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Abstract. Detecting out-of-distribution (OOD) data is a task that is
receiving an increasing amount of research attention in the domain of
deep learning for computer vision. However, the performance of detection
methods is generally evaluated on the task in isolation, rather than also
considering potential downstream tasks in tandem. In this work, we ex-
amine selective classification in the presence of OOD data (SCOD). That
is to say, the motivation for detecting OOD samples is to reject them so
their impact on the quality of predictions is reduced. We show under
this task specification, that existing post-hoc methods perform quite dif-
ferently compared to when evaluated only on OOD detection. This is
because it is no longer an issue to conflate in-distribution (ID) data
with OOD data if the ID data is going to be misclassified. However, the
conflation within ID data of correct and incorrect predictions becomes
undesirable. We also propose a novel method for SCOD, Softmax Infor-
mation Retaining Combination (SIRC), that augments softmax-based
confidence scores with feature-agnostic information such that their abil-
ity to identify OOD samples is improved without sacrificing separation
between correct and incorrect ID predictions. Experiments on a wide
variety of ImageNet-scale datasets and convolutional neural network ar-
chitectures show that SIRC is able to consistently match or outperform
the baseline for SCOD, whilst existing OOD detection methods fail to
do so. Code is available at https://github.com/Guoxoug/SIRC.

1 Introduction

Out-of-distribution (OOD) detection [49], i.e. identifying data samples that do
not belong to the training distribution, is a task that is receiving an increasing
amount of attention in the domain of deep learning [4, 6, 15, 16, 19, 22, 31–33,
39, 41, 45, 46, 48–50]. The task is often motivated by safety-critical applications,
such as healthcare and autonomous driving, where there may be a large cost
associated with sending a prediction on OOD data downstream.

However, in spite of a plethora of existing research, there is generally a lack
of focus with regards to the specific motivation behind OOD detection in the
literature, other than it is often done as part of the pipeline of another primary
task, e.g. image classification. As such the task is evaluated in isolation and for-
mulated as binary classification between in-distribution (ID) and OOD data. In
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this work we consider the question why exactly do we want to do OOD detection
during deployment? We focus on the problem setting where the primary objec-
tive is classification, and we are motivated to detect and then reject OOD data,
as predictions on those samples will incur a cost. That is to say the task is selec-
tive classification [5, 8] where OOD data has polluted the input samples. Kim
et al. [27] term this problem setting unknown detection. However, we prefer to
use Selective Classification in the presence of Out-of-Distribution data (SCOD)
as we would like to emphasise the downstream classifier as the objective, and
will refer to the task as such in the remainder of the paper.

The key difference between this problem setting and OOD detection is that
both OOD data and incorrect predictions on ID data will incur a cost [27]. It does
not matter if we reject an ID sample if it would be incorrectly classified anyway.
As such we can view the task as separating correctly predicted ID samples (ID✓)
from misclassified ID samples (ID✗) and OOD samples. This reveals a potential
blind spot in designing approaches solely for OOD detection, as the cost of ID
misclassifications is ignored. The key contributions of this work are:

1. Building on initial results from [27] that show poor SCOD performance for
existing methods designed for OOD detection, we show novel insight into
the behaviour of different post-hoc (after-training) detection methods for
the task of SCOD. Improved OOD detection often comes directly at the
expense of SCOD performance. Moreover, the relative SCOD performance
of different methods varies with the proportion of OOD data found in the
test distribution, the relative cost of accepting ID✗ vs OOD, as well as the
distribution from which the OOD data samples are drawn.

2. We propose a novel method, targeting SCOD, Softmax Information Retain-
ing Combination (SIRC), that aims to improve the OOD|ID✓ separation of
softmax-based methods, whilst retaining their ability to identify ID✗. It con-
sistently outperforms or matches the baseline maximum softmax probability
(MSP) approach over a wide variety of OOD datasets and convolutional neu-
ral network (CNN) architectures, unlike existing OOD detection methods.

2 Preliminaries

Neural Network Classifier For a K-class classification problem we learn the
parameters θ of a discriminative model P (y|x;θ) over labels y ∈ Y = {ωk}Kk=1

given inputs x ∈ X = RD, using finite training dataset Dtr = {y(n),x(n)}Nn=1

sampled independently from true joint data distribution ptr(y,x). This is done in
order to make predictions ŷ given new inputs x∗ ∼ ptr(x) with unknown labels,

ŷ = f(x∗) = argmax
ω

P (ω|x∗;θ) , (1)

where f refers to the classifier function. In our case, the parameters θ belong to
a deep neural network with categorical softmax output π ∈ [0, 1]K ,

P (ωi|x;θ) = πi(x;θ) = exp vi(x)/

K∑
k=1

exp vk(x) , (2)
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where the logits v = Wz+b (∈ RK) are the output of the final fully-connected
layer with weights W ∈ RK×L, bias b ∈ RK , and final hidden layer features
z ∈ RL as inputs. Typically θ are learnt by minimising the cross entropy loss,
such that the model approximates the true conditional distribution Ptr(y|x),

LCE(θ) = − 1

N

N∑
n=1

K∑
k=1

δ(y(n), ωk) logP (ωk|x(n);θ) (3)

≈ −Eptr(x)

[
K∑

k=1

Ptr(ωk|x) logP (ωk|x;θ)

]
= Eptr [KL [Ptr||Pθ]] +A ,

where δ(·, ·) is the Kronecker delta, A is a constant with respect to θ and KL[·, ·]
is the Kullback–Leibler divergence.

Selective Classification A selective classifier [5] can be formulated as a pair
of functions, the aforementioned classifier f(x) (in our case given by Eq. 1) that
produces a prediction ŷ, and a binary rejection function

g(x; t) =

{
0 (reject prediction), if S(x) < t

1 (accept prediction), if S(x) ≥ t ,
(4)

where t is an operating threshold and S is a scoring function which is typically
a measure of predictive confidence (or −S measures uncertainty). Intuitively, a
selective classifier chooses to reject if it is uncertain about a prediction.

Problem Setting We consider a scenario where, during deployment, classifier
inputs x∗ may be drawn from either the training distribution ptr(x) (ID) or
another distribution pOOD(x) (OOD). That is to say,

x∗ ∼ pmix(x), pmix(x) = αptr(x) + (1− α)pOOD(x) , (5)

where α ∈ [0, 1] reflects the proportion of ID to OOD data found in the wild.
Here “Out-of-Distribution” inputs are defined as those drawn from a distribution
with label space that does not intersect with the training label space Y [49]. For
example, an image of a car is considered OOD for a CNN classifier trained to
discriminate between different types of pets.

We now define the predictive loss on an accepted sample as

Lpred(f(x
∗)) =


0, if f(x∗) = y∗, y∗,x∗ ∼ ptr(y,x) (ID✓)

β, if f(x∗) ̸= y∗, y∗,x∗ ∼ ptr(y,x) (ID✗)

1− β, if x∗ ∼ pOOD(x) (OOD) ,

(6)

where β ∈ [0, 1], and define the selective risk as in [8],

R(f, g; t) =
Epmix(x)[g(x; t)Lpred(f(x))]

Epmix(x)[g(x; t)]
, (7)
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Fig. 1. Illustrative sketch showing how SCOD differs to OOD detection. Densities of
OOD samples, misclassifications (ID✗) and correct predictions (ID✓) are shown with
respect to confidence score S. For OOD detection the aim is to separate OOD|ID✗ID✓,
whilst for SCOD the data is grouped as OODID✗|ID✓.

which is the average loss of the accepted samples. We are only concerned with
the relative cost of ID✗ and OOD samples, so we use a single parameter β.

The objective is to find a classifier and rejection function (f, g) that minimise
R(f, g; t) for some given setting of t. We focus on comparing post-hoc (after-
training) methods in this work, where g or equivalently S is varied with f fixed.
This removes confounding factors that may arise from the interactions of different
training-based and post-hoc methods, as they can often be freely combined.

In practice, both α and β will depend on the deployment scenario. However,
whilst β can be set freely by the practitioner, α is outside of the practitioner’s
control and their knowledge of it is likely to be very limited.

It is worth contrasting the SCOD problem setting with OOD detection.
SCOD aims to separate OOD, ID✗ |ID✓, whilst for OOD detection the data
is grouped as OOD|ID✗, ID✓ (see Fig. 1). We note that previous work [26, 34,
35, 38, 41] refer to different types of predictive uncertainty, namely aleatoric and
epistemic. The former arises from uncertainty inherent in the data (i.e. the true
conditional distribution Ptr(y|x)) and as such is irreducible, whilst the latter
can be reduced by having the model learn from additional data. Typically, it is
argued that it is useful to distinguish these types of uncertainty at prediction
time. For example, epistemic uncertainty should be an indicator of whether a
test input x∗ is OOD, whilst aleatoric uncertainty should reflect the level of
class ambiguity of an ID input. An interesting result within our problem setting
is that the conflation of these different types of uncertainties may not be an
issue, as there is no need to separate ID✗ from OOD, as both should be rejected.

3 OOD Detectors Applied to SCOD

As the explicit objective of OOD detection is different to SCOD, it is of interest
to understand how existing detection methods behave for SCOD. Previous work
[27] has empirically shown that some existing OOD detection approaches perform
worse, and in this section we shed additional light as to why this is the case.
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Fig. 2. Illustrations of how a detection method can improve over a baseline. Left: For
OOD detection we can either have OOD further away from ID✓ or ID✗ closer to ID✓.
Right: For SCOD we want both OOD and ID✗ to be further away from ID✓. Thus, we
can see how improving OOD detection may in fact be at odds with SCOD.

Improving Performance: OOD Detection vs SCOD In order to build an
intuition, we can consider, qualitatively, how detection methods can improve
performance over a baseline, with respect to the distributions of OOD and ID✗
relative to ID✓. This is illustrated in Fig. 2. For OOD detection the objective is
to better separate the distributions of ID and OOD data. Thus, we can either
find a confidence score S that, compared to the baseline, has OOD distributed
further away from ID✓, and/or has ID✗ distributed closer to ID✓. In comparison,
for SCOD, we want both OOD and ID✗ to be distributed further away from ID✓
than the baseline. Thus there is a conflict between the two tasks as, for ID✗, the
desired behaviour of confidence score S will be different.

Existing Approaches Sacrifice SCOD by Conflating ID✓ and ID✗ Con-
sidering post-hoc methods, the baseline confidence score S used is Maximum
Softmax Probability (MSP) [16]. Improvements in OOD detection are often
achieved by moving away from the softmax π in order to better capture the
differences between ID and OOD data. Energy [33] and Max Logit [14] consider
the logits v directly, whereas the Mahalanobis detector [31] and DDU [38] build
generative models using Gaussians over the features z. ViM [48] and Gradnorm
[21] incorporate class-agnostic, feature-based information into their scores.

Recall that typically a neural network classifier learns a model P (y|x;θ) to
approximate the true conditional distribution Ptr(y|x) of the training data (Eqs.
2,3). As such, scores S extracted from the softmax outputs π should best reflect
how likely a prediction on ID data is going to be correct or not (and this is
indeed the case in our experiments in Section 5). As the above (post-hoc) OOD
detection approaches all involve moving away from the modelled P (y|x;θ), we
would expect worse separation between ID✗ and ID✓ even if overall OOD is
better distinguished from ID. Fig. 3 shows empirically how well different types
of data are separated using MSP (πmax) and Energy (log

∑
k exp vk), by plotting

false positive rate (FPR) against true positive rate (TPR). Lower FPR indicates
better separation of the negative class away from the positive class. Although
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Fig. 3. Left: False positive rate (FPR) of OOD samples plotted against true positive
rate (TPR) of ID samples. Energy performs better (lower) for OOD detection relative
to the MSP baseline. Right: FPR of ID✗ and OOD samples against TPR of ID✓.
Energy is worse than the baseline at separating ID✗|ID✓ and no better for OOD|ID✓,
meaning it is worse for SCOD. Energy’s improved OOD detection performance arises
from pushing ID✗ closer to ID✓. The ID dataset is ImageNet-200, OOD dataset is
iNaturalist and the model is ResNet-50.

Energy has better OOD detection performance compared to MSP, this is actually
because the separation between ID✗ and ID✓ is much less for Energy, whilst
the behaviour of OOD relative to ID✓ is not meaningfully different to the MSP
baseline. Therefore, SCOD performance for Energy is worse in this case. Another
way of looking at it would be that for OOD detection, MSP does worse as it
conflates ID with OOD, however, this doesn’t harm SCOD performance as much,
as those ID samples are mostly incorrect anyway. The ID dataset is ImageNet-
200 [27], OOD dataset is iNaturalist [22] and the model is ResNet-50 [13].

4 Targeting SCOD – Retaining Softmax Information

We would now like to develop an approach that is tailored to the task of SCOD.
We have discussed how we expect softmax-based methods, such as MSP, to
perform best for distinguishing ID✗ from ID✓, and how existing approaches for
OOD detection improve over the baseline, in part, by sacrificing this. As such, to
improve over the baseline for SCOD, we will aim to retain the ability to separate
ID✗ from ID✓ whilst increasing the separation between OOD and ID✓.

Combining Confidence Scores Inspired by Gradnorm [21] and ViM [48]
we consider the combination of two different confidence scores S1, S2. We shall
consider S1 our primary score, which we wish to augment by incorporating S2.
For S1 we investigate scores that are strong for selective classification on ID
data, but are also capable of detecting OOD data – MSP and (the negative of)
softmax entropy, (−)H[π]. For S2, the score should be useful in addition to S1 in
determining whether data is OOD or not. We should consider scores that capture
different information about OOD data to the post-softmax S1 if we want to
improve OOD|ID✓. We choose to examine the l1-norm of the feature vector ||z||1

2000



Augmenting the Softmax for Selective Classification with OOD Data 7

from [21] and the negative of the Residual1 score −||zP⊥ ||2 from [48] as these
scores capture class-agnostic information at the feature level. Note that although
||z||1 and Residual have previously been shown to be useful for OOD detection
in [21, 48], we do not expect them to be useful for identifying misclassifications.
They are separate from the classification layer defined by (W , b), so they are far
removed from the categorical P (y|x;θ) modelled by the softmax.

Softmax Information Retaining Combination (SIRC) We want to create
a combined confidence score C(S1, S2) that retains S1’s ability to distinguish
ID✗ |ID✓ but is also able to incorporate S2 in order to augment OOD|ID✓. We
develop our approach based on the following set of assumptions:

– S1 will be higher for ID✓ and lower for ID✗ and OOD.
– S1 is bounded by maximum value Smax

1 . 2

– S2 is unable to distinguish ID✗ |ID✓, but is lower for OOD compared to ID.
– S2 is useful in addition to S1 for separating OOD|ID.

We propose to combine S1 and S2 using

C(S1, S2) = −(Smax
1 − S1) (1 + exp(−b[S2 − a])) , 3 (8)

where a, b are parameters chosen by the practitioner. The idea is for the ac-
cept/reject decision boundary of C to be in the shape of a sigmoid on the
(S1, S2)-plane (See Fig. 4). As such the behaviour of only using the softmax-
based S1 is recovered for ID✗ |ID✓ as S2 is increased, as the decision boundary
tends to a vertical line. However, S2 is considered increasingly important as it
is decreased, allowing for improved OOD|ID✓. We term this approach Softmax
Information Retaining Combination (SIRC).

The parameters a, b allow the method to be adjusted to different distribu-
tional properties of S2. Rearranging Eq. 8,

S1 = Smax
1 + C/[1 + exp(−b[S2 − a])] , (9)

we see that a controls the vertical placement of the sigmoid, and b the sensitivity
of the sigmoid to S2. We use the empirical mean and standard deviation of S2,
µS2

, σS2
on ID data (training or validation) to set the parameters. We choose

a = µS2
−3σS2

so the centre of the sigmoid is below the ID distribution of S2, and
we set b = 1/σS2 , to match the ID variations of S2. Note that other parameter
settings are possible, and practitioners are free to tune a, b however they see fit
(on ID data), but we find the above approach to be empirically effective.

Fig. 4 compares different methods of combination by plotting ID✓, ID✗ and
OOD data densities on the (S1, S2)-plane. Other than SIRC we consider the

1 zP⊥
is the component of the feature vector that lies outside of a principle subspace

calculated using ID data. For more details see Wang et al. [48]’s paper.
2 This holds for our chosen S1 of πmax and −H.
3 To avoid overflow this is implemented using the logaddexp function in PyTorch [40].
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Fig. 4. Comparison of different methods of combining confidence scores S1, S2 for
SCOD. OOD, ID✗ and ID✓ distributions are displayed using kernel density estimate
contours. Graded contours for the different combination methods are then overlayed
(lighter means higher combined score). We see that our method, SIRC (centre right)
is able to better retain ID✗|ID✓ whilst improving OOD|ID✓. An alternate parame-
ter setting for SIRC, with a stricter adherence to S1, is also shown (far right). The ID
dataset is ImageNet-200, the OOD dataset iNaturalist and the model ResNet-50. SIRC
parameters are found using ID training data; the plotted distributions are test data.

combination methods used in ViM, C = S1+cS2, where c is a user set parameter,
and in Gradnorm, C = S1S2. The overlayed contours of C represent decision
boundaries for values of t. We see that the linear decision boundary of C =
S1 + cS2 must trade-off significant performance in ID✗ |ID✓ in order to gain
OOD|ID✓ (through varying c), whilst C = S1S2 sacrifices the ability to separate
ID✗ |ID✓ well for higher values of S1. We also note that C = S1S2 is not robust
to different ID means of S2. For example, arbitrarily adding a constant D to S2

will completely change the behaviour of the combined score. On the other hand,
SIRC is designed to be robust to this sort of variation between different S2. Fig.
4 also shows an alternative parameter setting for SIRC, where a is lower and
b is higher. Here more of the behaviour of only using S1 is preserved, but S2

contributes less. It is also empirically observable that the assumption that S2

(in this case ||z||1) is not useful for distinguishing ID✓ from ID✗ holds, and in
practice this can be verified on ID validation data when selecting S2.

We also note that although we have chosen specific S1, S2 in this work, SIRC
can be applied to any S that satisfy the above assumptions. As such it has the
potential to improve beyond the results we present, given better individual S.

5 Experimental Results

We present experiments across a range of CNN architectures and ImageNet-scale
OOD datasets. Extended results can be found in the supplemental material.

Data, Models and Training For our ID dataset we use ImageNet-200 [27],
which contains a subset of 200 ImageNet-1k [43] classes. It has separate training,
validation and test sets. We use a variety of OOD datasets for our evaluation
that display a wide range of semantics and difficulty in being identified. Near-
ImageNet-200 (Near-IN-200) [27] is constructed from remaining ImageNet-1k
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classes semantically similar to ImageNet-200, so it is especially challenging to
detect. Caltech-45 [27] is a subset of the Caltech-256 [12] dataset with non-
overlapping classes to ImageNet-200. Openimage-O [48] is a subset of the Open
Images V3 [29] dataset selected to be OOD with respect to ImageNet-1k. iNat-
uralist [22] and Textures [48] are the same for their respective datasets [2, 47].
Colorectal [25] is a collection of histological images of human colorectal cancer,
whilst Colonoscopy is a dataset of frames taken from colonoscopic video of gas-
trointestinal lesions [36]. Noise is a dataset of square images where the resolution,
contrast and pixel values are randomly generated (for details see the supplemen-
tal material). Finally, ImageNet-O [18] is a dataset OOD to ImageNet-1k that is
adversarially constructed using a trained ResNet. Note that we exclude a number
of OOD datasets from [27] and [22] as a result of discovering ID examples.

We train ResNet-50 [13], DenseNet-121 [20] and MobileNetV2 [44] using hy-
perparameters based around standard ImageNet settings4. Full training details
can be found in the supplemental material. For each architecture we train 5
models independently using random seeds {1, . . . , 5} and report the mean result
over the runs. The supplemental material contains results on single pre-trained
ImageNet-1k models, BiT ResNetV2-101 [28] and PyTorch DenseNet-121.

Detection Methods for SCOD We consider four variations of SIRC using the
components {MSP,H}×{||z||1,Residual}, as well as the components individually.
We additionally evaluate various existing post-hoc methods: MSP [16], Energy
[33], ViM [48] and Gradnorm [21]. For SIRC and ViM we use the full ID train set
to determine parameters. Results for additional approaches, as well as further
details pertaining to the methods, can be found in the supplemental material.

5.1 Evaluation Metrics

For evaluating different scoring functions S for the SCOD problem setting we
consider a number of metrics. Arrows(↑↓) indicate whether higher/lower is bet-
ter. (For illustrations and additional metrics see the supplemental material.)

Area Under the Risk-Recall curve (AURR)↓ We consider how empirical
risk (Eq. 7) varies with recall of ID✓, and aggregate performance over different t
by calculating the area under the curve. As recall is only measured over ID✓, the
base accuracy of f is not properly taken into account. Thus, this metric is only
suitable for comparing different g with f fixed. To give an illustrative example, a
f, g pair where the classifier f is only able to produce a single correct prediction
will have perfect AURR as long as S assigns that correct prediction the highest
confidence (lowest uncertainty) score. Note that results for the AURC metric
[10, 27] can be found in the supplemental material, although we omit them from
the main paper as they are not notably different to AURR.
Risk@Recall=0.95 (Risk@95)↓ Since a rejection threshold t must be selected
at deployment, we also consider a particular setting of t such that 95% of ID✓

4 https://github.com/pytorch/examples/blob/main/imagenet/main.py
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is recalled. In practice, the corresponding value of t could be found on a labelled
ID validation set before deployment, without the use of any OOD data. It is
worth noting that differences tend to be greater for this metric between different
S as it operates around the tail of the positive class.
Area Under the ROC Curve (AUROC)↑ Since we are interested in reject-
ing both ID✗ and OOD, we can consider ID✓ as the positive class, and ID✗, OOD
as separate negative classes. Then we can evaluate the AUROC of OOD|ID✓ and
ID✗ |ID✓ independently. The AUROC for a specific value of α would then be a
weighted average of the two different AUROCs. This is not a direct measure of
risk, but does measure the separation between different empirical distributions.
Note that due to similar reasons to AURR this method is only valid for fixed f .
False Positive Rate@Recall=0.95 (FPR@95)↓ FPR@0.95 is similar to AU-
ROC, but is taken at a specific t. It measures the proportion of the negative class
accepted when the recall of the positive class (or true positive rate) is 0.95.

5.2 Separation of ID✗ |ID✓ and OOD|ID✓ Independently

Table 1 shows %AUROC and %FPR@0.95 with ID✓ as the positive class and
ID✗, OOD independently as different negative classes (see Section 5.1). In gen-
eral, we see that SIRC, compared to S1, is able to improve OOD|ID✓ whilst
incurring only a small (< 0.2%AUROC) reduction in the ability to distinguish
ID✗ |ID✓, across all 3 architectures. On the other hand, non-softmax meth-
ods designed for OOD detection show poor ability to identify ID✗, with perfor-
mance ranging from ∼ 8 worse %AUROC than MSP to ∼ 50% AUROC (random
guessing). Furthermore, they cannot consistently outperform the baseline when
separating OOD|ID✓, in line with the discussion in Section 3.

SIRC is Robust to Weak S2 Although for the majority of OOD datasets
SIRC is able to outperform S1, this is not always the case. For these latter
instances, we can see that S2 individually is not useful, e.g. for ResNet-50 on
Colonoscopy, Residual performs worse than random guessing. However, in cases
like this the performance is still close to that of S1. As S2 will tend to be higher
for these OOD datasets, the behaviour is like that for ID✗ |ID, with the decision
boundaries close to vertical (see Fig. 4). As such SIRC is robust to S2 performing
poorly, but is able to improve on S1 when S2 is of use. In comparison, ViM, which
linearly combines Energy and Residual, is much more sensitive to when the latter
stumbles. On Colonoscopy ViM has ∼ 30 worse %FPR@95 compared to Energy,
whereas SIRC (−H, Res.) loses < 1% compared to −H.

OOD Detection Methods are Inconsistent Over Different Data The
performance of existing methods for OOD detection relative to the MSP base-
line is varies considerably from dataset to dataset. For example, even though
ViM is able to perform very well on Textures, Noise and ImageNet-O (>50 bet-
ter %FPR@95 on Noise), it does worse than the baseline on most other OOD
datasets (>20 worse %FPR@95 for Near-ImageNet-200 and iNaturalist). This
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Table 1. %AUROC and %FPR@95 with ID✓ as the positive class, considering ID✗

and each OOD dataset separately. Full results are for ResNet-50 trained on ImageNet-
200. We show abridged results for MobileNetV2 and DenseNet-121. Bold indicates
best performance, underline 2nd or 3rd best and we show the mean over models from
5 independent training runs. Variants of SIRC are shown as tuples of their components
(S1,S2). We also show error rate on ID data. SIRC is able to consistently match or
improve over S1 for OOD|ID✓, at a negligible cost to ID✗ |ID✓. Existing OOD detection
methods are significantly worse for ID✗ |ID✓ and inconsistent at improving OOD|ID✓.

ID✗ OOD mean Near-IN-200 Caltech-45 Openimage-O iNaturalist
Model Method AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓
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C

(MSP,||z||1) 90.34 52.70 91.51 40.27 85.56 59.76 91.36 41.44 92.28 41.36 94.80 29.60
(MSP,Res.) 90.43 52.10 92.56 34.98 85.52 60.03 91.19 42.27 92.57 39.95 94.10 33.55
(−H,||z||1) 90.00 54.26 92.24 35.85 85.88 58.50 92.19 36.08 92.87 37.83 95.38 25.09
(−H,Res.) 90.13 54.01 93.36 30.05 85.85 58.93 92.11 36.76 93.25 36.36 94.82 28.51

MSP 90.41 52.13 91.00 43.25 85.59 59.74 91.13 42.72 91.95 43.55 94.23 33.21
−H 90.07 54.05 91.81 38.24 85.91 58.47 92.01 37.20 92.59 40.10 94.90 28.01
||z||1 48.06 94.70 78.22 58.70 52.27 94.58 70.28 77.83 72.23 71.51 85.65 49.50
Residual 47.59 96.45 58.45 78.97 44.30 96.79 47.76 94.83 59.65 86.85 40.07 97.32
Energy 82.05 69.79 92.06 35.32 81.96 68.70 92.15 38.62 90.92 46.28 94.13 31.70
Gradnorm 60.17 87.88 85.22 44.41 62.90 86.89 81.11 59.23 81.09 57.80 91.00 34.46
ViM 80.62 78.13 92.34 38.14 78.90 80.30 90.54 54.70 91.87 43.84 90.13 56.97

ID✗ Textures Colonoscopy Colorectal Noise ImageNet-O
Model Method AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓
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(MSP,||z||1) 90.34 52.70 93.64 32.02 95.93 25.33 95.84 24.39 90.72 49.63 83.44 58.91
(MSP,Res.) 90.43 52.10 96.00 19.81 95.52 27.31 95.32 26.97 98.21 10.97 84.62 53.99
(−H,||z||1) 90.00 54.26 94.38 27.38 96.97 16.87 96.71 18.71 91.74 45.84 84.01 56.34
(−H,Res.) 90.13 54.01 96.68 15.70 96.72 18.10 96.41 20.42 99.02 4.89 85.33 50.81

MSP 90.41 52.13 92.88 36.61 95.75 26.52 94.86 30.28 89.33 56.83 83.29 59.78
−H 90.07 54.05 93.77 30.79 96.87 17.55 95.93 23.43 90.47 51.63 83.89 57.02
||z||1 48.06 94.70 88.90 39.67 76.97 82.24 97.28 14.64 97.36 13.51 63.00 84.82
Residual 47.59 96.45 82.84 46.63 38.09 99.64 53.93 88.78 91.31 20.92 68.04 78.98
Energy 82.05 69.79 95.37 22.50 97.51 14.19 99.07 5.00 94.93 29.05 82.52 61.86
Gradnorm 60.17 87.88 93.00 26.57 90.54 42.85 98.98 4.98 97.59 13.05 70.78 73.88
ViM 80.62 78.13 98.46 7.62 94.42 44.55 98.04 8.84 99.82 0.31 88.85 46.15

ID✗ OOD mean
Model Method AUROC↑ FPR@95↓ AUROC↑ FPR@95↓
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(MSP,||z||1) 89.53 55.51 92.27 34.82
(MSP,Res.) 89.67 55.10 91.78 38.56
(−H,||z||1) 88.90 58.64 92.92 32.16
(−H,Res.) 89.12 57.85 92.69 34.20

MSP 89.64 55.03 91.54 39.73
−H 89.02 58.43 92.37 36.04
||z||1 53.56 93.40 81.06 53.50
Residual 41.99 97.30 41.42 94.11
Energy 81.87 67.98 91.68 36.68
Gradnorm 65.27 85.73 87.25 40.67
ViM 80.21 74.36 89.46 51.97

ID✗ OOD mean
Model Method AUROC↑ FPR@95↓ AUROC↑ FPR@95↓
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C

(MSP,||z||1) 90.22 52.41 91.68 38.83
(MSP,Res.) 90.20 52.42 92.81 32.68
(−H,||z||1) 89.95 53.96 92.42 32.92
(−H,Res.) 89.92 54.17 93.45 27.97

MSP 90.30 51.85 91.44 40.44
−H 90.04 53.41 92.24 34.49
||z||1 36.87 98.70 63.53 80.35
Residual 46.08 95.44 69.38 71.33
Energy 82.12 66.54 90.92 38.87
Gradnorm 50.18 95.19 76.18 62.58
ViM 76.63 84.73 90.50 44.71

suggests that the inductive biases incorporated, and assumptions made, when
designing existing OOD detection methods may prevent them from generalising
across a wider variety of OOD data. In contrast, SIRC more consistently, albeit
modestly, improves over the baseline, due to its aforementioned robustness.

5.3 Varying the Importance of OOD Data Through α and β

At deployment, there will be a specific ratio of ID:OOD data exposed to the
model. Thus, it is of interest to investigate the risk over different values of α (Eq.
5). Similarly, an incorrect ID prediction may or may not be more costly than a
prediction on OOD data so we investigate different values of β (Eq. 6). Fig. 5
shows how AURR and Risk@95 are affected as α and β are varied independently
(with the other fixed to 0.5). We use the full test set of ImageNet-200, and pool
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Fig. 5. AURR↓ and Risk@95↓ (×102) for different methods as α and β vary (Eqs.
5,6) on a mixture of all the OOD data. We also split the OOD data into qualitatively
“Close” and “Far” subsets (Section 5.3). For high α, β, where ID✗ dominates in the risk,
the MSP baseline is the best. As α, β decrease, increasing the effect of OOD data, other
methods improve relative to the baseline. SIRC is able to most consistently improve
over the baseline. OOD detection methods perform better on “Far” OOD. The ID
dataset is ImageNet-200, the model ResNet-50. We show the mean over 5 independent
training runs. We multiply all values by 102 for readability.

OOD datasets together and sample different quantities of data randomly in order
to achieve different values of α. We use 3 different groupings of OOD data: All,
“Close” {Near-ImageNet-200, Caltech-45, Openimage-O, iNaturalist} and “Far”
{Textures, Colonoscopy, Colorectal, Noise}. These groupings are based on rela-
tive qualitative semantic difference to the ID dataset (see supplemental material
for example images from each dataset). Although the grouping is not formal, it
serves to illustrate OOD data-dependent differences in SCOD performance.

Relative Performance of Methods Changes with α and β At high α and
β, where ID✗ dominates the risk, the MSP baseline performs best. However, as
α and β are decreased, and OOD data is introduced, we see that other methods
improve relative to the baseline. There may be a crossover after which the ability
to better distinguish OOD|ID✓ allows a method to surpass the baseline. Thus,
which method to choose for deployment will depend on the practitioner’s setting
of β and (if they have any knowledge of it at all) of α.

SIRC Most Consistently Improves Over the Baseline SIRC (−H,Res.)
is able to outperform the baseline most consistently over the different scenarios
and settings of α, β, only doing worse for ID✗ dominated cases (α, β close to 1).
This is because SIRC has close to baseline ID✗ |ID✓ performance and is superior
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Fig. 6. The change in %FPR@95↓ relative to the MSP baseline of different methods.
Different data classes are shown negative|positive. Although OOD detection methods
are able to improve OOD|ID, they do so mainly at the expense of ID✗ |ID✓ rather
than improving OOD|ID✓. SIRC is able to improve OOD|ID✓ with minimal loss to
ID✗ |ID✓, alongside modest improvements for OOD|ID. Results for OOD are averaged
over all OOD datasets. The ID dataset is ImageNet-200 and the model ResNet-50.

for OOD|ID✓. In comparison, ViM and Energy, which conflate ID✗ and ID✓, are
often worse than the baseline for most (if not all) values of α, β. Their behaviour
on the different groupings of data illustrates how these methods may be biased
towards different OOD datasets, as they significantly outperform the baseline at
lower α for the “Far” grouping, but always do worse on “Close” OOD data.

5.4 Comparison Between SCOD and OOD Detection

Fig. 6 shows the difference in %FPR@95 relative to the MSP baseline for different
combinations of negative|positive data classes (ID✗ |ID✓, OOD|ID✓, OOD|ID),
where OOD results are averaged over all datasets and training runs. In line with
the discussion in Section 3, we observe that the non-softmax OOD detection
methods are able to improve over the baseline for OOD|ID, but this comes
mostly at the cost of inferior ID✗ |ID✓ rather than due to better OOD|ID✓, so
they will do worse for SCOD. SIRC on the other hand is able to retain much
more ID✗ |ID✓ performance whilst improving on OOD|ID✓, allowing it to have
better OOD detection and SCOD performance compared to the baseline.

6 Related Work

There is extensive existing research into OOD detection, a survey of which can
be found in [49]. To improve over the MSP baseline in [16], early post-hoc ap-
proaches, primarily experimenting on CIFAR-scale data, such as ODIN [32], Ma-
halanobis [31], Energy [33] explore how to extract non-softmax information from
a trained network. More recent work has moved to larger-scale image datasets
[14, 22]. Gradnorm [21], although motivated by the information in gradients, at
its core combines information from the softmax and features together. Similarly,
ViM [48] combines Energy with the class-agnostic Residual score. ReAct [45]
aims to improve logit/softmax-based scores by clamping the magnitude of final
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layer features. There are also many training-based approaches. Outlier Exposure
[17] explores training networks to be uncertain on “known” existing OOD data,
whilst VOS [4] instead generates virtual outliers during training for this pur-
pose. [19, 46] propose the network explicitly learn a scaling factor for the logits
to improve softmax behaviour. There also exists a line of research that explores
the use of generative models, p(x;θ), for OOD detection [1, 39, 42, 50], however,
these approaches are completely separate from classification.

Selective classification, or misclassification detection, has also been investi-
gated for deep learning scenarios. Initially examined in [8, 16], there are a number
of approaches to the task that target the classifier f through novel training losses
and/or architectural adjustments [3, 9, 37]. Post-hoc approaches are fewer. DOC-
TOR [11] provides theoretical justification for using the l2-norm of the softmax
output ||π||2 as a confidence score for detecting misclassifications, however, we
find its behaviour similar to MSP and H (see supplemental material).

There also exist general approaches for uncertainty estimation that are then
evaluated using the above tasks, e.g. Bayesian Neural Networks [23], MC-Dropout
[7], Deep Ensembles [30], Dirichlet Networks [34, 35] and DDU [38].

The two works closest to ours are [24] and [27]. [24] investigates selective
classification under covariate shift for the natural language processing task of
question and answering. In the case of covariate shift, valid predictions can still
be produced on the shifted data, which by our definition is not possible for OOD
data (see Section 2). Thus the problem setting here is different to our work. We
remark that it would be of interest to extend this work to investigate selective
classification with covariate shift for tasks in computer vision. [27] introduces
the idea that ID✗ and OOD data should be rejected together and investigates
the performance of a range of existing approaches. They examine both training
and post-hoc methods (comparing different f and g) on SCOD (which they term
unknown detection), as well as misclassification detection and OOD detection.
They do not provide a novel approach targeting SCOD, and consider a single
setting of (α, β), where the α is not specified and β = 0.5.

7 Concluding Remarks

In this work, we consider the performance of existing methods for OOD detection
on selective classification with out-of-distribution data (SCOD). We show how
their improved OOD detection vs the MSP baseline often comes at the cost of
inferior SCOD performance. Furthermore, we find their performance is inconsis-
tent over different OOD datasets. In order to improve SCOD performance over
the baseline, we develop SIRC. Our approach aims to retain information, which
is useful for detecting misclassifications, from a softmax-based confidence score,
whilst incorporating additional information useful for identifying OOD samples.
Experiments show that SIRC consistently matches or improves over the baseline
approach for a wide range of datasets, CNN architectures and problem scenarios.
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