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Abstract. Pedestrian trajectory prediction as an essential part of rea-
soning human motion behaviors, has been deployed in a number of vi-
sion applications, such as autonomous navigation and video surveillance.
Most existing methods adopt autoregressive frameworks to forecast the
future trajectory, where the trajectory is iteratively generated based
on the previous outputs. Such a process will suffer from large accumu-
lated errors over the long-term forecast horizon. To address this issue, in
this paper, we propose a Synchronous Bi-Directional framework (SBD)
with error compensation for pedestrian trajectory prediction, which can
greatly alleviate the error accumulation during prediction. Specifically,
we first develop a bi-directional trajectory prediction mechanism, and
force the predicting procedures for two opposite directions to be syn-
chronous through a shared motion characteristic. Different from pre-
vious works, the mutual constraints inherent to our framework from
the synchronous opposite-predictions can significantly prevent the error
accumulation. In order to reduce the possible prediction error in each
timestep, we further devise an error compensation network to model and
compensate for the positional deviation between the ground-truth and
the predicted trajectory, thus improving the prediction accuracy of our
scheme. Experiments conducted on the Stanford Drone dataset and the
ETH-UCY dataset show that our method achieves much better results
than existing algorithms. Particularly, by resorting to our alleviation
methodology for the error accumulation, our scheme exhibits superior
performance in the long-term pedestrian trajectory prediction.

1 Introduction

Pedestrian trajectory prediction aims to forecast the future trajectory based on
the observed history trajectory. As one of the most important human behav-
ior prediction tasks, it plays an important role in many related fields, such as
autonomous navigation [1, 2] and video surveillance [3, 4].

Although the pedestrian trajectory prediction has been analyzed and re-
searched in a variety of ways, it remains to be a challenging task because of the
inherent properties of human. First, human behaviors are full of indeterminacy,
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thus there could be several plausible but distinct future trajectories under the
same historical trajectory and scene. Second, pedestrians are highly affected by
their neighbors. However, modeling the underlying complex inter-personal inter-
actions is still challenging in real scenarios. Given the historical trajectory of the
target pedestrian, a pedestrian trajectory prediction method should effectively
model both the temporal motion patterns and the possible spatial interactions,
and then forecast the positions or distribution of the future trajectory based on
the modeled features.

The pioneering methods [5–8] mainly focus on the human motions and human-
human interactions by using handcrafted features. Recently, the attention mech-
anism and the recurrent neural networks (RNNs), which show outstanding abil-
ity in extracting temporal dependencies and spatial interactions among adjacent
pedestrians, have been applied to many methods [9–15] and achieve a great suc-
cess in pedestrian trajectory prediction. However, most of these methods use the
single autoregressive frameworks to forecast the future trajectory. For examples,
approaches like [9, 10] generate trajectory at a timestep and feed the predicted
trajectory back into the model to produce the trajectory for the next timestep.
Alternatively, methods like [11–13] forecast the spatial position at a future time
and then feed the currently predicted position back into the model to produce
the next spatial position. These frameworks would suffer from the huge accumu-
lated errors over the long-term forecast horizon [16], and thus their performance
may tend to degrade rapidly over time.

In this paper, we propose a novel Synchronous Bi-Directional framework
(SBD) with error compensation for pedestrian trajectory prediction to allevi-
ate the problem of error accumulation. SBD first models the spatial-temporal
feature through a simple temporal motion extractor and a spatial interaction
extractor. Meanwhile, SBD incorporates a conditional variational autoencoder
(CVAE) module to produce the multi-modality of the future trajectory. We then
propose a synchronous bi-directional trajectory generator to alleviate the error
accumulation in trajectory prediction process. Specifically, we devise a shared
characteristic between two opposite predictions, by resorting to which, the gen-
erator performs mutually constrained synchronous bi-directional prediction to
greatly prevent the error accumulation. Different from previous methods, such
as [12], the trajectory generator in SBD implements predictions for two oppo-
site directions synchronously, while maintaining relative independence to pre-
vent from the error propagation between the two branches. Besides, to further
reduce possible errors in the predicted trajectory, we design an error compensa-
tion network to model and compensate for the positional deviation between the
ground-truth and predicted trajectory. The main contributions of our work can
be summarized as follows:

– We propose a synchronous bi-directional framework (SBD) for pedestrian
trajectory prediction. Different from existing approaches, our predicting pro-
cedures for two opposite directions are designed to be synchronous through
a shared motion characteristic, and the mutual constraints from the syn-
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chronous opposite-predictions can significantly prevent the error accumula-
tion.

– Through modeling the spatial deviation between the predicted trajectory
and the ground-truth, we further devise an error compensation network to
compensate the prediction error at each timestep, thus improving the final
prediction accuracy.

– Our method achieves the state-of-the-art performance on two benchmark
pedestrian trajectory prediction datasets. Particularly, thanks to the alle-
viation scheme for the error accumulation, our method exhibits excellent
performance in the long-term pedestrian trajectory prediction.

2 Related Work

Pedestrian trajectory prediction aims to estimate the future positions base on
the observed paths, which can be roughly categorized into methods based on
hand-crafted features and methods based on deep learning. In this section, we
give a brief review of related work.

Pedestrian trajectory prediction based on hand-crafted features. Tra-
ditional methods [5–8] heavily rely on the hand-crafted rules to describe hu-
man motions and human-human interactions. For examples, the Social Force
[5] employs a dynamic system to model the human motions as attractive force
towards a destination and repulsive forces to avoid collision. The Linear Trajec-
tory Avoidance is proposed in [8] for short-term pedestrian trajectory prediction
through jointly modeling the scene information and the dynamic social interac-
tions among pedestrians. However, these hand-crafted methods are difficult to
generalize in more complex real scenes.

Pedestrian trajectory prediction based on deep learning. Thanks to
the powerful representation of deep learning, many methods design ingenious
networks for pedestrian trajectory prediction. For examples, Social-LSTM [14]
extracts the motion feature for each pedestrian through dividual Long Short
Term Memory networks (LSTMs) and devises a social pooling layer to aggregate
the interaction information among nearby pedestrians. SR-LSTM [17] refines the
current states of all pedestrians in a crowd by timely capturing the changes of
their neighbors and modeling the social interactions within the same moment.

The graph convolutional networks (GCNs) [18] are also introduced by many
trajectory prediction methods to extract the cooperative interactions among
pedestrians [10, 19–22]. For instance, Social-STGCNN [19] learns the spatial
context and temporal context using a spatio-temporal graph convolution neural
network. SGCN [21] introduces a sparse graph to model the sparse directed in-
teractions among pedestrians. In addition, VDRGCN [22] devises three directed
graph topologies to exploit different types of social interactions.

The attention based approaches have been devised for pedestrian trajectory
prediction to model the temporal dependencies and spatial interactions among
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pedestrians. For examples, Social-BiGAT [20] combines the graph model and
attention mechanism to model the social interactions. TPNSTA [13] adaptively
extracts important information in both spatial and temporal domains through
a unified spatial-temporal attention mechanism. Agentformer [9] simultaneously
learns representations from the time and social dimensions and proposes a agent-
aware attention mechanism for multi-agent trajectory prediction. More recently,
the work CAGN [23] designs a complementary dual-path attention architecture
to capture the frequent and peculiar modals of the trajectory.

Due to the inherent multi-modality of human behaviors, many stochastic
prediction methods are proposed to learn the distribution of trajectory based
on the deep generative model, such as generative adversarial networks (GANs)
[13, 15, 24, 25], conditional variational autoencoders (CVAEs) [9, 11, 12, 26–28].
For examples, Social-GAN [15] incorporates the LSTM model with the GANs to
produce multiple plausible trajectories. PECNet [26] concatenates the features of
historical trajectory and predicted multi-modal end-points to predict the whole
trajectories. BiTraP [12] predicts future trajectories from two directions based
on multi-modal goal estimation. DisDis [27] further studies the latent space and
proposes to learn the discriminative personalized latent distributions to represent
personalized future behaviors. In addition, SIT [29] builds a hand-craft tree and
uses the branches in the tree to represent the multi-modal future trajectories.

3 Proposed Method

In this section, we introduce our SBD, which performs mutually constrained
synchronous bi-directional trajectory prediction based on a shared motion char-
acteristic to alleviate the problem of error accumulation. We describe the archi-
tecture of our method in Fig. 1, which mainly consists of three components: 1)
a spatial-temporal encoder; 2) a synchronous bi-directional decoder and 3) an
error compensation network.

3.1 Problem Formulation

Pedestrian trajectory prediction task aims to generate plausible future trajec-
tory for the target pedestrian based on the historical trajectories of target
and target’s neighboring pedestrians. Mathematically, let xt ∈ R2 be the spa-
tial coordinate of a target pedestrian at the timestamp t, and denote X =
[x−H+1, x−H+2, ..., x0] ∈ RH×2 as the observed history trajectory, where H is
observation horizon and the current location is x0. Let N represent the neigh-
bor set and XN = [XN1

, XN2
, ..., XNN ] ∈ RN×H×2 be the historical trajecto-

ries of neighbors, where the XNi ∈ RH×2 belongs to the i-th neighbor. We
use Y = [y1, y2, ..., yTf ] ∈ RTf×2 to represent the ground-truth future trajec-
tory of the target pedestrian, where yt ∈ R2 denotes the spatial coordinate
at the future timestamp t, and Tf is the prediction horizon. Similarly, we use
Ŷ = [ŷ1, ŷ2, ..., ŷTf ] ∈ RTf×2 to indicate the predicted future trajectory. The
overall goal is to learn a trajectory prediction model F , which predicts a future
trajectory Ŷ = F(X,XN ) close to Y .
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Fig. 1. The framework of SBD. The blue trajectory belongs to the target pedestrian
and the orange/green trajectories are neighbours.

3.2 Spatial-Temporal Encoder

Modeling trajectories. To capture the temporal motion feature of a target
pedestrian, we adopt a simple temporal motion extractor as proposed in [12].
We first embed the positions of the target pedestrian through a fully connected
layer (FC) with ReLU activation as

et = FC(xt;Θe) , (1)

where t = −H +1, ..., 0 and Θe represents the parameters of FC. The embedded
feature et ∈ R1×dte is then fed into a GRU block to produce the hidden state at
the time step t:

htte = GRU(ht−1te , et) , (2)

We obtain the temporal motion feature Xte ∈ R1×dte as Xte = h0te.
As for the modeling of social interactions among surrounding pedestrians,

in this paper, we propose to capture the social influence of the neighbors to
the target using the attention mechanism [30]. Specifically, we first embed the
current states of all pedestrians including the target and neighbors as:

r = FC(x0;Θr) , rN = FC(x0N ;Θr) , (3)

where r ∈ R1×dse and rN ∈ RN×dse contains the features of the target and
neighbors, respectively, and Θr represents the parameters of FC. According to
the dot-product attention strategy [30], we calculate the spatial interaction fea-
ture as:

Xse = softmax(
QKT

√
dse

)V ∈ R1×dse . (4)

Q = rWQ , K = (r ⊕ rN )WK , V = (r ⊕ rN )WV , (5)
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where ⊕ serves as the concatenation operation, and WQ,WK ,WV ∈ Rdse×dse
represent the trainable parameters of dividual linear transformations to generate
the query Q ∈ R1×dse , key K ∈ R(N+1)×dse and value V ∈ R(N+1)×dse .

Finally, we produce the spatial-temporal feature Xe of the target as:

Xe = (Xte ⊕Xse)We , (6)

where We ∈ R(dte+dse)×de is the trainable weight matrices. In the training stage,
the ground-truth Y is also encoded by another temporal motion extractor yield-
ing Yte.

Generating distributions of trajectory. Considering the multi-modality of
future trajectory, similar to the previous methods [9, 11, 12, 27], SBD incorpo-
rates a conditional variational autoencoder (i.e., CVAE [31]) to estimate the
future trajectory distribution p(Y |X). Based on the [31], we introduce a latent
variable z to represent the high-level latent intent of the target pedestrian and
rewrites p(Y |X) as:

p(Y |X) =

∫
p(Y |X,Z)pθ(Z|X)dZ , (7)

where pθ(Z|X) is the Gaussian distribution based on the observed trajectory.
In this work, we use a multilayer perceptron (MLP) to map the temporal

feature Xte to the Gsussian parameters (µp, σp) of the distribution pθ(Z|X) =
N(µp, σ

2
p). According to the [31], in the training stage, another MLP is adopted

to produce the distribution qφ(Z|X,Y ) = N(µq, σ
2
q ) with the inputs of Xte and

Yte. The latent variable z is sampled from qφ(Z|X,Y ). In the inference stage,
we directly obtain different latent variables from pθ(Z|X) to generate the multi-
modality of trajectory.

To produce diverse and plausible trajectories, we stack K parallel pairs of
MLP to obtain the diverse latent variables. Therefore, we take the accumulation
of negative evidence lower bound in the [31] as the corresponding loss function:

Lelbo =
K∑
k=1

{
−E

q
(k)
φ (Z|X,Y )

[
log p(k)(Y | X,Z)

]
+ KL

(
q
(k)
φ (Z | X,Y )‖p(k)θ (Z | X)

)}
.

(8)

3.3 Synchronous Bi-Directional Decoder

In order to alleviate the problem of error accumulation in the trajectory predic-
tion process, we propose a novel synchronous bi-directional decoder as shown in
Fig. 2. The proposed decoder is a two-phase trajectory prediction system, where
the first step is to generate a series of motion characteristics shared by two op-
posite directions, and the second step is to perform the mutually constrained
simultaneous bi-directional prediction based on the motion characteristic.
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Fig. 2. The structure of the synchronous bi-directional decoder. The proposed decoder
is a two-phase trajectory prediction system, where the first step is to generate motion
characteristics through a motion characteristic predictor and the second step is to
perform the mutually constrained simultaneous bi-directional prediction based on the
motion characteristic. Finally, the decoder output the backward trajectory Ŷb as the
preliminary predicted result.

We should note that the existing work [12] also adopts a bi-directional trajec-
tory prediction structure. However, it predicts two opposite directions sequen-
tially, where it first performs forward trajectory prediction, and the results are
then used as an assistance for the backward trajectory prediction. Such a sequen-
tial process can not solve the problem of error propagation. One may also use
a vanilla independent bi-directional framework, which independently predicts
trajectories in opposite directions. Nevertheless, the error accumulation would
occur in both directions since no interactions between them.

Compared with the above strategies, our bi-directional decoder performs syn-
chronous bi-directional prediction, where the mutual constraints from two direc-
tions can significantly prevent the error accumulation. The experiments shown
in the Section 4 will also show the superiority of our scheme.

Motion characteristic predictor. In order to prevent the error propagation
in each prediction direction, we devise a motion characteristic predictor, where
the generated features are shared by two opposite predictions. Since the pre-
diction procedures for two opposite predictions rely on the same feature, they
would be affected by the mutual constraint from each other, thus greatly alle-
viating the error propagation in both directions. Intuitively, the characteristic
should reflect the common real-time state of the target pedestrian in the physical
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space. In this paper, we specialize motion characteristic as the velocity feature
of the pedestrian, and supervise the motion characteristic predictor using the
real velocity.

Specifically, the spatial-temporal feature Xe and the latent vector z are fed
into the motion characteristic predictor to generate the motion characteristics.
As shown in Fig. 2, a GRU is used as the basic model of the predictor. We first
adopt a FC to map Xe to the initial hidden state hTf+1

m and produce the hidden
states for the timesteps from Tf to 1:

rt+1
m = FC(ht+1

m ⊕ z;Θm) , (9)

htm = GRU
(
rt+1
m , FC(rt+1

m ;Θinm )
)
, (10)

where Θm, Θinm are parameters, and the hidden state htm represents the motion
characteristic at the time step t. Then, we propose to forecast the velocity vector
Ŷv = [ŷ1v , ŷ

2
v , ..., ŷ

Tf
v ] based on the motion characteristics htm (t = 1, ..., Tf ) as:

ŷtv = FC(htm;Θv) , (11)

where Θv are parameters to be learned. In the training stage, we force Ŷv to
approximate the true velocity Ỹv = ∂Y

∂t , and the corresponding loss function is
formulated as:

Lmotion =
∥∥∥Ŷv − Ỹv∥∥∥

2
. (12)

Synchronous bi-directional trajectory generator. In order to alleviate the
error accumulation in the trajectory prediction process, we devise a synchronous
bi-directional trajectory generator, which consists of a goal predictor, a backward
trajectory generator and a forward trajectory generator.
Goal predictor. The goal predictor aims to forecast the goal position of the tra-
jectory based on the feature Xe and the latent vector z, which will be used to
guide the backward trajectory generation as shown in Fig. 2. The loss of the goal
predictor is defined as:

Lgoal =
∥∥∥Ĝ− ỹTf+1

∥∥∥
2
. (13)

Here, ỹTf+1 represents the next position after the endpoint of the target trajec-
tory, which is approximately calculated as:

ỹTf+1 ≈ yTf + (yTf − yTf−1) . (14)

Bi-directional trajectory generator. As depicted in Fig. 2, the two opposite pre-
diction branches are synchronous at each timestep with a shared motion charac-
teristic htm (t = 1, ..., T ). The GRU is adopted as the basic model of two opposite
trajectory generators. The current position x0 and predicted goal Ĝ act as the
initial states for the forward and backward branches, respectively. The procedure
of the forward prediction is formulated as:

htf = GRU(htm, FC(ŷ
t−1
f ;Θf ) ,

ŷtf = FC(htf ;Θ
′
f ) ,

(15)
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while the procedure of the backward prediction is

htb = GRU(htm, FC(ŷ
t+1
b ;Θb)) ,

ŷtb = FC(htb;Θ
′
b) ,

(16)

Here, t = 1, ..., Tf ; Θf , Θ′f , Θb, Θ
′
b are learnable parameters; htf , h

t
b represent the

hidden states, and ŷtf , ŷ
t
b denote the predicted positions at timestep t by the

forward generator and the backward generator, respectively.
As illustrated in Fig. 2, the motion characteristic htm plays as a shared feature,

which is used to predict the position ŷtb based on the position at t + 1 in the
backward branch while participating in the prediction of ŷtf with the input of
ŷt−1f in the forward branch. This design lets the two opposite prediction branches
mutually constrained from each other, thus preventing the error accumulation.
For instance, as for the prediction of ŷ1b , the output of the backward generator
not only relies on the previous state ŷ2b , but also the shared motion feature h1m,
which is constrained by the forward generator.

Denote Ŷf = [ŷ1f , ŷ
2
f , ..., ŷ

Tf
f ] and Ŷb = [ŷ1b , ŷ

2
b , ..., ŷ

Tf
b ] as the predicted trajec-

tory by the forward and backward trajectory generators, respectively. The loss
of our synchronous bi-directional trajectory generator is defined as:

Ltraj = α1

∥∥∥Ŷf − Y ∥∥∥
2
+ α2

∥∥∥Ŷb − Y ∥∥∥
2
, (17)

where α1 and α2 are two hyper-parameters used to balance two prediction
branches.

3.4 Error Compensation Network.

Fig. 3. The structure of the error compensation network.

Despite that our synchronous bi-directional framework can effectively pre-
vent the error accumulation in the sequentially prediction process. However, due
to the complex multi-modality property inherent to human motion behaviors,
there may still exist prediction deviations for some certain contexts. In order to
further reduce the possible prediction error at each time-step, we introduce an
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error compensation network, which aims to compensate for the spatial devia-
tions between the ground-truth trajectory and the predicted one based on the
current context.

As shown in Fig. 3, with the context of the spatial-temporal feature Xe and
the latent vector z, the error compensation network predicts a compensation
value for the target pedestrian at each timestep, which is formulated as:

rt+1
e = FC(ht+1

e ⊕ z;Θe) , (18)

hte = GRU
(
rt+1
e , FC(rt+1

e ;Θine )
)
, (19)

∆ŷt = FC(hte;Θ
out
e )) , (20)

where t = 1, ..., Tf , and the initial hidden state hTf+1
e is generated by a FC

based on the spatial-temporal feature Xe. Besides, Θe, Θine , Θoute are parameters,
and ∆ŷt represents the compensation value at the timestep t. Letting ∆Ŷ =
[∆ŷ1, ∆ŷ2, ...,∆ŷTf ] be the predicted compensation value, we take the Ŷb +∆Ŷ
as the final predicted trajectory. The loss of error compensation network can be
written as:

Lerror =
∥∥∥Ŷb +∆Ŷ − Y

∥∥∥
2
. (21)

Finally, SBD is trained end-to-end by minimizing the following loss function:

L = β1Lgoal + β2Ltraj + β3Lerror + β4Lmotion + β5Lelbo , (22)

where the β1, β2, β3, β4 and β5 are used to balance different terms.

4 Experiments

In this section, we evaluate the performance of our proposed SBD, which is
implemented using the PyTorch framework. All the experiments are conducted
on a desktop equipped with an NVIDIA RTX 3090 GPU.

4.1 Experimental Setup

Datasets. We evaluate our method on two public trajectories datasets: the
Stanford Drones Dataset (SDD) [32] and ETH-UCY [8, 33].

SDD is a well established benchmark for pedestrian trajectory prediction
in bird’s eye view. The dataset consists of 20 scenes containing several moving
agents and the coordinates of trajectory is recorded at 2.5Hz in pixel coordinate
system in pixels.

ETH-UCY contains of five sub-datasets: ETH, HOTEL, UNIV, ZARA1 and
ZARA2. All the pedestrian trajectory data in these datasets are captured by
fixed surveillance cameras at 2.5Hz and recorded in world-coordinates.
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Evaluation Metric. For the sake of fairness, we use the standard history-future
split, which segment the first 3.2 seconds (8 frames) of a trajectory as historical
trajectory to predict the next 4.8 seconds (12 frames) future trajectory. For the
ETH-UCY, we follow the leave-one-out strategy [14] with 4 scenes for training
and the remaining one for testing. Following prior works [8, 14, 22], we adopt the
two widely-used error metrics to evaluate the performance of different pedestrian
trajectory prediction models, including: 1) Average Displacement Error (ADE):
The average Euclidean distance between the ground-truth trajectory and the
predicted one; and 2) Final Displacement Error (FDE): The Euclidean distance
between the endpoints of the ground-truth trajectory and the predicted one. To
be consistent with previous works [9, 15, 23], we adopt the best-of-K (K = 20)
strategy to compute the final ADE and FDE.

Implementation Details. In our experiments, the embedding dimension dte
and dse in encoder are set to 256 and 32, respectively. The dimension of hidden
dimensions in the temporal motion extractor, synchronous bi-directional decoder
and error compensation network are 256. The length of the latent vector is 32.
Besides, the number of prior nets and posterior nets in encoder is 20. We employ
the Adam optimizer [34] to train model and use cosine annealing schedule as
in [35] to adjust the learning rate. Beside, we train the entire network with the
following hyper-parameter settings: initial learning rate of 10−3, batch size is
128, α1, α2 in (17) are 0.2, 0.4, the β1, β2, β3, β4, β5 in (21) are 3, 1, 0.6, 0.4,
0.1, and the number of epochs is 100.

4.2 Quantitative Evaluation

We compare our SBD with several generative baselines, including the GAN based
methods [15, 25, 36–38], GCN based methods [19, 21], TransFormer based meth-
ods [9, 10], CVAE based methods [11, 12, 26], and other generative methods [23,
29, 39–41].

Performance on standard trajectory prediction. Table 1 reports the re-
sults of our SBD and existing methods [15, 25, 26, 39–41, 29] on SDD. We observe
that our method significantly outperforms all the competitive approaches under
standard 20 samplings. Specifically, our method reduces the ADE from 8.59 to
7.78 compare to the previous state-of-the-art-20-samplings method, i.e., SIT [29],
achieving 9.4% relative improvement. As for FDE metric, SBD is better than
Y-Net with 20 samplings by 18.1%. Besides, compared with the method Y-Net
[41]+Test Time Sampling Trick (TTST) with 10000 sampling, our method still
achieves performance gains on the ADE metric. Notice that our method does
not use any scene context, while Y-Net models the additional image information
and thus suffers from huge computational costs.

In Table 2, we summarize the results of SBD and existing methods [15, 36,
19, 26, 10, 11, 37, 21, 38, 9, 12, 41, 23, 29] on ETH-UCY. We can still observe that
our method achieves the best or second best rank for each dataset. Besides, the
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Table 1. Comparison with different methods on the SDD (Lower is better). † indicates
that the results are reproduced by [42] with the official released code. The values
highlighted by red and blue represent the best and second best results, respectively.

Methods SGAN Goal-GAN PECNet LB-EBM PCCSNET Y-net† Y-Net+TTST SIT SBD
Samping 20 20 20 20 20 20 10000 20 20
ADE 27.23 12.2 9.96 8.87 8.62 8.97 7.85 8.59 7.78
FDE 41.44 22.1 15.88 15.61 16.16 14.61 11.85 15.27 11.97

Table 2. Comparison with baselines on the ETH-UCY (Lower is better). The values
highlighted by red and blue represent the best and second best results, respectively.

Method Sampling ETH HOTEL UNIV ZARA1 ZARA2 AVG
SGAN 20 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
STGAT 20 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83
Social-STGCNN 20 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
PECNet 20 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
STAR 20 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
Trajectron++ 20 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41
TPNMS 20 0.52/0.89 0.22/0.39 0.55/1.13 0.35/0.70 0.27/0.56 0.38/0.73
SGCN 20 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
STSF-Net 20 0.63/1.13 0.24/0.43 0.28/0.52 0.23/0.45 0.21/0.41 0.32/0.59
AgentFormer 20 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
BiTraP-NP 20 0.37/0.69 0.12/0.21 0.17/0.37 0.13/0.29 0.10/0.21 0.18/0.35
Y-Net+TTST 10000 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27
CAGN 20 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43
SIT 20 0.39/0.61 0.13/0.22 0.29/0.49 0.19/0.31 0.15/0.29 0.23/0.38
SBD 20 0.32/0.54 0.10/0.17 0.15/0.32 0.12/0.25 0.09/0.18 0.16/0.29

proposed method outperforms competitive methods in terms of the average ADE
and FDE under standard 20 samplings. Compared with the previous state-of-
the-art-20-samplings method, i.e., BiTraP-NP [12], our algorithm achieves 11.1%
and 17.1% relative improvements in terms of the average ADE and FDE.

Performance on long-term trajectory prediction. In order to further
demonstrate the effectiveness of our scheme in alleviating the problem of error
accumulation, we conduct additional experiments for the long-term trajectory
prediction on ETH-UCY. Following the setting in [29], we keep the observed
trajectory for 3.2 seconds (8 frames) and set the longer future trajectory to 6.4
seconds (16 frames), 8.0 seconds (20 frames) and 9.6 seconds (24 frames), respec-
tively. As shown in Table 3, our method outperforms all baselines on all long-term
prediction lengths by a big margin. For example, when the prediction horizon is
extended to 9.6 seconds, our SBD is better than the second best rank method
BiTraP-NP [12] by 26.9% in ADE, which is significant. The reason behind is that
our framework benefits from the synchronous bi-directional prediction via mu-
tual constraints from two opposite branches, endowing it capability to alleviate
error accumulation in long-term trajectory prediction.
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Table 3. Long-term prediction results on ETH-UCY in ADE/FDE. ‡ denotes that
the results are from [29]. † represents that the results are reproduced with the official
released code.

T=16 T=20 T=24
ADE/FDE ADE/FDE ADE/FDE

SGAN‡ 2.16/3.96 2.40/4.52 2.79/4.66
PECNet‡ 2.89/2.63 3.02/2.55 3.16/2.53
Social-STGCNN‡ 0.54/1.05 0.71/1.30 0.92/1.76
BiTraP-NP† 0.29/0.57 0.38/0.74 0.52/1.07
SIT 0.49/1.01 0.55/1.12 0.68/1.22
SBD 0.22/0.41 0.30/0.54 0.38/0.71

Table 4. Ablation study of each component on the SDD dataset in ADE/FDE.

SD viBD sBD ECN ADE FDE
group-1 X × × × 8.71 13.13
group-2 × X × × 8.77 12.94
group-3 × × X × 8.06 12.45
group-4 × × X X 7.78 11.97

4.3 Ablation Studies

In this subsection, we perform ablation experiments to explore the contribu-
tion of each component of our method. The results are detailed in Table 4. The
“SD” denotes that model uses the single directional generator (backward trajec-
tory generator) as the prediction module. The “viBD” indicates that using the
vanilla independent bi-directional trajectory generator. The “sBD” represents the
proposed synchronous bi-directional prediction based on a share motion charac-
teristic. The “ECN” denotes the error compensation network. According to the
results of group-1 and group-2 in Table 4, we observe that vanilla independent
bi-directional prediction cannot effectively alleviate the error accumulation and
improve pedestrian prediction. The results of group-1, group-2 and group-3 in
Table 4 show that the proposed mutually constrained simultaneous bi-directional
prediction by the synchronous bi-directional decoder could effectively alleviate
the limitation of error accumulation and improve pedestrian prediction. Besides,
the error compensation network can further reduce the positional deviation be-
tween the ground-truth and predicted trajectory as shown in group-3 and group-
4 in Table 4.

4.4 Qualitative Evaluation

We conclude this section by conducting the qualitative comparisons. Due to the
page limit, we only compare with the recent BiTraP-NP method [12], which also
adopts a (sequential) bi-directional prediction. As shown in Fig. 4, we visualize
the best-of-20 predicted trajectories of our SBD and BiTraP-NP in different real
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Fig. 4. Visualization of predicted trajectories on the ETH-UCY Dataset by our SBD
and BiTrap-NP [12]. The best one of the 20 generated trajectories are plotted.

traffic scenes on the ETH-UCY datasets. We observe that our method is able to
accurately predict the future trajectory in various traffic scenes. For example,
the visualization results of the first row in Fig. 4 show that BiTraP-NP performs
similar to SBD for short-term prediction yet a little deviates from the ground
truth paths over time, and our SBD still exhibits better performance in longer
prediction.

5 Conclusion

In this paper, we propose a synchronous bi-directional framework (SBD) with
error compensation for pedestrian trajectory prediction. Our method performs
the mutually constrained synchronous bi-directional prediction based on a shared
motion characteristic, which can greatly alleviate the problem of error accumu-
lation. Besides, we have introduced an error compensation network to reduce
the spatial deviation for certain contexts in the predicted trajectory, further
improving the prediction accuracy. Experimental results are provided to demon-
strate the superiority of our method on Stanford Drone Dataset and ETH-UCY.
Furthermore, we have also shown that our method with alleviating error ac-
cumulation performs significantly better than existing algorithms for long-term
pedestrian trajectory prediction.

Acknowledgements This work was supported in part by the Natural Science
Foundation of China under Grant 62001304, Grant 61871273, Grant 61901237
and Grant 62171244; in part by the Foundation for Science and Technology
Innovation of Shenzhen under Grant RCBS20210609103708014, the Guangdong
Basic and Applied Basic Research Foundation under Grant 2022A1515010645
and the Shenzhen College Stability Support Plan (Key Project).

2809



SBD for Pedestrian Trajectory Prediction 15

References

1. Liang, J., Jiang, L., Niebles, J.C., Hauptmann, A.G., Fei-Fei, L.: Peeking into the
future: Predicting future person activities and locations in videos. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5725–
5734 (2019)

2. Luo, Y., Cai, P., Bera, A., Hsu, D., Lee, W.S., Manocha, D.: Porca: Modeling and
planning for autonomous driving among many pedestrians. IEEE Robotics and
Automation Letters 3(4), 3418–3425 (2018)

3. Luber, M., Stork, J.A., Tipaldi, G.D., Arras, K.O.: People tracking with human
motion predictions from social forces. In: Proceedings of the IEEE International
Conference on Robotics and Automation. pp. 464–469 (2010)

4. Bastani, V., Marcenaro, L., Regazzoni, C.S.: Online nonparametric bayesian ac-
tivity mining and analysis from surveillance video. IEEE Transactions on Image
Processing 25(5), 2089–2102 (2016)

5. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical re-
view E 51(5), 4282 (1995)

6. Tay, M.K.C., Laugier, C.: Modelling smooth paths using gaussian processes. In:
Proceedings of the International Conference on Field and Service Robotics. pp.
381–390 (2008)

7. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on
Graphics (TOG) 25(3), 1160–1168 (2006)

8. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Mod-
eling social behavior for multi-target tracking. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. pp. 261–268 (2009)

9. Yuan, Y., Weng, X., Ou, Y., Kitani, K.M.: Agentformer: Agent-aware transformers
for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 9813–9823 (2021)

10. Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer net-
works for pedestrian trajectory prediction. In: Proceedings of the European Con-
ference on Computer Vision. pp. 507–523 (2020)

11. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In: Proceed-
ings of the European Conference on Computer Vision. pp. 683–700 (2020)

12. Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X.: Bitrap: Bi-
directional pedestrian trajectory prediction with multi-modal goal estimation.
IEEE Robotics and Automation Letters 6(2), 1463–1470 (2021)

13. Li, Y., Liang, R., Wei, W., Wang, W., Zhou, J., Li, X.: Temporal pyramid net-
work with spatial-temporal attention for pedestrian trajectory prediction. IEEE
Transactions on Network Science and Engineering (2021)

14. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social
lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 961–971 (2016)

15. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially
acceptable trajectories with generative adversarial networks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–
2264 (2018)

16. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for hu-
man dynamics. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 4346–4354 (2015)

2810



16 C. Xie et al.

17. Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N.: Sr-lstm: State refinement
for lstm towards pedestrian trajectory prediction. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 12085–12094 (2019)

18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

19. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-stgcnn: A social spatio-
temporal graph convolutional neural network for human trajectory prediction. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 14424–14432 (2020)

20. Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, H., Savarese,
S.: Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph at-
tention networks. In: Proceedings of the Advances in Neural Information Processing
Systems 32 (2019)

21. Shi, L., Wang, L., Long, C., Zhou, S., Zhou, M., Niu, Z., Hua, G.: Sgcn: Sparse
graph convolution network for pedestrian trajectory prediction. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8994–9003
(2021)

22. Su, Y., Du, J., Li, Y., Li, X., Liang, R., Hua, Z., Zhou, J.: Trajectory forecasting
based on prior-aware directed graph convolutional neural network. IEEE Transac-
tions on Intelligent Transportation Systems (2022)

23. Duan, J., Wang, L., Long, C., Zhou, S., Zheng, F., Shi, L., Hua, G.: Complementary
attention gated network for pedestrian trajectory prediction (2022)

24. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese,
S.: Sophie: An attentive gan for predicting paths compliant to social and physi-
cal constraints. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1349–1358 (2019)

25. Dendorfer, P., Osep, A., Leal-Taixé, L.: Goal-gan: Multimodal trajectory prediction
based on goal position estimation. In: Proceedings of the Asian Conference on
Computer Vision (2020)

26. Mangalam, K., Girase, H., Agarwal, S., Lee, K.H., Adeli, E., Malik, J., Gaidon,
A.: It is not the journey but the destination: Endpoint conditioned trajectory
prediction. In: Proceedings of the European Conference on Computer Vision. pp.
759–776 (2020)

27. Chen, G., Li, J., Zhou, N., Ren, L., Lu, J.: Personalized trajectory prediction via
distribution discrimination. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 15580–15589 (2021)

28. Wang, C., Wang, Y., Xu, M., Crandall, D.: Stepwise goal-driven networks for
trajectory prediction. IEEE Robotics and Automation Letters (2022)

29. Shi, L., Wang, L., Long, C., Zhou, S., Zheng, F., Zheng, N., Hua, G.: Social inter-
pretable tree for pedestrian trajectory prediction (2022)

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: Proceedings of the Advances in
Neural Information Processing Systems pp. 5998–6008 (2017)

31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

32. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: Hu-
man trajectory understanding in crowded scenes. In: Proceedings of the European
Conference on Computer Vision. pp. 549–565 (2016)

33. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer
graphics forum. vol. 26, pp. 655–664 (2007)

2811



SBD for Pedestrian Trajectory Prediction 17

34. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

35. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

36. Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: Stgat: Modeling spatial-temporal
interactions for human trajectory prediction. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 6272–6281 (2019)

37. Liang, R., Li, Y., Li, X., Tang, Y., Zhou, J., Zou, W.: Temporal pyramid network
for pedestrian trajectory prediction with multi-supervision. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 35, pp. 2029–2037 (2021)

38. Wang, Y., Chen, S.: Multi-agent trajectory prediction with spatio-temporal se-
quence fusion. IEEE Transactions on Multimedia (2021)

39. Pang, B., Zhao, T., Xie, X., Wu, Y.N.: Trajectory prediction with latent belief
energy-based model. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 11814–11824 (2021)

40. Sun, J., Li, Y., Fang, H.S., Lu, C.: Three steps to multimodal trajectory predic-
tion: Modality clustering, classification and synthesis. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 13250–13259 (2021)

41. Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to
long term human trajectory forecasting. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 15233–15242 (2021)

42. Gu, T., Chen, G., Li, J., Lin, C., Rao, Y., Zhou, J., Lu, J.: Stochastic trajec-
tory prediction via motion indeterminacy diffusion. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 17113–17122 (2022)

2812


