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Abstract. Diverse image outpainting aims to restore large missing re-
gions surrounding a known region while generating multiple plausible re-
sults. Although existing outpainting methods have demonstrated promis-
ing quality of image reconstruction, they are ineffective for providing
both diverse and realistic content. This paper proposes a Decoupled
High-frequency semantic Guidance-based GAN (DHG-GAN) for diverse
image outpainting with the following contributions. 1) We propose a two-
stage method, in which the first stage generates high-frequency semantic
images for guidance of structural and textural information in the out-
painting region and the second stage is a semantic completion network
for completing the image outpainting based on this semantic guidance.
2) We design spatially varying stylemaps to enable targeted editing of
high-frequency semantics in the outpainting region to generate diverse
and realistic results. We evaluate the photorealism and quality of the di-
verse results generated by our model on CelebA-HQ, Place2 and Oxford
Flower102 datasets. The experimental results demonstrate large improve-
ment over state-of-the-art approaches.

Keywords: Diverse image outpainting · GAN · Image reconstruction.

1 Introduction

Image outpainting (as shown in Fig. 1) aims to reconstruct large missing regions
and synthesise visually realistic and semantically convincing content from a lim-
ited input content [37, 22, 8, 33]. This is a challenging task because it utilises less
neighbouring reference information to extrapolate unseen areas and the regions
that are outpainted should look aesthetically genuine to the human eye. Image
outpainting has gained considerable interest in recent years and has broadly
novel applications, including image and video-based rendering [21], image recon-
struction [37] and image modification [23].

Early outpainting methods [30, 35, 2, 46] are usually patch-based, matching
and stitching known pixel blocks or semantic vectors in the input to outpaint
images. Afterwards, using the image reconstruction methods to infer semantics is
? Corresponding authors.
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2 Y. Xu et al.

Fig. 1. Diverse image outpainting results with cropped images as inputs. (a) Original
image and input image with an outpainting mask. (b) Generated high-frequency se-
mantic image (top) and final outpainting result (down).

proven effective for image outpainting. Wang et al. [37] proposed a progressive se-
mantic inference method to expand complex structures. Lin et al. [22] presented
a coarse-to-fine network that utilises edge maps to guide the generation of struc-
tures and textures in the outpainting region. [42] and [36] achieved a large-scale
expansion of landscape images and ensured semantic coherence through a long
short-term memory (LSTM) [10] encoder. However, current outpainting methods
are only focused on enhancing the reconstruction quality of outpainting regions.
Methods for diverse outpainting need to be able to infer the missing area from
a small area of known pixels as well as provide diverse outputs with plausible
visual and semantic information.

Currently, StyleGAN [15] has made significant progress in generating diverse
images. The inverse mapping method also enables StyleGAN-based models to
modify the semantics of real images. [16] and [1] demonstrate that StyleGAN can
modify local semantic information based on spatially varying stylemaps. In ad-
dition, a series of variational auto-encoder (VAE) [19] based methods have been
proposed to generate diverse reconstruction results. Zheng et al. [48] combines
two VAE pipelines to trade-off output diversity and reconstruction quality based
on probabilistic principles. However, this also leads to a gradual deterioration
in the reconstruction quality when the similarity between the reconstruction re-
sults and the ground truth decreases. Peng et al. [27] proposed a model based on
VQ-VAE [28], which generates a variety of structural guidance via a conditional
autoregressive network PixelCNN [34]. Nevertheless, due to the randomness of
the generated results of PixelCNN, it is difficult to control the structural infor-
mation in the output. To introduce explicit control in the reconstruction region,
an intuitive approach is to utilise artificial sketches to modify the texture and
structure details [36, 23].

In this paper, we focus on using decoupled high-frequency information to guide
the diverse generation of outpainted images. There are two main challenges in
this task. First, previous studies have utilised sketches as guidance for generating
diverse structures, however, providing modification guidance for complex struc-
tural and texture information becomes challenging. Furthermore, it is difficult
to ensure the quality, diversity and controllability of the results for outpainting.
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To solve these issues, we propose Decoupled High-frequency semantic Guidance-
based GAN (DHG-GAN), a diverse image outpainting network built upon a spa-
tially varying stylemap. Our DHG-GAN is a two-stage model that starts from
generating a high-frequency semantic image for the outpainting region and then
completes the image reconstruction based on the guidance provided by the high-
frequency semantic image. Specifically, 1) we design a StyleGAN-based model to
generate for the entire image a high-frequency semantic image from a spatially
varying stylemap; and, 2) the second stage utilises an encoder-decoder struc-
ture network to complete the high-frequency semantic image with low-frequency
information to generate realistic outputs.

Previous research shows that high-frequency information can improve image
reconstruction performance [40, 25, 22]. In our method, we decouple the high-
frequency semantic information through Fourier high-pass filtering, which be-
comes the ground truth for the first stage. This decoupled high-frequency se-
mantics can provide rich texture details and structural information for the out-
painting region. By interpolating the spatially varying stylemaps, it is feasible
to generate a variety of high-frequency semantic images for the outpainting re-
gion that allow the semantic completion network to synthesise diverse results
(as shown in Fig. 1). We compare with Canny, Sobel, Prewitt and Laplacian
edge maps and determine that our decoupled high-frequency semantic image
provides the best performance in terms of quality and diversity of image out-
painting. There are three main contributions in this paper:

– We present the first diverse image outpainting model utilising decoupled
high-frequency semantic information, which demonstrates state-of-the-art
performance on CelebA-HQ [24], Places2 [49] and Oxford Flower102 [26]
datasets which are commonly used in outpainting studies.

– We propose a two-stage diverse outpainting model DHG-GAN that consists
of a high-frequency semantic generator and semantic completion network.
The first stage generates images to provide guidance of high-frequency se-
mantics for the outpainting region. The second stage performs semantic com-
pletion in the outpainting region to generate realistic images.

– We design a StyleGAN-based high-frequency semantic image generator for
modifying the structure and texture information in the outpainting region
via a spatially varying stylemap. Ablation experiments show that our method
can achieve editing of complicated structures and textures.

2 Related Work

2.1 Image Outpainting

Early outpainting models expand input images by retrieving appropriate patches
from a predefined pool of patch candidates [20, 46, 35, 32]. The performance of
such methods depends on the retrieval ability and the quality and quantity of
candidate images. Later inspired by generative adversarial networks (GANs) [6],
semantic regeneration network (SRN) [37] incorporates a relative spatial variant
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loss to gradually infer semantics, which improves the performance for repairing
contours and textures. In addition, Yang et al. [41] proposed an outpainting
method that can synthesis association relationships for scene datasets. Besides,
[22] and [17] utilise an edge map generation module to provide richer textural
and structural guidance, thereby improving the outpainting performance. How-
ever, these GAN-based outpainting methods rely on pixel-wise reconstruction
loss and do not employ random variables or control information, and hence the
outpainted images are limited in diversity. Wang et al. [36] developed a method
to generate controllable semantics in the outpainted images based on artificial
sketches. However, it is difficult to use sketches to provide complex textural
and structural information such as hair and petal texture. Our method is based
on a high-frequency semantic image that can present more detailed guidance
information for outpainting regions.

2.2 Diverse Image Reconstruction

To generate diverse reconstruction results on cropped images, some methods
train VAE-based encoder-decoder networks to condition a Gaussian distribution
and sample the diversity result at test time [47, 48]. Zheng et al. [48] proposed a
framework with two parallel paths; one reconstructs the original image to provide
the prior distribution for the cropped regions and coupling with the conditional
distribution in the other path. Peng et al. [27] proposed to utilise the hierarchical
architecture of VQ-VAE [28] to disentangle the structure and texture information
and use vector quantisation to model the discrete distribution of the structural
features through auto-regression to generate a variety of structures. However,
the sampled distribution constrains the diversity of outputs generated by these
methods. In contrast to these methods, our model trains high and low frequency
features independently in two stages and modifies the structure and texture
details using an encoded stylemap to produce diverse and realistic outputs.

2.3 GAN-based Image Editing

In order to make the reconstruction results controllable, various methods in-
ject sketches as guidance to edit the content of the image. DeFLOCNet [23]
and SC-FEGAN [13] perform sketch line refinement and colour propagation in
the convolutional neural network (CNN) feature space for injected sketches. In
addition, recent studies have demonstrated that GANs are capable of learning
rich semantics from latent space and manipulating the corresponding features of
the output images by modifying the latent code. For instance, BicycleGAN [50]
constructs an invertible relationship between the latent space and the generated
image, which assists in decoupling the semantic information contained in the
latent code in order to achieve semantic editing. Kim et al. [16] and Alharbi et
al. [1] proposed spatially varying stylemaps that enable semantic modification
of generated images locally. Nevertheless, because these approaches are not de-
signed for image reconstruction, the output images usually contain artifacts. In
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Fig. 2. Our framework illustration. (a) The high-frequency semantic image generator
(HFG) consists of a mapping network, encoder, generator, and discriminator. The
generator synthesises high-frequency semantic images (HSIs) based on the stylemap
of generated by the mapping network. The encoder constructs an accurate inverse
mapping of the synthesised HSIs through MSE supervision between the encoder and
the mapping network. (b) The semantic completion network (SCN) consists of an
encoder-decoder structure generator and an SN-PatchGAN discriminator. The input
of the generator is a combination of the input image and a generated HSI. The semantic
competition network outputs a realistic image after completing semantics.

addition, Cheng et al. [4] proposed a method that searches multiple suitable la-
tent codes through the inversion process of GAN to generate diverse outpainting
results. However, this method is only designed for landscape images.

3 Methodology

In this paper, we propose the DHG-GAN method for reconstructing images
with diverse structures and textures in the outpainting region. Our proposed
model consists of two stages: a high frequency semantic generator (HFG) and a
semantic completion network (SCN). Given an original (ground truth) image Igt
of size 256×256 pixels, we first obtain a cropped image Ī of size 128×128 pixels
by Ī = Igt ×Mi, where Mi is a binary mask indicating the known region to be
kept in Igt. The outpainting process is to reconstruct Igt from Ī and diversity is
introduced via the HFG module. The overall framework is shown in Fig. 2.

The first stage is inspired by StyleGAN [15] and the goal of this stage is to
generate a high-frequency semantic image (HSI) to provide guidance for the
second-stage semantic completion. Our generated HSI contains rich textural
and structural information, which is sufficiently similar to the decoupled high-
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frequency information from the ground truth. Accordingly, this enables the sec-
ond stage to establish a strong correlation between the completed low-frequency
semantic components and the associated HSI when reconstructing the image.
Moreover, in the first stage, we construct an accurate mapping between the
spatially varying stylemap and HSI, and then modifying the stylemap for the
outpainting region enables the generator to synthesise diverse HSIs.

Existing research has shown that high-frequency information such as edge
maps can be used to improve the quality of reconstructed images, particularly
to sharpen contours and textures [40, 25, 22]. However, common edge maps,
such as Canny, Sobel and Prewitt, lose a lot of texture information, whereas
Laplacian edge maps contain grain noise. Therefore, we choose to decouple the
high-frequency information of the RGB the channels of the ground truth im-
age through a Fourier high-pass filter bank, which is used as the ground truth
for learning the HSI. Such decoupled high-frequency information contains more
comprehensive structural and textural information and less noise.

3.1 Revisting StyleGAN

We first briefly introduce StyleGAN, on which our proposed DHG-GAN is based.
In the first stage, the aim of using a StyleGAN-based network is to encode
samples to obtain a mapping of stylemap-to-image. Then, we can change the
style code in the stylemap to get diverse images. StyleGAN proposes a style-
based generator, which consists of a mapping network and synthesis network. To
generate images using the generator, StyleGAN first randomly samples a latent
vector Z with a Gaussian distribution N (1, 0), then projects it to a stylemap W
by the mapping network. The stylemap W is then fed into each convolutional
layer in the synthesis network through an affine transformation and Adaptive
Instance Normalization (AdaIN) [11]. The discriminator then distinguishes the
authenticity of the images.

Unlike StyleGAN, we provide an encoder to create the inverse mapping of
HSIs to stylemaps. The mean squared error (MSE) is used to minimize the dif-
ference between HSIs and stylemaps in order to construct a more precise inverse
mapping. Our encoder and mapping network outputs are 3D stylemaps, which
allow direct editing of structural information and textural detials for the out-
painting regions. The encoder network structure is similar to the discriminator
in StyleGAN.

3.2 DHG-GAN

High Frequency Semantic Generator (HFG) To generate diverse struc-
tures and textures for the outpainting region, we design an HFG module. HFG
generates a high-frequency semantic image (HSI) that provides texture and
structure information to guide the second stage to complete and improve the
quality of image outpainting. In addition, modifying the style code in the stylemap
for the outpainting region can enable HFG to synthesise various HSIs, thus pro-
viding diverse guidance for the second stage to generate diverse outputs.
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Our HFG utilises a similar network structure to StyleGAN. As shown in Fig.
2, HFG consists of a mapping network F , encoder E, generator G1 and discrimi-
nator D1. We map the input latent code Z onto a spatially varying stylemapWz

via the mapping network. Such additional mapping has been demonstrated to
learn more disentangled features [31, 15]. The high-frequency information Ihigh
is decoupled from the orginal image Igt using Fourier high-pass filters, which is
used as the ground truth of HFG. The generator learns to synthesise Ihigh from
Wz and output the HSI Îhigh. Besides, we use the encoder E to build a reverse
mapping from HSI to spatially varying stylemaps Wz. This inverse mapping is
to enable semantic modification for outpainting regions.

Specifically, given a latent code Z with Gaussian distribution, the mapping
network F : Z → Wz produces a 3D stylemap Wz. Then, we use AdaIN op-
erations to transfer the encoded stylemap Wz to each convolution layer in the
generator. Here, AdaIN is defined as:

xi+1 = ai
xi − µ (xi)

σ (xi)
+ bi (1)

where µ and σ compute the mean and standard deviation of each feature map
xi. ai and bi are the style code computed from Wz. This enables stylemaps to
be added to every synthesis module in the generator. As shown in Fig. 3, the
generator contains synthesis modules of different resolution scales, and the last
image-scale synthesis module generates the HSI Îhigh. Then, the discriminator
distinguishes Ihigh and Îhigh.

The encoder E is used to establish an inverse mapping from HSI Îhigh to
stylemap Wi. Then we crop Wi and Wz to keep the outpainted regions W̄i =
Wi×(1−Ms) and W̄z = Wz×(1−Ms), whereMs is a binary mask corresponding
to the outpainting region. We minimise the difference between W̄i and W̄z by
MSE loss to train the encoder. This supervision aims to make the stylemaps W̄i

and W̄z close in the latent space, so that E can generate stylemaps that are more
suitable for semantic modification of the outpainting region. This MSE loss at
the stylemap level is formulated as:

Lmses = ‖W̄i − W̄s‖22 (2)

We also use a combination of MSE, learned perceptual image patch similarity
(LPIPS) and hinge adversarial losses to train the generator and discriminator.
MSE loss measures the pixel-level similarity which can be formulated as:

Lmsei = ‖(Ihigh − Îhigh‖22 (3)

LPIPS loss [45] is used to measure perceptual differences and improve the per-
ceptual quality of the HSI. Inspired by [12, 7], we observe that images generated
with LPIPS loss have less noise and richer textures than using perceptual loss
[14]. This is due to the VGG-based perceptual loss being trained for image clas-
sification, whereas LPIPS is trained to score image patches based on human
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Fig. 3. Generator G1 in HFG. The generator consists of affine transformation modules,
adaptive instance normalization (AdaIN) operation and multiple scale convolution lay-
ers. After obtaining the spatially varying stylemaps, we add it to the generator using
affine transformations and AdaIN.

perceptual similarity judgments. LPIPS loss is defined as:

Llpips1 =
∑
l

τ l
(
φl
(
Îhigh

)
− φl (Ihigh)

)
(4)

where φ is a feature extractor based on a pre-trained AlexNet. τ is a transforma-
tion from embeddings to a scalar LPIPS score, which is computed from l layers
and averaged.

In addition, the hinge adversarial loss for generator G1 and discriminator D1

in this stage is defined as:

LG1
= −EIhigh

[D1 (G1 (A(Wz)) , Ihigh)] (5)

LD1 =E(Igt,Ihigh)) [max (0, 1−D1 (Igt, Ihigh)))]

+ EIhigh
[max (0, 1 +D1 (G(A(Wz), Ihigh)))]

(6)

where A is the affine transformation function. The overall objective function of
HFG can be written as:

Ltotal1 = Llpips1 + LG1 + Lmses + 0.1 · Lmsei (7)

The pixel-level MSE loss improves the outpainting quality but also affects the
diversity of HSI. Here we assign a smaller weight to Lmsei based on our empirical
evaluations.

Semantic Completion Network (SCN) In the second stage, we design a
SCN to utilise the HSI generated in the first stage to complete the outpainting
region semantically and create a realistic image. SCN has an encoder-decoder
structure with a generator G2 and discriminator D2. To train SCN, first, based
on the ground truth image Igt, we obtain the high-frequency information Ihigh
and generate the stylemap Wi by inverse mapping Ihigh through the first stage
encoder E. The generator G1 then uses Wi to synthesise a HSI Îhigh. We then
combine the cropped input image Î (to be outpainted) and Îhigh into Ī = Î +
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Îhigh×(1−Mi) as the input to the generator G2. The generator G2 then performs
semantic completion on this input to generate realistic results Iout.

As shown in Fig. 2, G2 contains 3 encoder and decoder layers, and there are
8 dilation layers and residual blocks in the intermediate layers. This generator
structure is inspired by [25], and we using dilation blocks in the middle in order to
promote a wider receptive field at the output neuron. The discriminator follows
the SN-PatchGAN structure [44]. In order for SCN to generate realistic results,
we utilise several loss functions, including style loss [29], L1 loss, LPIPS loss and
adversarial loss. We measure pixel-wise differences between the output of G2 and
Igt by L1 loss and take into account high-level feature representation and human
perception by LPIPS loss. Besides, style loss compares the difference between
the deep feature maps of Iout and the Igt from pre-trained and fixed VGG-19,
and has shown effectiveness in counteracting “checkerboard” artifacts produced
by the transpose convolution layers. Style loss is formulated as follows:

Lstyle = E

∑
j

∥∥∥Gramφ
j

(
Igt
)
−Gramφ

j (Iout)
∥∥∥
1

 (8)

where the Gramφ
j is the Gram matrix of of the j-th feature layer. The adversarial

loss over the generator G2 and discriminator D2 are defined as:

LG2
= −EIgt [D2 (Iout, Igt )] (9)

LD2
= EIgt [ReLU (1−D2 (Igt)))] + EIout

[ReLU (1 +D2 (Iout)))] (10)

Finally, the total function is defined as a weighted sum of different losses with
the following coefficients:

Ltotal2 = L1 + 250 · Lstyle + 0.1 · Llpips2 + 0.1 · LG2 (11)

4 Experiments

4.1 Datasets and Implementation Details

We evaluate our model on three datasets, including CelebA-HQ [24], Places2
[49] and Oxford Flower102 [26]. The CelebA-HQ dataset includes 30000 celebrity
face images at 1024 × 1024 pixels. Places2 contains 1,803,460 images with 434
different scene categories. Oxford Flower102 comprises 102 flower categories and
a total of 8189 images. The official training, testing and validation splits are
used for these three datasets. We resize the images to 256×256 pixels with data
augmentation and use the center outpainting mask to reserve the middle region
of images for testing.

Our model is implemented in Pytorch v1.4 and trained on an NVIDIA 2080
Ti GPU. The model is optimized using the Adam optimizer [18] with β1 = 0 and
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Fig. 4. Qualitative comparison results with diverse-solution methods on CelebA-HQ
[24], Places2 [49] and Oxford Flower102 [26] datasets. For each dataset, from top to
bottom, from left to right, the images are: original image, input image, results of PIC
[48] (with green box), results of DSI [27] (with blue box), results of our method showing
both HSIs and the generated images (with red box).

β2 = 0.9. The two stages are trained with learning rates of 0.001 and 0.0001,
respectively, until the loss plateaus, with a batch size of 4. In addition, in order
to train the HFG, we adjusted the size scale of the stylemap. Through our
experiments, we found that stylemaps of 64×8×8 can produce satisfactory HSIs.

During the testing phase, we traverse the images {Igt} in the validation set
to obtain a set of HSIs {Ihigh} using Fourier high-pass filtering and utilise the
encoder E to map these HSIs to obtain a variety of stylemaps. We use Wi to
represent the stylemap of the current test image and {Wref} to represent the
stylemaps of other images in the validation set. In addition, Wz is generated by
the mapping network F through random vectors Z. We crop {Wref} and Wz

through the outpainting mask, retaining only the style code for the outpainting
region. For the test image I, we crop its stylemap Wi to retain the style code
only for the centre kept region, corresponding to the input image that will be
outpainted, so that ground truth information is not used during outpainting.
Then, we can get various complete stylemap Ŵi by combine Wi, Wref and Wz

with the following operations:

Ŵi = (Wi ×Ms) + (Wref × (1−Ms)) · 0.2 + (Wz × (1−Ms)) · 0.8 (12)

whereWi×Ms denotes the cropped stylemaps of the test image,Wref×(1−Ms)
and Wz × (1 −Ms) denote the cropped stylemap of a sampled reference image
in the validation set and cropped stylemap generated from the random vector,
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Fig. 5. Qualitative comparison results with single-solution methods on CelebA-HQ
(top ), Place2 (middle) and Oxford Flower102 (down) datasets. For each dataset, from
left to right, the image are: (a) Original image. (b) Input images. (c) Results of CA [43].
(d) Results of EdgeConnect [25]. (e) Results of SRN [37]. (f) Results of our method.

respectively. Then, by passing the various Ŵi to the generator G1 in HFG, we
can obtain diverse Îhigh, so that SCN can produce various outpainting results
Iout. The coefficients assigned to the stylemaps force HSIs to trade-off between
being similar to the original image or the other reference images. Following pre-
vious diverse-solution methods [48, 47], we also select the top samples closest to
the original image through the discriminator D2 for qualitative and quantitative
evaluation. For compared approaches, we use their official implementations and
train on the same dataset with identical configurations to ensure a fair compar-
ison. We use the centre mask to compare the results, which has the advantage
of showing the generation effect of different regions in a balanced manner.

4.2 Qualitative Results

Fig. 4 shows the qualitative comparison results of our model and the state-of-the-
art diverse solution reconstruction models: pluralistic image completion (PIC)
[48] and diverse structure inpainting (DSI) [27], on CelebA-HQ, Places2 and
Oxford Flower102 datasets for the outpainting task. We did not choose mod-
els based on artifact-injected edge maps for comparison, as these models are
strongly influenced by artifact input [23, 44, 13]. PIC and DSI are able to gen-
erate diverse results without human intervention, which are thus more directly
comparable with our method. PIC is based on a probabilistic principle with
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Table 1. Comparison of different methods on CelebA-HQ, Oxford Flower102 and
Place2. S denotes the single-solution methods, D denotes the diverse-solution methods.

CelebA-HQ Place2 Flower102
PSNR SSIM MIS FID PSNR SSIM MIS FID PSNR SSIM MIS FID

S

CA 15.22 0.52 0.017 31.62 14.29 0.51 0.018 29.09 14.16 0.49 0.018 33.46
EC 15.26 0.55 0.024 27.31 16.84 0.57 0.019 29.17 16.49 0.57 0.021 29.43
SRN 16.65 0.56 0.023 28.29 16.94 0.60 0.023 27.12 15.97 0.50 0.021 29.73
Ours w/o HSI 15.24 0.51 0.019 30.18 16.13 0.53 0.018 29.19 15.37 0.51 0.020 32.17

D
PIC 14.77 0.45 0.019 33.12 15.10 0.51 0.020 29.19 13.68 0.48 0.017 39.11
DSI 15.00 0.51 0.021 31.45 15.33 0.53 0.021 29.71 16.68 0.56 0.020 29.38
Ours w/ HSI 16.71 0.59 0.023 27.14 16.97 0.61 0.023 28.59 17.05 0.62 0.024 28.76

two parallel reconstruction paths, while DSI uses an auto-regressive network to
model a conditional distribution of discrete structure and texture features and
samples from this distribution to generate diverse results. It can be seen that
PIC generates reasonable results on CelebA-HQ but fails to achieve inner-class
diversity in multi-class datasets (Oxford Flower102). DSI performs better on
inner-class diversity due to the distribution obtained through an auto-regressive
model. The results also show that our method can generate more realistic out-
puts, e.g., the generated shapes of flowers and mountains are more plausible.
In addition, since our results are generated with guidance of a high-frequency
semantics image, they show finer texture and structural details.

Table 2. Classification result on the Oxford Flower102 dataset.

Method Original CA EdgeConnect SRN PIC DSI Ours
VGG-S 0.9213 0.7945 0.8285 0.8317 0.7807 0.8310 0.8458
Inception-v3 0.9437 0.7419 0.8230 0.8593 0.7719 0.8683 0.8731
EffNet-L2 0.9814 0.7385 0.8194 0.8494 0.7355 0.8511 0.8770

For comparison with single-solution reconstruction methods, we select the
top-1 results by discriminator D2. As shown in Fig. 5, due to the lack of prior
structural information, CA [43] has difficulties generating reasonable structures,
whereas EdgeConnect [25] generates better textures and structures due to the
use of edge maps as semantic guidance. SRN [37] infers semantics gradually via
the relative spatial variant loss [37], enabling it to generate adequate structural
and textural information. Since our results are guided by richer structural and
semantic information in the outpainted regions, the semantic completion network
is able to better infer and complete the images.

4.3 Quantitative Results

Following the previous image reconstruction methods, we utilise the common
evaluation metrics including Peak Signal-to-Noise Ratio (PSNR) and Structural
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Similarity (SSIM) [38] to determine the similarity between the outpainting re-
sults and ground truth. Additionally, we use Modified Inception Score (MIS)
[47] and Fréchet Inception Distance (FID) [9] as perceptual quality indicators.
Furthermore, FID is capable of detecting the GAN model’s mode collapse and
mode dropping [24]. For multiple-solution methods, we sample 100 output im-
ages for each input image and report the average result of top 10 samples. Table
1 shows that, although our method is lower than SRN and EdgeConnect in
some metrics, it still outperforms other single and diverse solution reconstruc-
tion methods. Moreover, the MIS and FID measurements demonstrate that our
method is more effective in generating visually coherent content.

Furthermore, we analyse the quality of outpainted images on the Oxford
Flower102 dataset by classifying the generated images for the official validation
set into 102 categories as labelled in the dataset. We use pre-trained VGG-
S [3], Inception-v3 [39], EffNet-L2 [5] to evaluate our generated results, which
are state-of-the-art classification methods on the Oxford Flower102 dataset. As
shown in Table 2, our method has a higher classification accuracy than other
methods and is closer to the classification result on original images. This can
be attributed to the fact that our method can generate more reasonable and
realistic semantics.

Table 3. Comparison of diversity scores on the CelebA-HQ dataset.

LPIPS - Iout LPIPS - Iout(m)

PIC [48] 0.032 0.085
DSI [27] 0.028 0.073
Ours 0.035 0.089

Also, we calculate the diversity score for comparisons with diverse-solution
methods using the LPIPS [51] metric on the CelebA-HQ dataset. The average
score is calculated based on 50K output images generated from 1K input images.
We compute the LPIPS scores for the complete images Iout and then only the
outpainting regions Iout(m). As shown in Table 3, our method achieves relatively
higher diversity scores than other existing methods.

4.4 Ablation Study

Alternative high-frequency semantic feature. We conduct an ablation
study on CelebA-HQ to show the impact of using various types of high-frequency
semantic features as a guide for outpainting. As shown in Fig. 6, the facial con-
tours generated without using the high-frequency semantic map as a guide show
some shrinkage and the texture is not clear enough. The high-frequency seman-
tic information provided by utilizing Canny, Prewitt and Sobel edge detection
operators can solve the contour shrinkage to an extent. However, we observed
that such high-frequency semantic features cannot provide specific texture infor-
mation. Although the Laplacian edge map can provide more texture details, it
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Fig. 6. Results of image outpainting using different high-frequency information. (a)
Original image and input image. (b) Results of Canny. (c) Results of Sobel. (d) Results
of Prewitt. (e) Results of Laplacian. (f) Results of our method.

contains a lot of grain noise, which adversely affects the quality of image restora-
tion and texture modification. Compared to these techniques, our method can
generate overall more detailed structural and texture information.
Quality of high-frequency semantic image for diverse outpainting qual-
ity.We notice that the dimension of stylemaps affects the capacity of decoupling
latent semantics in the stylemap and thus the fineness of diverse outpainting. To
choose a suitable size for stylemaps, we consider that for 256×256 sized images,
we need at least a size of 4×4×1 for stylemaps to identify the outpainting re-
gion, thus performing semantic editing for the outpainting area. Furthermore, as
illustrated in the supplementary material (Figure 1), we determined that, if the
latent vector dimension in the stylemap is small, the encoder will fail to estab-
lish a high quality mapping of HSI. We found that using an 8×8×64 stylemap
provided a sufficiently accurate mapping to avoid compromising the quality of
the images generated.

5 Conclusion and Future Work

In this paper, we propose a diverse-solution outpainting method, DHG-GAN, for
generating diverse and high-quality images guided by decoupled high-frequency
semantic information. Our method first generates diverse high-frequency seman-
tic images and then complete their semantics to produce the outpainted im-
ages. The proposed high-frequency semantic generator based on spatial varying
stylemaps helps introduce diversity in the outpainted images. Extensive qualita-
tive and quantitative comparisons show the superiority of our method in terms
of diversity and quality of outpainting. However, a limitation of our method is
that when the generated HSI is considerably different from the ground truth HSI
of the outpainting region, in a few cases, the regions around the object contours
can be blurry, and the structural and textural information in the generated HSI
can be quite different from the ground truth in these cases. This makes it chal-
lenging for the second-stage semantic completion network to generate reasonable
semantics. In our future work, we plan to improve the robustness of our method
to generate diverse results. Also, a promising future direction could be exploiting
HSI for outpainting complex scene images.
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