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Abstract. Several re-sampling and re-weighting approaches have been
proposed in recent literature to address long-tailed object detection.
However, state-of-the-art approaches still struggle on the rare class. From
data-centric view, this is due to few training data of the rare class and
data imbalance. Some data augmentations which could generate more
training data perform well in general object detection, while they are
hardly leveraged in long-tailed object detection. We reveal that the real
culprit lies in the fact that data imbalance has not been alleviated or
even intensified. In this paper, we propose REDet: a rare data centric
detection framework which could simultaneously generate training data
of the rare class and deal with data imbalance. Our REDet contains
data operations at two levels. At the instance-level, Copy-Move data
augmentation could independently rebalance the number of instances of
different classes according to their rarity. Specifically, we copy instances
of the rare class in an image and then move them to other locations in
the same image. At the anchor-level, to generate more supervision for the
rare class within a reasonable range, we propose Long-Tailed Training
Sample Selection (LTTSS) to dynamically determine the corresponding
positive samples for each instance based on the rarity of the class. Com-
prehensive experiments performed on the challenging LVIS v1 dataset
demonstrate the effectiveness of our proposed approach. We achieve an
overall 30.2% AP and obtain significant performance improvements on
the rare class.

1 Introduction

In real-world scenarios, training data generally exhibit a long-tailed class distri-
bution, where a small number of classes have a large amount of data, but others
have only a small amount of data [1]. Long-tailed object detection is receiving
increasing attention because of the need for realistic scenarios.

Some existing approaches deal with this task by data re-sampling [2,3,4,5] or
loss re-weighting [6,7,8,9]. Specifically, re-sampling approaches increase rare class
instances by performing image-level resampling in the dataset, which is effective
when a certain amount of image-level training data contains rare class instances.
The re-weighting approaches increase the contribution of the rare class to the
gradient by modifying the loss function, which in turn increases the focus on
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Fig. 1: (a) The number of instances of baseline and various data augmentations
on LVIS v1 [2] train split. Classes’ indices are sorted by instance counts of base-
line. (b) The degree of imbalance between baseline and various data augmen-
tations on LVIS v1 [2] train split. (c) Visualization of the original image and
various data augmentations. For display, the image augmented by Copy-Paste is
scaled to the same size as the other images.

the rare class. In addition, many remarkable efforts have focused on incremental
learning [10], data augmentation [11], and decoupled learning [4,12,13].

However, state-of-the-art approaches still struggle on the rare class. In fact,
the poor performance of current SOTA long-tailed detection methods is caused
by the dataset quality itself. An intuitive example is that if we convert a dataset
from the long-tailed dataset into a balanced dataset, there will be no such prob-
lem as long-tailed object detection. Thus, the benefits of improving the model
or the loss function are far less obvious than improving the dataset directly. Re-
cently, Data-Centric AI [14] has been a scorching research topic. The main idea
is usually to do a series of operations on the data so that the gradient is updated
in a more optimal direction when updating the model parameters. If we rethink
long-tailed object detection from data-centric view, we could find that there are
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two main difficulties [1]: (1). lack of the rare class instances leads to poor per-
formance; (2). drastic data imbalance makes the performance of the rare class
affected by the frequent class. Fig. 1(a) shows the number of instances of each
class in LVIS [2] dataset. It can be seen that the task is challenging due to the
above two main difficulties. Some data augmentations try to deal with lacking
of the rare class, while these methods still cannot resolve the data imbalance.

Fig. 1(a) shows the impact of several common data augmentations in object
detection on the number of instances. It can be seen that mixup [15], InstaBoost
[16], and Copy-Paste [11] are relatively crude data augmentations for long-tailed
object detection. They use the same rules for all classes and do not consider the
rarity of the class. They cannot solve the label co-occurrence problem. The fre-
quent class is augmented at the same time. Here, We use the standard deviation
of the number of instances in all classes to represent the degree of imbalance.
Fig. 1(b) illustrates the degree of imbalance with and without various data aug-
mentations. It can be seen that degree of imbalance has not been alleviated or
even intensified due to blindly increasing the number of instances in all classes.

Therefore, we can generate more rare class data by modifying the data in a
more refined way. So we propose REDet: a rare data centric detection framework
that could bridge the gap of handling long-tailed distribution data at the instance
and anchor levels. Specifically, at the instance-level, we propose Copy-Move data
augmentation, which introduces information about the long-tailed distribution
into the data augmentation. Instances are copied and moved to other locations
in the same image according to the rarity of each class. Without destroying the
semantic information of the image, we increase the diversity of the rare class in
the dataset to alleviate the lack of rare class instances and data imbalance. At
the anchor-level, we propose Long-Tailed Training Sample Selection (LTTSS)
to dynamically determine the corresponding positive samples for each instance
based on the rarity of its class. Our approach has the lowest degree of imbalance
compared to other data augmentations. It yields a new state-of-the-art and can
be well applied to existing dense long-tailed object detection pipelines.

To sum up, our key contributions can be summarized as follows:

– We think about long-tailed object detection from data-centric view and pro-
pose degree of imbalance to evaluate several existing data augmentations.

– We propose REDet: a rare data centric detection framework in which Copy-
Move and LTTSS work collaboratively to promote the instances balance and
positive samples balance while increasing training data.

– Extensive experiments on the challenging LVIS dataset demonstrate the ef-
fectiveness of the proposed approach. Our approach achieves state-of-the-art
results on LVIS by introducing long-tailed information in data augmentation
and training sample selection.

2 Related Work

General Object Detection. Object detection approaches have achieved im-
mense success in recent years, benefiting from the powerful classification abil-
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ity of convolutional neural networks (CNN) [17,18,19]. Advanced object detec-
tors can be categorized into two-stage and one-stage approaches. Two-stage ap-
proaches [20,21,22] first generate coarse proposals through region proposal net-
work (RPN). Then, these proposals are further refined for accurate classification
and bounding box regression. One-stage approaches [23,24,25,26] make predic-
tions directly on the dense anchors or points without generating coarse proposals.
In practice, one-stage detectors are more widely used in real-world scenarios. But
the performance of the general object detectors degrades dramatically when it
comes to the long-tailed distribution of data [6].

Long-Tailed Object Detection. Long-tailed object detection is more com-
plex than general object detection due to the extreme data imbalance. It is
receiving increasing attention [1]. One classic solution to this problem is loss
re-weighting. The basic idea of the re-weighting method is to assign different
weights to the training samples based on the rarity of the class. Tan et al. [6]
proposed the equalization loss (EQL) that ignored the negative gradients from
frequent samples. Seesaw loss [7] proposed compensation factor to avoid false
positives of the rare class. EQLv2 [8] rethought the essential role of samples in
the classification branch and adopted a gradient-guided mechanism to reweight
the loss of each class. Li et al. [9] proposed the equalized focal loss (EFL) that
rebalanced the loss contribution of positive and negative samples in one-stage
detectors. Another useful solution is the re-sampling strategy. Repeat factor
sampling (RFS) [2] over-sampled images containing rare classes to balance the
data distribution at the image-level. At the instance-level, Forest R-CNN [3]
set a higher non-maximum suppression (NMS) threshold for the rare class to
get more proposals. Other works [4,5] used bi-level class balanced sampler or
memory-augmented sampler to implement data resampling. However, both re-
weighting and re-sampling approaches still struggle on the rare class due to the
lack of consideration of the long-tailed distribution in dataset.

Data Augmentations. Data augmentations such as CutMix [27], InstaBoost
[16], and Mosaic [28] can significantly boost object detection performance. How-
ever, as a simple technique, data augmentation is rarely discussed in long-tailed
object detection. MiSLAS [29] proposed to use data mixup to enhance repre-
sentation learning in long-tailed image classification. Ghiasi et al. [11] demon-
strated that the simple mechanism of pasting objects randomly was good enough
for the long-tailed instance segmentation task. Zhang et al. [30] addressed the
data scarcity issue by augmenting the feature space, especially for the rare class.
Simply using existing augmentation techniques for improving long-tailed object
detection performance is unfavorable, which will lead to the problem of label co-
occurrence. Specifically, frequent class labels frequently appear with rare class
labels during data augmentation. Thus, the frequent class would be augmented
more, which may bias the degree of imbalance. Instead, we dynamically increase
the number of instances and positive samples according to the rarity of the class,
which can solve the above problem well and have a higher data validity.

336



Boosting Dense Long-Tailed Object Detection from Data-Centric View 5

3 Method

The rare data centric detection framework we proposed is based on one-stage
object detection network such as RetinaNet [23]. Fig. 2 is an overview of the pro-
posed REDet, which shows that our Copy-Move data augmentation is inserted
before network, and LTTSS is used to select positive samples after network. For
instances of the rare class, the copy times and the long-tailed scaling factor are
calculated for Copy-Move and LTTSS, respectively.
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Fig. 2: Architecture overview of REDet. Our proposed method contains two main
components: Copy-Move data augmentation at the instance-level and LTTSS at
the anchor-level. In LTTSS, the red anchors represent original positive samples,
and the green anchors represent the newly obtained positive samples after intro-
ducing the long-tailed information.

3.1 Instance-Level: Copy-Move

The existing instance-level data augmentation approach [11] selected a random
subset of instances from one image and pasted them onto another image. How-
ever, images generated in this way could look very different from authentic im-
ages in terms of co-occurrences of objects or scales of objects. For example, burg-
ers, root beers, and buses could appear on the table simultaneously, and their
scales would be vastly different from our normal perception. We believe there
is a strong semantic correlation between foreground instances and backgrounds
in the same image. Therefore, it is reasonable that an instance appears multiple
times in the same image. For example, root beers are more inclined to appear
in the diet scene, and the increase of root beer instances does not destroy the
semantic information in the original image. Accordingly, at the instance-level,
we propose Copy-Move data augmentation to copy instances and then move
them to other locations in the same image. In addition, we dynamically calcu-
late copy times for each instance according to the rarity of the class to obtain
better detection results for the rare class.

For each ground-truth instance g, we can get its class cg. In general, a long-
tailed object detection dataset, such as LVIS [2], will provide the number of
images in which the class is annotated. This can implicitly reflect the rarity of
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each class. Thus, we can use the approach in RFS [2] to define the rarity of the
class rcg :

rcg = max(1,

√
t

fcg
) , (1)

where fcg is the fraction of images in which the class is annotated, t is a hyper-
parameter. Instances of the rare class will get a larger rcg . Then, the copy times
tg of the ground-truth instance g can be calculated as:

tg =

{
ρ rcg >

= rt
0 rcg < rt

, (2)

where rt is the threshold for determining whether the class is rare or not and ρ
is the copy times of the rare class. we set rt = 3 in LVIS. Thus, instances of the
rare class will be copied more times.

For each image, we use Eq. (2) to calculate the copy times of each instance. If
an instance belongs to the rare class and needs to be copied, we perform Copy-
Move data augmentation cyclically. Specifically, a scaling factor is randomly
selected from [0.8, 1.2] to perform scale jittering on the mask of the instance.
Scale jittering randomly is essential to enhance the diversity of the instance.
Then select a point from the image randomly as the upper left corner of the
placement location, not restricting the scaled instance boundary to exceed the
image boundary. Finally, the mask of the original instance is copied and moved
to the target location. When all instances have been copied, we first deal with the
occlusion between the copied instances. Our approach is that the instance copied
first will be occluded by the instance copied later if there is overlap between the
two instances. Therefore, we should not set too large copy times. Otherwise,
excessive occlusion will destroy the semantic information of the image. Then,
we handle the occlusion of the original instances by the copied instance. If the
original instance is occluded and reduced by more than 10 pixels in width or
height, we filter out the original instance. By Copy-Move data augmentation,
the number of instances of the frequent class is maintained while the number of
instances of the rare class is increased within a reasonable range, which facilitates
long-tailed object detection.

While our main experimental results use the copy times tg definition above,
its precise rule is not crucial. In Appendix 1, we consider other instantiations of
the copy times and demonstrate that these can be equally effective.

The previous data augmentations, such as mixup [15] and Copy-Paste [11],
did not consider the rarity of the class and directly mixed instances from two
images. However, instances of the rare class and instances of the frequent class
often appear together, i.e., label co-occurrence. Blindly increasing instances of all
classes do not alleviate the class imbalance, as shown in Fig. 1(b). Moreover, it is
not efficient to blindly increase the number of instances of all classes. As we will
introduce in Section 4.4, the data validity of the previous data augmentations is
low. In contrast, our proposed Copy-Move approach introduces the long-tailed
information in the dataset into the data augmentation and only increases the
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number of instances of the rare class. This can alleviate the class imbalance and
increase the diversity of rare class instances while having higher data validity.
In addition, our approach effectively enhances rare class instances and can be
easily embedded in existing long-tailed object detection processing.

3.2 Anchor-Level: Long-Tailed Training Sample Selection

When training an object detector, all ground-truth instances must select their
corresponding positive samples. These positive samples are further used for clas-
sification and box regression. Thus, positive samples are the ultimate supervision
to guide neural network learning. After obtaining more instances of the rare class
at the instance-level using the above Copy-Move data augmentation, we propose
a Long-Tailed Training Sample Selection (LTTSS) to generate more suitable pos-
itive samples for the instances of the rare class. We introduce information about
the long-tailed distribution into the training sample selection. Compared to gen-
erating positive samples using fixed rules for all classes, our LTTSS approach
automatically divides positive samples according to the rarity of the class.

We use the rarity of the class rcg defined in Eq. (1). Then we can define the
mapping between long-tailed scaling factor scg and the rarity of the class rcg as:

scg = 1 +
ε

1 + e−γ(rcg−µ)
, (3)

where ε, γ and µ are hyperparameters and set ε = 1. In this way, the rare class
will receive a larger scg but no more than 2.

In training sample selection, we first obtain candidate positive samples for
each ground-truth instance g. Specifically, for each pyramid level, we select the
kcg anchors closest to the center of ground-truth instance box bg according to the
Euclidean distance. We define kcg =

⌊
k × scg

⌋
where k is a hyperparameter with

a default value of 9. Therefore, the rare class will get more candidate positive
samples, at most 2k. Assuming that there are nl pyramid levels, a total of nl×kcg
candidate positive samples will be obtained for each ground-truth instance and
we define it as Cg. Then we calculate intersection of union (IoU) between ground-
truth instance box bg and candidate positive samples Cg as Ig. Mean mg and
standard deviation vg of Ig are then calculated in order to filter. We define the
the long-tailed filtering threshold ft as:

ft =
mg + vg

scg
. (4)

Obviously, the threshold of the rare class is lowered as a way to retain more posi-
tive samples. Finally, we select positive candidate samples with IoU greater than
or equal to the long-tailed filtering threshold ft as the final positive samples. In
particular, it is necessary to restrict the center of final positive samples inside
the ground-truth instance box. The overall flow of LTTSS is shown in Algorithm
1. The bolded pseudo code indicates that information about the long-tailed dis-
tribution is used.
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Compared with ATSS [31], our algorithm also automatically divides positive
samples according to the statistical characteristics of instances. However, instead
of using the same rule for all classes, we generate more positive samples for the
rare class according to the rarity of the class. Particularly, the increase of positive
samples is not blind. Due to the restriction that the center of the positive samples
must be located in the center of the ground-truth instance box, we select as many
training positive samples as possible for the rare class within a reasonable range.

Algorithm 1: Long-Tailed Training Sample Selection

Input:
bg: a ground-truth instance box;
nl: the number of pyramid levels;
Ai: the set of anchors in pyramid level i;
A: the set of anchors in all pyramid levels;
rcg : the rarity of the class cg;
k: a hyperparameter with a default value of 9

Output:
Pg: the set of positive samples;
Ng: the set of negative samples;

compute the long-tailed scaling factor scg : scg = 1 + 1

1+e
−γ(rcg−µ) ;

compute the number of candidate positive samples kcg selected
in each pyramid level: kcg =

⌊
k × scg

⌋
;

for i in [1, nl] do
Cg = Cg∪ kcg anchors that closest to the center of bg according to the
Euclidean distance in Ai

end
compute IoU Ig between bg and Cg; compute mean mg and standard
deviation vg of Ig;
compute the long-tailed filtering threshold ft: ft =

mg+vg
scg

;

for each candidate c in Cg do
if center of c in bg and IoU(c, bg) > ft then

Pg = Pg ∪ c
end

end
Ng = A−Pg;
return Pg, Ng

4 Experiments

4.1 Experimental Settings

Dataset. We perform experiments on the challenging LVIS v1 dataset [2]. LVIS
is a large vocabulary benchmark for long-tailed object detection, which contains
1203 classes. It provides precise bounding box for various classes with long-tailed
distribution. We train our models on the train set, which contains about 100k
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images. According to the number of images that each class appears in the train
split, the classes are divided into three groups: rare (1-10 images), common (11-
100 images) and frequent (>100 images). We report results on the val set of 20k
images.

Evaluation Metric. We use the widely-used metric AP across IoU threshold
from 0.5 to 0.95 to evaluate object detection results. In addition, we also report
APr, APc, APf for rare, common and frequent classes to well characterize the
long-tailed class performance. Unlike the COCO evaluation process, detection
results of classes not listed in the image level labels will not be evaluated.

Implementation Details. We use the same training framework as EFL [9]
as our baseline settings. Specifically, we adopt the ResNet-50 [18] initialized by
ImageNet [32] pre-trained models as the backbone and feature pyramid network
(FPN) [19] as the neck. Besides, we also perform experiments with ResNet-
101, a larger backbone to validate the effectiveness of our method. Following
the convention, we adopt multi-scale with horizontally flip augmentation during
training. Specifically, we randomly resize the shorter edge of the image within
{640, 672, 704, 736, 768, 800} pixels and keep the longer edge smaller than 1333
pixels without changing the aspect ratio. During the inference phase, we resize
the shorter edge of the input image to 800 pixels and keep the longer edge smaller
than 1333 pixels without changing the aspect ratio. Our model is optimized by
stochastic gradient descent (SGD) with momentum 0.9 and weight decay 0.0001
for 24 epochs. As mentioned in [23], in the one-stage detector, the prior bias of
the last layer in the classification branch should be initialized to −log 1−π

π with
π = 0.001. To avoid abnormal gradients and stabilize the training process, we
utilize the gradient clipping with a maximum normalized value of 35. Unlike the
EFL settings, we use a total batch size of 8 on 8 GPUs (1 image per GPU) and set
the initial learning rate to 0.01 with 1 epoch’ warm up. The learning rate decays
to 0.001, 0.0001 at the end of epoch 16 and 22, respectively. In addition, we keep
the top 300 bounding boxes as prediction results and reduce the threshold of
prediction score from 0.05 to 0.0 following [2]. We train all models with RFS [2].

For our proposed Copy-Move, the hyperparameter t used to calculate the
rarity of the class is set to 0.001, and the threshold rt used to determine whether
Copy-Move should be used is set to 3. The copy times ρ of the rare class is set to 4,
and more details about the impact of this hyperparameter are showcased in Sect.
4.3. In particular, we perform Copy-Move data augmentation with probability
0.5 and close it for the last 3 epochs, when the learning rate is decayed for the
last time.

For our proposed LTTSS, we tile two anchors per location on the image with
the anchor scale {6, 8} with k = 18 to cover more potential candidates. In Eq.
(3), hyperparameter γ and µ can adjust the slope and central region of the curve.
They work together to control the influence range of long-tailed scaling factor
scg . We set γ = 5.0 and µ = 2.5. More details about the impact of γ and µ are
showcased in Sect. 4.3.
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4.2 Benchmark Results

Table 1 demonstrates the effectiveness of our proposed REDet. We compare our
approach with other works that report state-of-the-art performance and other
augmentations that can significantly boost object detection performance. With
ResNet-50 backbone, our proposed REDet achieves an overall 28.3% AP, which
improves the baseline by 0.8% AP, and even achieves 1.4 points improvement
on the rare class. It can be seen that Copy-Move and LTTSS work collabora-
tively to realize the instances equilibrium and positive samples equilibrium in
long-tailed object detection and dramatically improve the performance of the
rare class without sacrificing the frequent class. Compared with other state-of-
the-art methods like EQL [6], EQLv2 [8], BAGS [13] and Seesaw Loss [7], our
proposed method outperforms them by 3.2% AP, 2.8% AP, 2.3% AP and 1.9%
AP, respectively. In addition, we also add data augmentations such as mixup
[15], InstaBoost [16], Copy-Paste [11] to the baseline. In particular, Copy-Paste
was trained in [11] in a decoupled strategy. Specifically, in the first stage, they
trained the object detector for 180k steps using a 256 batch size. Then they
fine-tuned the model with 36 epochs in the second stage. For a fair comparison,
we train Copy-Paste with large scale jittering on the image size of 1024×1024 in
an end-to-end strategy for 24 epochs. More training details can be found in Ap-
pendix 2. Compared to these methods, our proposed method outperforms them
by 3.0% AP, 1.4% AP and 1.1% AP, respectively. This is mainly because the
existing data augmentations do not consider the information of the long-tailed
distribution in the dataset. Mixup and Copy-Paste simply mix or paste the in-
stances from two images together. They do not consider the label co-occurrence
problem, which exacerbates the imbalance and ultimately yields lower detection
results. InstaBoost jitter the location of instances in all classes by calculating
the location probability map, which hardly changes the number of instances in
each class. It shows that blindly increasing the number of instances or jitter-
ing instances in long-tailed object detection is inefficient, requiring significant
computational resources while failing to improve the final performance. Our
proposed REDet introduces class rarity in data augmentation and positive sam-
ple sampling, which alleviates the imbalance in the dataset and leads to better
performance in AP and APr.

We conduct experiments with larger ResNet-101 backbone. Our approach can
still obtain consistent improvements in overall AP and APr by 1.0% and 1.4%,
respectively. Compared to other data augmentations, our proposed approach still
performs better in long-tailed object detection. It indicates that our REDet can
alleviate the imbalance across different backbones. Our method achieves 30.2%
AP and establishes a new state-of-the-art.

4.3 Ablation Study

We conduct a series of comprehensive ablation studies to verify the effectiveness
of the proposed REDet. For all experiments, we use ResNet-50 as backbone for
24 epochs.
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Table 1: Comparison with other state-of-the-art approaches and other augmen-
tations on LVIS v1 val set. † indicates that the reported result is directly copied
from referenced paper. + indicates that the augmentation is added to the base-
line.

backbone method strategy AP APr APc APf

ResNet-50

other methods

EQL† [6] end-to-end 25.1 15.7 24.4 30.1

EQLv2† [8] end-to-end 25.5 16.4 23.9 31.2

BAGS† [13] decoupled 26.0 17.2 24.9 31.1

Seesaw Loss† [7] end-to-end 26.4 17.5 25.3 31.5

EFL (Baseline)† [9] end-to-end 27.5 20.2 26.1 32.4

augmentations
+ mixup [15] end-to-end 25.3 18.5 23.3 30.5
+ InstaBoost [16] end-to-end 26.9 19.7 25.6 31.5
+ Copy-Paste [11] end-to-end 27.2 21.3 25.8 31.5

REDet (Ours) end-to-end 28.3 21.6 26.8 32.9

ResNet-101

other methods

EQLv2† [8] end-to-end 26.9 18.2 25.4 32.4

BAGS† [13] decoupled 27.6 18.7 26.5 32.6

Seesaw Loss† [7] end-to-end 27.8 18.7 27.0 32.8

EFL (Baseline)† [9] end-to-end 29.2 23.5 27.4 33.8

augmentations
+ mixup [15] end-to-end 28.8 21.4 27.1 33.8
+ InstaBoost [16] end-to-end 28.6 22.0 27.2 33.2
+ Copy-Paste [11] end-to-end 29.7 24.1 27.8 34.4

REDet (Ours) end-to-end 30.2 24.9 28.5 34.3

Influence of Components in Our Approach. There are two components
in our REDet, Copy-Move and LTTSS. As shown in Table 2, both Copy-Move
and LTTSS play significant roles in our approach. Copy-Move can achieve an
improvement from 27.5% AP to 28.1% AP, and achieve 0.6 points improvement
on the rare class without degrading the performance of the frequent class. Our
approach calculates the copy times of an instance based on the rarity of the
class, which alleviates the problem of the lack of rare class instances and makes
the dataset more balanced. LTTSS generates more supervision for the rare class
within a reasonable range at positive sample sampling and achieves an improve-
ment from 27.5% AP to 27.8% AP. Combining the two components, our REDet
takes the performance of the baseline from 27.5% to 28.3%. In particular, we can
achieve a 1.4% improvement in the rare class. This is due to the fact that the
instances and positive samples of the rare class grow within a reasonable range
at the same time.
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Table 2: Ablation study of each component in our approach. Copy-Move and
LTTSS indicate Copy-Move augmentation, and long-tailed training sample se-
lection, respectively.

Copy-Move LTTSS AP APr APc APf

27.5 20.2 26.1 32.4
✓ 28.1 20.8 26.7 32.8

✓ 27.8 20.4 26.3 32.8
✓ ✓ 28.3 21.6 26.8 32.9

Influence of Number of Instances and Positive Samples. It can be seen
that our proposed approaches, Copy-Move and LTTSS, increase the number of
instances and positive samples of the rare class, respectively, according to the
rarity of the class. In particular, the beneficial performance is brought by our
specially designed rules that exploit the long-tailed information in the dataset
rather than by brutally increasing the number of instances and positive samples.
To prove this, we randomly and uniformly increase the number of instances and
positive samples for all classes until they are close to the number of Copy-Move
and LTTSS, respectively. Table 3 shows the experimental results. Compared to
baseline, rand Copy-Move copies 3 instances for each class. This approach can
not alleviate the degree of imbalance and can hardly have an impact on AP.
The performance of the various classes was virtually unchanged. On the other
hand, we reduce the threshold for all classes in positive sample sampling instead
of calculating based on the rarity of the class. It can be seen that compared to
baseline, the random LTTSS even reduces 0.1% AP and 1.0% APr due to blindly
lowering the threshold for all classes.

Table 3: Ablation study of the number of instances and positive samples. Rand
Copy-Move and rand LTTSS indicate randomly and uniformly increasing the
number of instances and positive samples for all classes, respectively.

method number AP APr APc APf

instances
Baseline 429.8k 27.5 20.2 26.1 32.4
rand Copy-Move 432.9k 27.5 20.2 25.9 32.5
Copy-Move 433.3k 28.1 20.8 26.7 32.8

positive samples
Baseline 24.15M 27.5 20.2 26.1 32.4
rand LTTSS 24.38M 27.4 19.2 26.0 32.6
LTTSS 24.38M 27.8 20.4 26.3 32.8
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Influence of the Hyperparameter. We study the hyperparameters, i.e.,
ρ, γ, µ, adopted in different components of our REDet. In Table 4(a), we ex-
plore ρ in Copy-Move. ρ controls the times that the rare class instance is copied.
When ρ is too small, the number of rare instances is still insufficient to alleviate
the imbalance of the dataset. When ρ is too large, a more serious occlusion occurs
between the copied and original instances during the movement. This corrupts
the semantic information in the image and makes object detection more difficult.
We find that ρ = 4 achieves the best performance. In Table 4(b), we explore γ, µ
in LTTSS. γ and µ control the slope and central region of the curve and further
control the influence range of the long-tailed scaling factor scg as shown in Fig.
3. Results show that γ = 5.0, µ = 2.5 achieves the best performance.

Table 4: Ablation study of the hyperparameter ρ, γ and µ, ρ = 4, γ = 5.0, µ = 2.5
is adopted as the default setting in other experiments. (a) hyperparameter ρ. (b)
hyperparameters γ and µ.

(a)

ρ AP APr APc APf

1 27.7 20.0 26.2 32.7
2 27.9 20.1 26.5 32.8
3 27.9 20.3 26.4 32.9
4 28.1 20.8 26.7 32.8
5 27.7 19.1 26.5 32.8
6 27.5 18.3 26.4 32.8

(b)

γ µ AP APr APc APf

5.0 2.0 27.7 20.2 26.1 32.8
5.0 2.5 27.8 20.4 26.3 32.8
5.0 3.0 27.8 20.0 26.3 32.8
3.0 2.5 27.6 19.9 26.1 32.7
10.0 2.5 27.5 19.4 26.1 32.7
15.0 2.5 27.3 18.6 25.7 32.8

(a) (b)

Fig. 3: Comparison of the long-tailed scaling factor scg with different hyperpa-
rameters. The black vertical line represents the demarcation line between the
rare and other classes. (a) Different γ with µ = 2.5. (b) Different µ with γ = 5.0.

4.4 Data Validity Analysis

Performing data augmentation uniformly for all classes is inefficient. We propose
a metric called data validity to measure this. We quantitatively demonstrated
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the data validity of several data augmentations and our proposed Copy-Move.
In detail, We define data validity vd as vd = △AP

△ni
, where △ni denotes increase in

the number of instances and △AP denotes increase in AP. Specifically, we count
the number of all instances augmented during 1 epoch while recording the final
performance gain for each method. Table 5 shows the detailed results. Mixup
and Copy-Paste blindly increase the number of instances by about 57%, 33%,
respectively. However, increasing the number of instances of all classes does not
alleviate the data imbalance and introduces severe occlusion. Their data validity
is only -8.9e-6 and -2.1e-6, respectively. InstaBoost jitters instance’s position
through the probability map, which may lead to missing instances. Despite the
positive data validity 6.5e-5, it does not lead to performance gains. Our approach
increases the instances of the rare class according to the rarity and maintains the
frequent class instances unchanged, which ultimately yields greater data validity
1.7e-4.

Table 5: Data validity vd of several data augmentations and our proposed Copy-
Move. △ indicates the increase compared to baseline.

method ni △ni AP △AP vd

Baseline [9] 429.8k 0.0k 27.5 0
mixup [15] 676.8k 247.0k 25.3 -2.2 -8.9e-6
InstaBoost [16] 420.6k -9.2k 26.9 -0.6 6.5e-5
Copy-Paste [11] 573.4k 143.6k 27.2 -0.3 -2.1e-6
Copy-Move (Ours) 433.3k 3.5k 28.1 +0.6 1.7e-4

5 Conclusion

In this paper, we boost dense long-tailed object detection from a new data-centric
view. A rare data centric detection framework REDet is proposed to alleviate
data imbalance while increasing training data. Novel Copy-Move data augmen-
tation and Long-Tailed Training Sample Selection (LTTSS) work together to
dynamically increase the number of instances and positive samples according
to the rarity. Our proposed approach is the first to bridge the gap of handling
long-tailed distribution data at the instance-level and anchor-level. It brings sig-
nificant improvements with notably boosting on the rare class. Combining the
two components, our REDet beats existing state-of-the-art approaches on the
challenging LVIS v1 benchmark, which shows the superiority of our method. We
hope that our REDet could be a standard procedure when training one-stage
long-tailed object detection models.
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