating all identified eye contact regions
as positive samples and others as negative samples.

Body Pose Estimation We estimate the 3D body pose R and t of the target
person based on the 3D model fitting. We define our six-point 3D generic body
model according to the average human body statistics [34], consisting of nose,
neck, left and right shoulder, and left and right waist keypoints. This 3D body
model is in a right-handed coordinate system, which means that the chest-facing
direction is the negative Z-axis direction. Given the corresponding 2D keypoint
locations from the target image, we can fit the 3D model using the P6P algo-
rithm [26] assuming (virtual) camera parameters. This gives us the translation
vector t and the rotation matrix R from the body coordinate system to the
camera coordinate system.

To locate the six 2D body keypoints, we rely on a pre-trained 2d keypoint-
based pose estimator. For each frame, the pose estimator is expected to take the
whole frame as input, and output body keypoints including the ones correspond-
ing to our six-point body model. However, directly using the six 2D keypoints
from the pose estimator can lead to inconsistent results throughout frames. This
inconsistency arises from the fact that there normally exist at least two near-
optimal solutions with similar reprojection errors due to the symmetric nature
of the human body. Therefore, we introduce some subtle asymmetry in the 3D
body model and stabilize the pose by introducing hard-coded keypoints, as illus-
trated in the lower part of Fig. 3. Specifically, we only use three keypoints that
correspond to the left shoulder sl, the right shoulder sr, and the neck n from
the pose estimator. We calculate the other three keypoints, the left waist wl,
the right waist wr, and the nose e, assuming that the target person is stand-
ing straight. The keypoints of the waist are defined as wl = sl + (0, d)T and
wr = sr +(0, d)T , where d = |sr − sl|2 indicates the length of the shoulder, and
the nose is defined as e = n−(0, αd)T . We also set the ratio α = 1.632 according
to the same statistics of the human body [34].
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Fig. 4: An overview of the iterative model training stage with an illustration for
our network structure.

3.2 Iterative Model Training

By applying gaze target discovery to all videos in V and extracting tracklets, we
obtain an initial training dataset consisting of T and P. However, our proposed
gaze target discovery process generates noisy pseudo-labels. Consequently, the
initial labels P obtained from appearance-based gaze estimation results can be
oversegmented, violating the nature of eye contact segmentation. To address this
problem, we propose to iteratively train new segmentation models supervised by
the pseudo-labels Pq generated from the model trained in the previous iteration.
Our segmentation model is trained to take the low-level gaze CNN feature as
input and is expected to auto-correct the initial noisy pseudo-labels by attending
to temporal information through the iterative process.

Fig. 4 shows an overview of the iterative model training stage. Our segmenta-
tion network is based on the MS-TCN++ architecture [28] that takes as input a
tracklet Tn and outputs its frame-wise eye contact predictions yn. At iteration 1,
the model is supervised with P1 = P generated from the pseudo-label generator.
In every subsequent iteration q > 1, the model will be supervised with better
pseudo-labels P1 than the models trained before and could learn richer temporal
information. We repeat this process to max Q iterations.

Network Architecture The structure of the segmentation network is illus-
trated in the lower part of Fig. 4. For each frame in the input tracklet T of
length I, we extract and normalize the face image of the target person according
to [59]. It is then fed to a pre-trained gaze estimation network based on the
ResNet architecture [18] with 50 layers followed by a fully connected regression
head. We extract the gaze feature vectors fi ∈ R2048 from the last layer and
concatenate all gaze features {fi} collected from the tracklet along the temporal
dimension to form the gaze feature matrix F ∈ R2048×I , which will be used as
input to the segmentation block.

Based on the MS-TCN++ architecture [28], the segmentation block consists
of a prediction stage and several refinement stages stacked upon the prediction
stage. The prediction stage has 11 dual dilated layers. At the l-th dual dilated
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layer, the network performs two dilated convolutions with dilation rates l and
11− l. The features after the two dilated convolutions are first concatenated, so
that the network is able to attend to long-range temporal information even at
the early stage. This is then followed by ReLU activation, pointwise convolution
and skip connections. The refinement stages are similar to the prediction stage,
except that the 11 dual dilated layers are replaced with 10 dilated residual layers.

For the loss function, we follow the original paper and use a combination
of cross-entropy loss Lcls and truncated mean squared loss Lt-mse [28]. Lt-mse is
defined based on the difference in the prediction between adjacent frames and
encourages smoother model prediction. The loss for a single stage is defined as
Ls =

1
|B|

∑
b∈B(Lcls(pb,yb)+λLt-mse(yb)), where B indicates the training batch,

and λ is a hyperparameter controlling the extent of Lt-mse. Finally, the overall
loss for all stages is the sum of Ls at each stage.

Tracklet Extraction To extract tracklets, we run face detection and face recog-
nition on each video in V in the training dataset. A tracklet Tk is formed only if
the IoU between the bounding boxes of the faces of consecutive frames is greater
than τIoU. The tracklet is also disconnected if the neck and shoulder keypoints
cannot be detected. We also discard short tracklets that do not exceed 4 seconds.

Since pseudo-labels extracted from the gaze target discovery are person-
specific, we also need to make sure that the training tracklets are extracted from
the specific target person. To this end, we add the cosine similarity threshold
τc to construct training tracklets. Assuming that a set of reference face images
is given, we compute the cosine similarity of the detected face with each of the
reference faces. As long as one of them is greater than τc, the tracklet continues.
Note that this threshold is not required during inference.

3.3 Implementation Details

The gaze estimation network is pre-trained on the ETH-XGaze dataset [57], and
we follow their work to perform face detection, face normalization, and gaze
estimation. We use OpenPose [5] as our 2d keypoint pose estimator. For face
recognition, we use ArcFace [13], and set the cosine similarity threshold τc = 0.4
and the IoU threshold τIoU = 0.4.

During the pseudo-label generation stage, we set the radius of the cylinder
r = 1000mm. We also noticed that the hyperparameter of OPTICS can signifi-
cantly affect the pseudo-label quality. In particular, we found that smaller max
epsilon values should be given to longer videos, as the clustering space of long
videos is much denser than that of short videos. To address this issue, we first set
the max epsilon to 8 and perform OPTICS clustering. If no clusters are found,
we continue to increment the max epsilon until at least one cluster is found.

During training, we split the pseudo-labeled dataset into training and vali-
dation splits with a ratio of 8 : 2. To train MS-TCN++, we follow the suggested
hyperparameters for the network architecture. We use Adam [21] optimizer and
set the learning rate to 0.0005. We did not use dropout layers, and for the loss
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Fig. 5: Some example video frames randomly selected from our test dataset. We
show the target celebrities in green and red bounding boxes, with green and red
indicating positive and negative ground-truth labels. If visible, their gaze targets
are also shown in orange bounding boxes.

function, we set λ = 0.15. We empirically set the maximum number of iterations
Q = 4 and trained 50 epochs for each iteration.

4 Experiments

4.1 Dataset

We build our dataset upon the VoxCeleb2 dataset [12], which consists of celebri-
ties being interviewed or speaking to the public. The trimmed VoxCeleb2 dataset
includes short video clips only containing the head crops of celebrities and has
been used in various tasks including talking head generation [20] and speaker
identification [12]. Since our method also requires body keypoints detection, we
opt to process the raw videos used in the VoxCeleb2 dataset.

During training, we use randomly selected videos from celebrities id00501 to
id09272. Due to the online availability and the computational cost of tracklet
extraction, we used 5% of the entire dataset for training. After downloading the
raw videos, we converted them to 25 fps. If the video is too short, there will not be
enough gaze points to reliably identify high-density regions. On the other hand, if
the video is too long, the possibility of the video containing multiple conversation
sessions becomes high. Therefore, we only used videos of a duration between 2
and 12 minutes for training. In total, we pre-processed 4926 raw videos. During
tracklet extraction, we obtain the sets of reference images from the VGGFace2
dataset [4]. For each celebrity, we only used the first 30 face images. This results
in 49826 tracklets, which is equivalent to roughly 177.7 hours.

To evaluate our method, we manually annotate 52 videos (summing up to
3.6 hours) from celebrity id00016 to id00500 using ELAN [53]. Each video is
selected from a different celebrity to ensure identity diversity. We treat the host,
camera, and other interviewees who interacted with the target celebrity as eye
contact targets, meaning that there can be multiple eye contact targets in each
video. Note that these gaze targets do not necessarily need to be visible in the
scene. In addition, some test videos have poor lighting conditions, extreme head
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Table 1: Comparison between our video-independent eye contact segmentation
model and video-dependent baseline approaches.

Method Accuracy Edit F1@0.1 F1@0.25 F1@0.5
CameraPlane + SVM [58] 57.72% 46.83 38.37 30.08 20.48
CylinderPlane + SVM 68.52% 46.84 43.3 38.16 29.49

Ours 71.88% 57.27 61.59 54.67 41.03

poses, and low resolution, making them difficult to segment. Fig. 5 shows some
randomly sampled frames from the test videos with the celebrity and gaze targets
that we identified highlighted in the boxes. In total, 48.14% of the frames are
labeled positive. We further examine the quality of the labels by visualizing gaze
positions on the cylinder plane. If the gaze target looks too scattered on the
cylinder plane, we re-annotate the video. After forming tracklets from the test
videos, we get 510 tracklets (1.9 hours in total) with 48.12% of the frames labeled
positive. These test tracklets are used as our test set to evaluate our proposed
eye contact segmentation model.

4.2 Evaluation

We compare our method with video-dependent baselines and show the effective-
ness of our design choices through ablation studies. Following previous work on
action segmentation, we evaluate our proposed method using framewise accu-
racy, segmental edit score, and F1 scores at the overlap threshold 10%, 25%,
and 50%, denoted by F1@{10, 25, 50}. Framewise accuracy measures the per-
formance in the most straightforward way, but it favors longer tracklets and
does not punish oversegmentation. The segmented F1 score reflects the degree
of oversegmentation, and the F1 scores measure the quality of the prediction.

Performance Comparison Table. 1 shows the comparison of our proposed un-
supervised video-independent eye contact segmentation model with unsupervised
video-dependent eye contact detection baselines. The first row (CameraPlane +
SVM ) is the re-implementation of the unsupervised method of Zhang et al. [58]
that extracts framewise pseudo-labels in the camera plane and trains an SVM-
based eye contact classifier based on a single frame input. We did not set a
safe margin around the positive cluster to filter out unconfident negative gaze
points because we observed that it does not work well in in-the-wild videos, espe-
cially when there exist multiple gaze targets. The second row (CylinderPlane +
SVM ) applies our proposed cylinder plane gaze target discovery method, and an
SVM is trained on the resulting pseudo-labels. Note that these two methods are
video-dependent approaches, i.e., the models are trained specifically on the target
video. Our proposed cylinder plane achieves 68.52% accuracy in video-dependent
eye contact detection, outperforming the camera plane baseline by 10.8%, indi-
cating the advantage of our pseudo-label generator in in-the-wild videos. The last
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Table 2: Ablation results on our design choices.
Method Accuracy Edit F1@0.1 F1@0.25 F1@0.5

CameraPlane + Generic SVM 61.28% 44.34 39.32 32.44 22.46
CylinderPlane + Generic SVM 58.83% 39.86 34.26 27.19 18.08

CameraPlane + Ours 65.55% 46.27 44.88 38.56 27.85
Ours (1 iteration) 70.04% 42.21 43.97 38.55 27.42
Ours (2 iteration) 71.15% 50.60 55.09 48.80 36.54
Ours (3 iteration) 71.41% 52.24 57.26 50.72 37.45
Ours (4 iteration) 71.88% 57.27 61.59 54.67 41.03

row (Ours) corresponds to the proposed unsupervised eye contact segmentation
approach with an iterative training strategy. Our method achieves 71.88% frame-
wise accuracy, outperforming the video-dependent counterpart (CylinderPlane
+ SVM ) by 3.36% and the camera-plane baseline by 14.16%. It also achieves
the highest segmented edit scores and F1 scores, indicating better segmentation
qualities.

Ablation Studies We also conduct ablation studies to show the effectiveness
of our design choices, i.e, our problem formulation, our proposed gaze target
discovery method and iterative training. The result is shown in Table. 2. Cam-
eraPlane + Generic SVM is the baseline method that obtains pseudo-labels for
tracklets using the gaze target discovery method of Zhang et al. [58] and trains
an SVM-based generic video-independent eye contact detector. We choose to
use SVM as the classifier simply for comparison with video-dependent baseline
approaches, and SVM is trained through online learning optimized by SGD.
CylinderPlane + Generic SVM replaces the gaze target discovery method of
Zhang et al. [58] with our proposed gaze target discovery method and, therefore,
is also a video-independent eye contact detection approach. Although the base-
line camera-plane approach outperforms our proposed cylinder-plane approach
by 2.45%, both SVM-based detection models achieve framewise accuracy only
slightly better than chance. CameraPlane + Ours obtains pseudo-labels on the
camera plane but replaces the SVM with our segmentation model, making it a
video-independent eye contact segmentation method. It outperforms its detec-
tion counterpart by 4.27%, showing the superiority of our problem formulation.

Our proposed method without iterative training (Ours (1 iteration)) achieves
70.04% accuracy, showing the effectiveness of our proposed gaze target discovery
when applied in the segmentation task setting. The last three rows of Table. 2
shows the effectiveness of the proposed iterative training strategy. From iteration
1 to iteration 2, we observed a decent improvement in model performance in
terms of both accuracy and segmentation quality. There are also gradual model
improvements even in subsequent iterations, indicating its effectiveness. Our
proposed method in the last iteration outperforms that of the first iteration by
1.84% in accuracy, and there is also a great improvement in the edit score and
the F1 scores.
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Table 3: Evaluation of the model performance with different input length.
Length [s] Accuracy Edit F1@0.1 F1@0.25 F1@0.5

> 4 71.88% 57.27 61.59 54.67 41.03
> 10 74.27% 62.31 63.93 57.45 43.76
> 30 77.31% 63.76 64.86 58.60 45.96
> 60 85.14% 68.96 76.65 73.57 65.01
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Fig. 6: Accuracy of our segmentation model on different head pose ranges. We (a)
visualize segmentation accuracy for each yaw-pitch interval bin, and (b) show
examples of the model performance on test tracklets with a thumbnail image
followed by model predictions and groudtruth annotations.

Detailed Analysis and Discussions During both training and testing time,
we use tracklets for more than 4 seconds as input to the model. In Table 3, we
vary the length of the input tracklet during the test time and analyze its effect on
the performance of the model. As can be seen, the model performance improves
as we increase the input tracklet length. In particular, if the input length is more
than one minute, our proposed method reaches an accuracy of 85.14%.

The higher performance observed in longer tracklets can also be attributed to
the performance of the model in different head poses. During the tracklet forma-
tion stage, we use face recognition to filter celebrity faces. Since face recognition
performance is limited on profile faces, tracklets containing extreme head poses
tend to be much shorter than those containing only frontal faces. During train-
ing, the lack of long tracklets with profile faces prevents the model from modeling
long-term eye contact dependencies, leading to degraded performance on track-
lets that contain mainly profile faces. The longer tracklets in the test set also
contain mainly frontal faces, resulting in higher accuracy.

In Fig. 6a, we visualize the accuracy of our trained model conditioned on
different head poses. We use HopeNet [42] to extract head poses of celebrity
faces in each frame of the test tracklets and compute framewise accuracy for
all yaw-pitch intervals. We can observe that our model works the best when the
pitch is between −40 and −60 degrees, i.e., looking downward. It can also achieve
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decent performance when both yaw and pitch are around 0 degrees. However,
when the yaw is lower than −60 degrees or higher than 60 degrees, our model is
even worse than random chance.

In Fig. 6b, we show some qualitative visualizations. We randomly present
test tracklets with frontal faces in the first row and test tracklets with profile
faces in the second. Although our model has decent performance on frontal-
face tracklets, the predictions on profile-face tracklets seem almost random. We
also present test tracklets longer than one minute in the third row, and all of
these long tracks contain frontal faces. Consequently, we can observe mainly
fine-grained eye contact predictions in these examples.

Another limitation of our proposed approach lies in our full-face appearance-
based estimator. Fundamentally, the line of work on full-face appearance-based
gaze estimation regresses the face images into gaze directions in the normalized
camera coordinate system. Consequently, the gaze features used as input to the
segmentation model only have semantic meaning in the normalized space, but not
in the real camera space. In addition, the full-face appearance-based estimator
trained on the gaze dataset collected in controlled settings tends to have limited
performance in unconstrained images, especially when the person has extreme
head poses unseen in the training dataset. This may also be a reason for the low
performance of the model on the face of the profile.

Finally, our approach cannot handle the cases of moving gaze targets and
humans. Our gaze target discovery assumed fixed relative positions between the
eye contact target and the person and would consequently give incorrect pseudo-
labels in such cases. Eye contact detection with moving gaze targets is a more
challenging task than that with stable gaze targets. We argue that in this case
gaze information will not be sufficient for the model. Information about the
spatial relationship between the person and gaze targets should be introduced.

5 Conclusion

In this paper, we proposed and challenged the task of video-independent one-way
eye contact segmentation for videos in the wild. We proposed a novel method of
gaze target discovery to obtain frame-wise eye contact labels in unconstrained
videos, which allows us to train the segmentation model in an unsupervised way.
By manually annotating a test dataset consisting of 52 videos for evaluation,
we showed that our proposed method can lead to a video-independent eye con-
tact detector that can outperform previous video-dependent approaches and is
especially robust for non-profile face tracklets.
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