
An RNN-Based Framework for the MILP Problem in
Robustness Verification of Neural Networks

Hao Xue1, Xia Zeng1,2, Wang Lin3, Zhengfeng Yang1(B), Chao Peng1, and
Zhenbing Zeng4

1 Shanghai Key Lab of Trustworthy Computing, East China Normal University,
Shanghai, China

hxue@stu.ecnu.edu.cn, {zfyang,cpeng}@sei.ecnu.edu.cn
2 School of Computer and Information Science, Southwest University, Chongqing, China

xzeng0712@swu.edu.cn
3 School of Information Science and Technology, Zhejiang Sci-Tech University,

Hangzhou, China
linwang@zstu.edu.cn

4 Department of Mathematics, Shanghai University, Shanghai, China
zbzeng@shu.edu.cn

Abstract. Robustness verification of deep neural networks is becoming increas-
ingly crucial for their potential use in many safety-critical applications. Essen-
tially, the problem of robustness verification can be encoded as a typical Mixed-
Integer Linear Programming (MILP) problem, which can be solved via branch-
and-bound strategies. However, these methods can only afford limited scalability
and remain challenging for verifying large-scale neural networks. In this paper,
we present a novel framework to speed up the solving of the MILP problems
generated from the robustness verification of deep neural networks. It employs a
semi-planet relaxation to abstract ReLU activation functions, via an RNN-based
strategy for selecting the relaxed ReLU neurons to be tightened. We have devel-
oped a prototype tool L2T and conducted comparison experiments with state-of-
the-art verifiers on a set of large-scale benchmarks. The experiments show that
our framework is both efficient and scalable even when applied to verify the ro-
bustness of large-scale neural networks.

Keywords: Robustness verification · Learning methods · Semi-planet relaxation
· Neural networks.

1 Introduction

While the deep neural network has been widely applied to various tasks and achieved
outstanding performance in recent years, it also encounters robustness problems from
many adversarial examples [14, 30], which could raise serious consequences in safety-
critical systems such as autonomous driving, aircraft flight control, and nuclear systems.
For example, a slightly perturbed image could make an autonomous car incorrectly
classify a white truck to cloud and cause a crash accident [13]. Consequently, robustness
verification of neural networks becomes increasingly crucial, which aims to check that
the outputs for all inputs in a given domain have the correct corresponding label.

1842

2 H Xue et al.

Several methods [3, 16, 28] have been proposed to use abstraction for achieving the
robustness. With the wide use of the ReLU activation function in neural networks, it is
more useful in practice to investigate the robustness verification problem [20].

Due to the piece-wise linear structure of ReLU networks, the problem of robust-
ness verification can be rewritten into a typical Mixed-Integer Linear Programming
(MILP) problem, which can be solved via branch-and-bound strategies [7]. However,
for large-scale ReLU networks, solving the MILP problems stemming from robustness
verification still remains a challenge. To this end, several convex relaxation approaches
have been studied for approximating ReLU activation functions [5, 9, 22, 24, 26]. Nev-
ertheless, as the error accumulation arising from the over-relaxation is often hard to
estimate, these approaches may fail to prove the robustness.

Meanwhile, machine learning methods have already been used in solving MILP
problems. In [1] and [15], regression and ranking approaches are used to assign a
branching score to each potential branching choice. Bayesian optimization is also ap-
plied in [11] to learn verification policies. The scheme in [21] captures the structure of
a neural network and makes tightening decisions through a graph neural network. Re-
cently, symbolic interval propagation and linear programming are used to improve the
verification performance [17]. However, the above schemes are either limited to specific
neural networks or relied heavily on hand-designed features.

To address the issues mentioned above, in this paper, we propose a novel framework
to speed up the solving of MILP problems generated from the robustness verification of
neural networks. Since the relaxation of ReLU activation functions may result in fail-
ure of the original robustness verification, we propose a semi-planet relaxation, which
adopts an RNN-based strategy for selecting the relaxed ReLU neurons to be tightened.
Our framework entails an iterative process to gradually repair failures caused by over-
relaxation, hence it can perform effective verification while ensuring the efficiency of
the MILP problem solving.

To summarize, the main contributions of this paper are:

– We present a general scheme, which augments the original neural network by addi-
tional layers with one output neuron, and transforms the verification problem into
the output positiveness checking of the augmented network. Thus we transform
the robustness verification problem into a single MILP problem, making our RNN-
based solving method much easier to implement and scale.

– We build an iterative framework that enhances the efficiency of robustness verifica-
tion through an intelligent neuron selection strategy by an RNN to gradually tighten
the relaxed MILP solution.

– Our RNN embraces scalability by utilizing the network’s structure information, and
the trained RNN is generalizable for robustness verification on different network
structures. We also provide an approach to generate the training dataset, which
makes RNN much easier to train and implement.

– We conduct comparison experiments with state-of-the-art verifiers on large-scale
benchmarks, the results show that our framework has excellent applicability: it
outperforms most other verifiers in terms of average solving time and has lower
timeout rate in most cases.

1843

An RNN-Based Framework in Robustness Verification of NNs 3

2 Preliminaries

In this section, we provide the background on Deep Neural Networks (DNNs) and de-
scribe the robustness verification of DNNs.

2.1 Deep Neural Networks

A deep neural network N is a tuple ⟨X ,H, Φ⟩, where X = {x[0], . . . ,x[n]} is a
set of layers, H = {H1, . . . ,Hn} consists of affine functions between layers, and
Φ = {ϕ1, . . . , ϕn} is a set of activation functions. More specifically, x[0] is the in-
put layer, x[n] is the output layer, and x[1], . . . ,x[n−1] are called hidden layers. Each
layer x[i], 0 ≤ i ≤ n is associated with an si-dimensional vector space, in which each
dimension corresponds to a neuron. For each 1 ≤ i ≤ n, the affine function is written as
Hi(x

[i−1]) = W [i] x[i−1]+b[i], where W [i] and b[i] are called the weight matrix and the
bias vector, respectively. Furthermore, for each layer x[i], the value of each neuron in the
hidden layer is assigned by the affine function Hi for the values of neurons in the previ-
ous layer, and then applying the activation function ϕi, i.e., x[i] = ϕi(W

[i] x[i−1]+b[i]),
with the activation function ϕi being applied element-wise.

In this paper, we focus on DNNs with Rectified Linear Unit (ReLU) activation func-
tions [12], defined as ReLU(x) = max(0, x). From the mapping point of view, the i-th
layer can be seen as the mapping image of the (i−1)-th layer. For each non-input layer
x[i], 1 ≤ i ≤ n, we can define a function f [i] : Rsi−1 → Rsi , with

f [i](x) = ϕi(W
[i]x+ b[i]), 1 ≤ i ≤ n. (1)

A DNN N is expressed as the composition function f : Rs0 → Rsn , i.e.,

f(x) = f [n](f [n−1](· · · (f [1](x)))). (2)

Given an input x[0], the DNN N assigns the label selected with the largest logit of
the output layer x[n], that is, k = argmax(f(x[0])) = argmax

1≤j≤sn

(x
[n]
j).

2.2 Robustness Verification of DNNs

We begin with formally defining the notion of robustness, and introducing the robust-
ness verification of DNNs.

Given a DNN N with its associated function f and an input point xc, we now define
ϵ-robustness for a DNN N on xc. Let B(xc, ϵ) be the ℓ∞-ball of radius ϵ ∈ R>0 around
the point xc, i.e., B(xc, ϵ) = {x[0] ∈ Rs0 | ∥x[0] − xc∥∞ ≤ ϵ}.

We say that an input domain B(xc, ϵ) has the same label if any input x[0] chosen
from B(xc, ϵ) has the same label as xc has. This property that the ϵ-ball around the
point having the same label is called as ϵ-robustness, i.e.,

argmax(f(x[0])) = argmax(f(xc)), ∀x[0] ∈ B(xc, ϵ). (3)

Determining the ϵ-robustness of xc with the label k, can be transformed into the fol-
lowing equivalent optimization problem

1844

4 H Xue et al.

p∗ = min
x,x̂
{ x[n]

k − x
[n]

k′ , ∀k′ ̸= k }

s.t. x[0] ∈ B(xc, ϵ),

x̂[i] = W [i]x[i−1] + b[i], i = 1, . . . , n,

x[i] = ϕi(x̂
[i]), i = 1, . . . , n.

 (4)

Remark that N with respect to B(xc, ϵ) is robust if and only if the optimum of (4) is
positive, i.e., p∗ > 0.

The main challenge of optimization solving (4) is to handle ReLU activation func-
tions, which bring non-linearities to the problem of robustness verification. Seeking the
optimal solution of (4) is an arduous task, as the optimization problem is generally NP-
hard [18]. An effective technique to eliminate the non-linearities is to encode them with
the help of binary variables. Let l[i] and u[i] be lower bounds and upper bounds on x̂[i],
respectively. The ReLU activations x[i] = ϕ[i](x̂[i]) can be encoded by the following
constraints:

I(x[i]) ≜

x[i] ≽ 0, x[i] ≽ x̂[i],

u[i] ⊙ z[i] ≽ x[i],

x̂[i] − l[i] ⊙ (1− z[i]) ≽ x[i],

z[i] ∈ {0, 1}si ,

(5)

where s is the binary vector with length si, ⊙ denotes the Hadamard product of matri-
ces, and the generalized inequality ≽ denotes the componentwise inequality between
vectors. Therefore, the robustness verification problem (4) can be transformed into an
equivalent Mixed-Integer Linear Programming (MILP) problem [6]:

p∗ = min
x,x̂,z
{ x[n]

k − x
[n]

k′ , ∀k′ ̸= k }

s.t. x[0] ∈ B(xc, ϵ),

x̂[i] = W [i]x[i−1] + b[i], i = 1, . . . , n,

I(x[i]), i = 1, . . . , n.

 (6)

It is easy to verify that z[i]j = 0 ⇔ x
[i]
j = 0 and z

[i]
j = 1 ⇔ x

[i]
j = x̂

[i]
j .

3 Semi-Planet Relaxation for MILP Problems

3.1 Formulating the Minimum Function in MILP Model

The objective function of the optimization problem (6) is piecewise-linear [7]. There are
some approaches [8, 10, 25] making it amenable to mathematical programming solvers,
but either discard the network structure or sacrifice the scalability. In the following, we
propose an approach for rewriting the objective function with multiple neurons into an
equivalent single-neuron setting by adding a few layers at the end of the network N .
This allows us to preserve network structure and ensure the scalability of solving the
problem. Note that only linear layers and ReLU activation functions are added for the
sake of simplicity.

Before doing this, we first add a new layer to represent the difference between x
[n]
k

and all other output neurons:

1845

An RNN-Based Framework in Robustness Verification of NNs 5

x[n+1] = ϕn+1

(
W [n+1]x[n] + b[n+1]

)
,

W [n+1] = 1Tek − I, b[n+1] = 0,
(7)

where ek is one-hot encoding vector for label k, I is an identity matrix. Now, the re-
maining task is to compute the minimum of x[n+1]. For simplicity, we illustrate how to
use the neural network structure to represent Min Function of two elements,

min(a, b) =
a+ b− |a− b|

2
=

ϕ(a+ b)− ϕ(−a− b)− ϕ(a− b)− ϕ(b− a)

2
, (8)

that is, min(a, b) = W2 · ϕ(W1 ·
[
a
b

]
), where

W1 =

[
1 −1 1 −1
1 −1 −1 1

]T

, W2 =
[
1
2
, − 1

2
, − 1

2
, − 1

2

]
. (9)

By calling the above process recursively, it is easy to build a neural network to
express Min Function for greater than 2 elements. Therefore, computing the minimum
of sn+1 neurons, can be represented as a neural network Ng ,

g(x) = W2g⌈log2 sn+1⌉ (· · · (g2 (g1(x)))) , (10)

where gj(x) = ϕn+1+j

(
W [n+1+j]x+ b[n+1+j]

)
, j = 1, . . . , ⌈log2 sn+1⌉, which

halves the input vector space by finding the minimum in pairs.
Combining N and Ng can produce an augmented network, denoted by N̂ , which

has m = n+1+ ⌈log2 sn+1⌉ layers. Now, the original robustness verification problem
can be transformed into that of determining the positiveness of the output of the aug-
mented network N̂ . Therefore, the problem (6) can be rewritten as an equivalent MILP
problem:

J∗
I = min

x,x̂,z
W2x

[m]

s.t. x[0] ∈ B(xc, ϵ),

x̂[i] = W [i]x[i−1] + b[i], i = 1, . . . ,m,

I(x[i]), i = 1, . . . ,m.

 (11)

Notably, the optimum J∗
I is positive if and only if the original network N with respect to

B(xc, ϵ) is robust. Hereafter, we abbreviate the optimization problem (11) as following

J∗
I = min J

(
N̂ , I(X)

)
, (12)

where I(X) denotes the binary constraints for the set of ReLU neurons X of N̂ .

3.2 Relaxation and Tightening for MILP Constraints

When encountering practical neural networks, due to binary constraints on overwhelm-
ing I(x[i]

j), how to solve MILP problem (12) is the key challenge. Planet relaxation [9]

1846

6 H Xue et al.

l[i]
j u[i]

j x[i]
j

x[i]
j

(a) u[i]
j ≤ 0

l[i]
j u[i]

j x[i]
j

x[i]
j

(b) l[i]j ≥ 0

l[i]
j u[i]

j x[i]
j

x[i]
j

(c) Otherwise

Fig. 1: The form of P(x
[i]
j) is contingent on the value of u[i]

j and l
[i]
j .

has been widely used for ReLU neurons relaxation [5, 6, 21] due to its tightness of for-
mulation. Applying planet relaxation to ReLU activation functions x[i]

j = ϕ(x̂
[i]
j) may

yield the following over-approximation with linear inequalities,

P(x[i]
j)≜

x
[i]
j = 0, if u[i]

j ≤ 0

x
[i]
j = x̂

[i]
j , if l[i]j ≥ 0

x
[i]
j ≥ 0,x

[i]
j ≥ x̂

[i]
j ,x

[i]
j ≤

u
[i]
j (x̂

[i]
j − l

[i]
j)

u
[i]
j − l

[i]
j

. otherwise

(13)

Fig. 1 is depicted to show the planet relaxation of a ReLU unit.
By introducing P(x

[i]
j) to relax I(x[i]

j), the MILP problem (12) is transformed into
the following LP problem:

J∗
P = min J

(
N̂ ,P(X)

)
, (14)

where P(X) denotes the planet relaxation for the set of ReLU neurons X of N̂ .
Remark 1. In comparison with the MILP problem (12), the feasible set of the LP

problem (14) is a superset of that of (12). Consequently, the optimum of (14) is a lower
bound of the one of (12), i.e., J∗

P ≤ J∗
I . Therefore, the relaxation transformation be-

tween the optimization problems derives sufficient conditions for robustness verifica-
tion of the neural networks.

The gap between J∗
P and J∗

I depends on the tightness of planet relaxation. Unfortu-
nately, the relaxation may yield too conservative optimum J∗

P , such that J∗
P < 0 < J∗

I
holds, which fails to prove the robustness property for the given neural network. There-
fore, how to provide adequate precision and scalability to satisfy the requirement of ro-
bustness verification is crucial. In this work, we suggest a semi-planet relaxation scheme
where relaxation and tightening processes cooperate to approximate the ReLU neurons.
Concretely, when the optimum J∗

P < 0, a tightening procedure is performed to tighten
the relaxations of some ReLU neurons and recover their original binary constraints. Let
T ⊆ X be a subset of ReLU neurons that are chosen to tighten the relaxation, based on
the above semi-planet relaxation, (14) can be transformed into

J∗
T = min J

(
N̂ , I(T) ∧ P(X − T)

)
. (15)

Obviously, the optimum J∗
T of (15) satisfies the inequalities, i.e., J∗

P ≤ J∗
T ≤ J∗

I ,
which derives that the augmented network N̂ with respect to B(xc, ϵ) is robust when

1847

An RNN-Based Framework in Robustness Verification of NNs 7

J∗
T > 0. As the number of tightened neurons in T increases, J∗

T will be closer to J∗
I .

As a result, the complexity of solving the problem (15) will also grow exponentially. So
the challenge is how to balance the relaxation and tightening, that is, how to choose as
few neurons as possible to tighten for proving the robustness of N̂ .

4 Learning to Tighten

The MILP problem (12), derived from robustness verification of neural networks, trans-
fers a more tractable linear programming (LP) problem when all ReLU neurons are re-
laxed by the planet relaxation technique. However, this relaxation of non-linearity may
yield too conservative constraints so that the optimum of the resulted LP is negative,
which fails to prove the original robustness verification problem.

A natural idea to avoid this situation would be to tight only a part of neurons that
have more influence on the verification problem. The key is how to determine those
key neurons. In this work, we will propose a framework for solving the MILP problem
which incorporates an RNN-based strategy for selecting neurons to be tightened.

4.1 RNN-Based Framework

In this section, we describe an RNN-based framework for solving the MILP problem in
robustness verification of neural networks. To build the framework we adopt an itera-
tive process to gradually repair failures caused by over-relaxation, and pursue effective
verification while ensuring the efficiency of the MILP problem solving. Specifically, we
begin the iteration with a complete relaxed problem in (14) from the original problem,
by applying the planet relaxation (12) for all ReLU neurons. If the solution satisfies
J∗
P > 0, then the robustness of the original problem has been verified. Otherwise, we

apply the one-neuron-tighten-test (15) one by one for the set X consisting of all current
relaxed neurons, and further solve each updated semi-relaxed problem.

Once the optimal solution satisfies J∗
T > 0 after testing on certain set T of the

relaxed neurons, we derive that the neural network has been verified to be robust. Oth-
erwise one more neuron is chosen to be tightened. To guarantee the completeness, sup-
pose x∗ is the minimizer of J∗

T , then assign x∗ to (12) can arrive at the upper bound
J ′
T , and the constraint J ′

T > 0 is incorporated to ensure that our tightening scheme is
always available for robustness verification. Meanwhile, if it occurs that J ′

T < 0 at one
stage, it is easy to show that the neural network N̂ is unrobust.

As shown in Fig. 2, the framework consists of two main functional modules, the
MILP-solving module and the neuron-selection module. Given a feed-forward neural
network N with label k, we first augment N into N̂ for generating a generic MILP
problem (Sec. 3.1), and then relax all or some of the neurons (Sec. 3.2). Next, we check
whether J∗

T > 0 or J ′
T < 0 by the MILP-solving module, and terminate the iteration

if the condition is satisfied at certain steps. Otherwise, the process enters the neuron-
selection module, i.e., the Recurrent Tightening Module (RTM), as shown inside the
dashed-round-box in Fig. 2. The RTM module is designed to implement the neuron
selection strategy for solving the MILP problem. The trained RTM works by grading

1848

8 H Xue et al.

𝐽𝑇
 ∗ > 0 ?

𝑇 = {}

Robust

RTM𝑇 = 𝑇 ∪ {𝑥}

Yes

No

Unrobust

Yes

No𝑘 𝑥
𝐽𝑇

 ′ < 0 ?

Fig. 2: The Architecture of RNN-based framework.

Algorithm 1 The RNN-based Framework for Robustness Verification
Require: NetworkN , ℓ∞-ball B(xc, ϵ), label k
1: N̂ , X ← Augment(N , B(xc, ϵ), k) ▷ Augment networkN and initialize ReLU neurons
2: T ← {} ▷ Initialize an empty tighten set T
3: while ¬(J∗

T > 0) ∧ ¬(J ′
T < 0) do

4: Θ ←
{
N̂ , I(T), P(X − T)

}
▷ Gather information of current MILP problem

5: x← RTM(Θ) ▷ Select a relaxed neuron to tighten
6: T ← T ∪ {x}
7: Update J∗

T and J ′
T with J

(
N̂ , I(T) ∧ P(X − T)

)
8: if J∗

T > 0 then return Robust
9: else if J ′

T < 0 then return Unrobust

each neuron from the currently relaxed collection X for optimal tightening choice. A
more detailed explanation on how to train such RTM will be given in Sec. 4.2.

The main data flow of the RNN-based framework is given in Alg. 1. The algorithm
takes a neural network N with its input domain B(xc, ϵ) and labels it by k. In line 1,
the algorithm augments N to N̂ and extracts all the ReLU neurons X . In line 2, the set
T for collecting neurons to tighten is initialized to the empty set. The main loop from
Line 3 to Line 8 is to check the robustness condition and do the neuron selection, where
line 5 is implemented by the neuron-selection module (cf. RTM in Fig. 2), and line 7
carries out semi-relaxed MILP problem by the MILP-solving module. The algorithm
either returns ‘Robust’ when J∗

T > 0 is satisfied in line 8, or reaches ‘Unrobust’ if
J ′
T < 0 (Line 9).

4.2 Recurrent Tightening Module

The Recurrent Tightening Module (RTM) implements a learned tightening strategy, the
key module of the RNN-based framework introduced in Sec. 4.1. It takes the network
presented by a numerical tensor as input. The final output of the RTM is a selected
neuron which has the highest score based on the result of the RNN whose training
process has been illustrated in Sec. 4.3.

The neuron selection process of RTM is shown in Fig. 3. Actually, the input of
the module at the beginning is a semi-relaxed MILP problem to be verified, for sim-
plicity we shall express it in an associate network form. Without causing ambiguity,

1849

An RNN-Based Framework in Robustness Verification of NNs 9

FC
 -

3

F
C

 -
4

F
C

 -
5

F
C

 -
2

+

F
C

 -
1

[𝑖ିଵ]

…
…

F
C

 -
3

F
C

 -
4

F
C

 -
5

F
C

 -
2

F
C

 -
1

FC
 -

3

F
C

 -
2

F
C

 -
1

F
C

 -
4

FC
 -

3

F
C

 -
2

F
C

 -
1

F
C

 -
5

F
C

 -
4

FC
 -

3

F
C

 -
2

F
C

 -
1

F
C

 -
3

F
C

 -
5

F
C

 -
4

FC
 -

3

F
C

 -
2

F
C

 -
1

FC
 -

7

FC
 -

8

FC
 -

6

FC
 -

5

FC
 -

4

FC
 -

3

FC
 -

2

FC
 -

1

Encoder: ଵ Decoder: ଶ

×𝑖

[𝑖]

Fig. 3: The flow-chart of RTM.

we denote the input as Θ which carries the parameter information of the current MILP
problem, including the structure parameters of the augmented network N̂ to be verified,
collection of all ReLU neurons X , and the tightened ReLU neuron collection T . The
green rectangle submodule in Fig. 3, an RNN consists of the Encoder and the Decoder,
is designed to score the tighten. The current neurons in X of the network Θ will be
graded and recorded layer-by-layer through this RNN-based scorer. The scoring results
of all neurons will be recorded in a list denoted by D whose dimension is the same as
the number of neurons. In the final stage, the RTM selects the neuron with the highest
score as the output.

In RTM, the neuron selecting is processing in the following way. In the initial, a
trained RNN equipped with parameter θ = {θ1,θ2} encodes N̂ in layer-by-layer wise
according to the structure of the input network, and produces a list of feature matrices
M = {M [1], . . . ,M [m]} which has the same layer with N̂ , where each M [i] denotes
the extracted feature matrix on the i-th layer, and each row of M [i] is the feature vector
for a neuron in the layer. To improve the efficiency of the overall algorithm, we have
also stored M in order to reuse it in the subsequent encoding process. In addition, we
denote the fully-connected Encoder and Decoder by functions F1 and F2, respectively.
Mathematically, the RTM can be expressed as follows,

M [i] = F1(Θ,Hi(M
[i−1]),M [i];θ1), i = 1, . . . ,m,

D = F2(M ;θ2), d = argmax(D), x = Index(X, d),
(16)

where x is the selected neuron to be added into T for the next tightening.
Remark 2. In addition to update M [i] by Θ, we also allow the updating process

reusing M [i] to collect previous information and capturing the local information in
M [i−1] by utilizing the feed-forward function Hi of the network N̂ . Therefore, (16)
is a recurrent function for tightening the neuron successively.

Remark 3. To increase the scalability of the method for different network structures,
the RTM module also encode the structure of network and decode all the neurons in the
network layer-by-layer processing.

4.3 Training the RNN in RTM

In this subsection, we explain the two important parts of the RNN training process that
is based on supervised learning for making the neuron selection policy.

1850

10 H Xue et al.

In the part for generating the training dataset, we consider to characterize the impact
of each neuron after being tightened on the current MILP problem to obtain the ground
truth of scoring list, which reflects the performance of every neuron to be selected and
tightened in the current semi-relaxed problem presented by an associate network N̂ .
Namely, given a semi-relaxed problem Θ, we design the following function to measure
the improvement of tightening for each tightening decision candidate neuron x,

yT (x) =
(
J∗
T −min(J∗

T∪{x}, 0)
)/

J∗
T . (17)

Here notice that for each neuron x ∈ X , if x ∈ T then yT (x) = 0, else if x /∈ T and
J∗
T∪{x} > 0 then yT (x) = 1, which means the current MILP has been verified after

tightening the neuron x and x is the one we prefer to select. Otherwise 0 < yT (x) < 1
for all x /∈ T and J∗

T∪{x} < 0, and the value yT (x) measures the relative improvement
for the result of the current MILP after tightening the neuron x; briefly, yT (x) is the
target score of selecting and tightening x. Hereafter, we use YT to denote the ground
truth of score list of all neurons ordered layer-by-layer.

The second important part for constructing the neuron selection policy is to design a
loss function that is best fitting the relax-and-tighten of the MILP related to robustness
verification. For a given RNN parameterized by θ, The following two principles are
adopted in the design of the loss function.

– For the current MILP which is presented by Θ, the score list DT as the output of
the training RNN should fit the ground truth of score list YT well, i.e.,

L1(θ) = ∥YT ⊙ (DT − YT)∥1, (18)

where DT denotes the predicted tightening scores at Θ, i.e. DT = RNN(Θ;θ).
And the Hadamard product is introduced in L1 for assigning higher weights to
those with higher scores according to YT .

– It is worth noting that tightening the majority of neurons may give similar improve-
ments, which leads to the inconvenience of ranking the predicted scores by RNN.
So we introduce a small constant s > 0 and construct the following pairwise rank-
ing loss function L2 to regularize the scores are at least s-apart for each pair of
neurons, i.e.,

L2(θ) =
1

r2

r−1∑
i=1

r∑
j=i+1

max(s− d
[i]
T + d

[j]
T , 0), (19)

where d[i]T and d
[j]
T are i-th and j-th highest scores predicted in DT respectively. For

the learning efficiency, the pairwise ranking loss L2 only involves the top r scores
in DT .

In summary, the total loss function is constructed as follows

L(θ) = λL1(θ) + (1− λ)L2(θ), (20)

where 0 < λ < 1 is the parameter to control the weights between L1 and L2. In fact,
the experiment performance in Sec. 5 reflects that the design of the loss function is
reasonable and helps to improve training efficiency, which validates the above analysis.

1851

An RNN-Based Framework in Robustness Verification of NNs 11

Algorithm 2 Generating Training Dataset

Require: N , {B(xi, ϵi), ki}i=1,...,P

1: S ← {} ▷ Initialize training dataset S
2: for i = 1, . . . , P do ▷ Generate dataset using P images
3: N̂ , X ← Augment(N , B(xi, ϵi), ki); T ← {}
4: for j = 1, . . . , t do ▷ Tighten neurons at most t times
5: Θ ←

{
N̂ , I(T), P(X − T)

}
6: Construct ground truth score list YT with current Θ
7: S ← S ∪ {(Θ, YT)} ▷ Add sample (Θ, YT) to dataset S
8: Index the optimal neuron x with highest tightening score in YT

9: T ← T ∪ {x}
10: if Robustness is verified then Break
11: return S

Training dataset. We build a subset of CIFAR-10 images to generate dataset S by
the following steps. At first, we randomly pick P = 400 images and the corresponding
perturbation ϵ with adversarial labels determined from [21], which can cover most ro-
bustness verification problems on CIFAR-10. An adversarially trained network called
Base model is also chosen according to [21]. In the second step, we initialize an empty
set T for each image and measure the improvements for all the relaxed ReLU neurons
to construct the ground truth of score list YT . At last, we refer to the score list YT to se-
lect the optimal neuron with the highest improvement and put it into T , and then update
the current MILP problem to repeat the above process until the recursion depth reaches
the threshold t or the robustness is verified. The procedure is given in Alg. 2.

Training details. In the training setting, we have employed Adam Optimizer
[19] with β1 = 0.9 and β2 = 0.999 for backward propagation of the RNN. The RNN is
trained for 100 epochs with a learning rate of 0.001 and a weight decay of 0.0001. We
have also set r = 35, s = 0.04, and λ = 0.5. For generating datasets, we have set t = 20
and divided the training set and validation set randomly according to the ratio of 7:3. In
terms of training accuracy, we rank tightening scores predicted by RNN and consider
the top 5 scores that are also in the top 5 of ground truth scores as correct choices
since we are mainly interested in tightening neurons with great improvement using the
metric defined by (17). Finally, our RNN reaches 71.6% accuracy on training dataset
and 63.5% accuracy on validation dataset. We also run an ablation study by removing
L2, which reduced the accuracy of the validation dataset from 63.5% to 59.7%.

5 Experiments

We have implemented a tool in Pytorch [23] called L2T for the neural network robust-
ness verification, which is based on the policy of learning to tighten (L2T for short) in
our proposed framework. The code is available at https://github.com/Vampire689/L2T.
For demonstrating the advantages of L2T, we first make a comparison with different
tighten-based strategies on the dataset provided in [21] (c.f. Sec. 5.1). And L2T has
been compared with the current mainstream robustness verification tools on two large-
scale robustness verification benchmarks, i.e., the OVAL benchmark [22] and COLT

1852

12 H Xue et al.

Table 1: The result of strategies on Easy, Medium and Hard dataset.

Dataset
Average number of neurons tightened

Rand BaBSR GNN L2T
CIFAR - Easy 31.65 24.10 22.82 22.53

CIFAR - Medium 60.71 38.67 27.24 24.90
CIFAR - Hard 122.90 48.74 35.74 31.98

benchmark [4] to show the performance of two aspects: (1) the efficiency of L2T on
OVAL benchmark for verifying adversarial properties (c.f. Sec. 5.2); (2) the good per-
formance on scalability to verify larger models on the COLT benchmark (c.f. Sec. 5.3).

5.1 Effectiveness of RNN-Based Tightening Strategy

We analyse L2T by comparing with three different tightening strategies: 1) Random
selection (Rand), 2) hand-designed heuristic (BaBSR) [6], and 3) GNN learning-based
strategy (GNN) [21]. We use the dataset of three different difficulty levels (Easy, Medium
and Hard) with the network of 3172 neurons provided in [21] and compute the average
number of neurons tightened on solved properties of all strategies. Results of different
tightening strategies are listed in Tab. 1. L2T achieves the least average tightening num-
ber of neurons for solving the properties compared to other strategies. In particular, L2T
outperforms GNN in all levels, showing that our RNN-based framework has learned the
empirical information from continuous tightening strategy.

5.2 Performance on the OVAL Benchmark

We evaluate the performance of L2T and five baselines on OVAL benchmark [22] used
in [31]. The benchmark consists of sets of adversarial robustness properties on three
adversarially trained CIFAR-10 CNNs, which are Base, Wide and Deep models with
3172, 6244 and 6756 ReLUs respectively [22]. All three models are robustly trained
using the method from [33]. There are 100 properties for each of the three models,
and each property is assigned a non-correct class and associated with a specifically
designed perturbation radius ϵ ∈ [0, 16/255] on correctly classified CIFAR-10 images.
The benchmark is to verify that for the given ϵ, the trained network will not misclassify
by labelling the image as the non-correct class. A timeout of one hour per property
is suggested. We conduct experimental comparisons with five state of the art verifiers:
1) OVAL [5], a strong verification framework based on Lagrangian decomposition on
GPUs. 2) GNN [21], a state-of-the-art tightening-based verifier using a learned graph
neural network to imitate optimal ReLU selecting strategy. 3) ERAN [26–29], a scalable
verification toolbox based on abstract interpretation. 4) A.set [22], a latest dual-space
verifier with a tighter linear relaxation than Planet relaxations. 5) αβ-crown [32, 34,
35], a most recent fast and scalable verifier with efficient bound propagation.

We report the average solving time and the percentage of timeout over all proper-
ties in Tab. 2. It can be shown that L2T ranks the top two in average time efficiency
among the current popular tools, and L2T performs the best on the Deep model with no

1853

An RNN-Based Framework in Robustness Verification of NNs 13

Table 2: The performance of verifiers on the Base, Wide and Deep model.
Network Metric OVAL GNN ERAN A.set αβ-crown L2T

Base-3172-[0,16/255]
time(s) 835.2 662.7 805.9 377.3 711.5 442.8

timeout(%) 20 15 5 7 15 9

Wide-6244-[0,16/255]
time(s) 539.4 268.5 607.1 162.7 354.7 228.8

timeout(%) 12 6 7 3 5 5

Deep-6756-[0,16/255]
time(s) 258.6 80.8 574.6 190.8 55.9 26.1

timeout(%) 4 1 1 2 1 0

0 20 40 60 80 100
Verifiable properties

100

101

102

103

Ti
m

e(
s)

Base

L2T
OVAL
ERAN
A.set

-Crown
GNN

0 20 40 60 80 100
Verifiable properties

100

101

102

103

Wide

0 20 40 60 80 100
Verifiable properties

101

102

103

Deep

Fig. 4: Cactus plots for Base, Wide and Deep model on OVAL benchmark.

timeout. L2T provides an additional average time saving by 37.8%, 35.5% and 53.3%
on three models respectively over the very recent αβ-crown. Although A.set achieves
a slightly lower time of verifying properties on the Base and Wide model, L2T leads to
7x faster than A.set on Deep model. Taken together, L2T costs the least total average
time on all three models. The cactus plots in Fig. 4 show the increasing solving time
with the accumulative verified properties for each verifier. L2T consistently provides
great performance on the majority of properties.

5.3 Performance on the COLT Benchmark

Furthermore, we evaluate L2T and six baselines on COLT benchmark [4], which is
quite challenging that includes the two largest CIFAR-10 CNNs with tens of thousands
ReLUs in VNN-COMP 2021 [2]. The goal is to verify that the classification is robust
within an adversarial region defined by l∞-ball of radius ϵ around an image. The COLT
benchmark considers the first 100 images of the test datasets and discards those that are
incorrectly classified. The values of ϵ for two CNNs are 2/255 and 8/255 respectively,
and the verification time is limited to five minutes per property. To evaluate the perfor-
mance on COLT benchmark, we introduce another two well-performed verifiers instead
the underperforming GNN: 1) Nnenum [3], a recent tool using multi-level abstraction
to achieve high-performance verification of ReLU networks. 2) VeriNet [16], a sound
and complete symbolic interval propagation-based toolkit for robustness verification.

As shown in Tab. 3, L2T significantly outperforms the majority of verifiers in terms
of average solving time and achieves lower timeout rate for two large-scale CIFAR-
10 networks. In comparison with A.set, which performed excellent in previous exper-
iments, the average time of L2T on these two networks was reduced by 53.5% and
47.0%, respectively. And the percentage of timeout also drops quite a lot. Although L2T

1854

14 H Xue et al.

Table 3: The performance of verifiers on two large-scale CIFAR-10 networks.
Network Metric OVAL Nnenum VeriNet ERAN A.set αβ-crown L2T

CIFAR-49402
-2/255

time(s) 85.3 115.2 80.9 87.8 104.5 35.0 48.6
timeout(%) 26.3 30 23.8 26.3 32.5 3.7 11.2

CIFAR-16634
-8/255

time(s) 124.8 135.0 105.6 111.5 166.1 43.8 88.0
timeout(%) 27.5 27.5 23.8 16.3 35 6.3 13.8

0 20 40 60 80 100 120 140
Verifiable properties

100

101

102
Ti

m
e(

s)

L2T
OVAL
ERAN
A.set

-Crown
Nnenum
VeriNet

Fig. 5: COLT benchmark cactus plot for L2T and six baselines.

is the second only to αβ-crown in terms of time efficiency, the comprehensive perfor-
mance of our tool is still competitive as shown in the cactus plot in Fig. 5, which shows
the increasing solving time required with accumulative number of verified properties
of two networks for each verifier. Within the limited solving time of 10s, L2T verified
around 35 more properties than αβ-crown. As verifying robustness properties becomes
increasingly complex, αβ-crown verified more properties than L2T, while L2T is more
efficient than other verifiers.

6 Conclusion

We have proposed an RNN-based framework for solving MILP problems generated
from the robustness verification of deep neural networks. This framework adopts an
iterative process to gradually repair failures caused by over-relaxation. Boosted by the
intelligent neuron selection strategy through a well-trained RNN in its key recurrent
tightening module, our framework can achieve effective verification while ensuring the
efficiency of MILP solving. A prototype tool named L2T has been implemented and
compared with state-of-the-art verifiers on some large-scale benchmarks. The experi-
mental results demonstrate the efficiency and scalability of our approach for robustness
verification on large-scale neural networks.

Acknowledgements This work is supported by the National Natural Science Founda-
tion of China under Grant 12171159, 61902325, and Shanghai Trusted Industry Internet
Software Collaborative Innovation Center.

1855

An RNN-Based Framework in Robustness Verification of NNs 15

References

1. Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approximation of
strong branching. INFORMS Journal on Computing pp. 185–195 (2017)

2. Bak, S., Liu, C., Johnson, T.: The second international verification of neural networks com-
petition (vnn-comp 2021): Summary and results. ArXiv preprint arXiv:2109.00498 (2021)

3. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for
verifying relu neural networks. In: International Conference on Computer Aided Verification.
pp. 66–96 (2020)

4. Balunovic, M., Vechev, M.: Adversarial training and provable defenses: Bridging the gap.
In: International Conference on Learning Representations (2020)

5. Bunel, R., De Palma, A., Desmaison, A., Dvijotham, K., Kohli, P., Torr, P., Kumar, M.P.:
Lagrangian decomposition for neural network verification. In: Conference on Uncertainty in
Artificial Intelligence. pp. 370–379 (2020)

6. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and bound for
piecewise linear neural network verification. Journal of Machine Learning Research pp.
42:1–42:39 (2020)

7. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view of piecewise
linear neural network verification. In: Neural Information Processing Systems (2018)

8. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to scalable
verification of deep networks. In: Conference on Uncertainty in Artificial Intelligence. p. 3
(2018)

9. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: Inter-
national Symposium on Automated Technology for Verification and Analysis. pp. 269–286
(2017)

10. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network
verification. International Conference on Computer Aided Verification pp. 43–65 (2020)

11. Gasse, M., Chetelat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization
with graph convolutional neural networks. In: Advances in Neural Information Processing
Systems. Curran Associates, Inc. (2019)

12. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of
the fourteenth international conference on artificial intelligence and statistics. pp. 315–323
(2011)

13. Golson, J.: Tesla driver killed in crash with autopilot active, nhtsa investigating. The Verge
(2016)

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
ArXiv preprint arXiv:1412.6572 (2014)

15. Hansknecht, C., Joormann, I., Stiller, S.: Cuts, primal heuristics, and learning to branch for
the time-dependent traveling salesman problem. ArXiv preprint arXiv:1805.01415 (2018)

16. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive refinement
and adversarial search. In: European Conference on Artificial Intelligence. pp. 2513–2520
(2020)

17. Henriksen, P., Lomuscio, A.: Deepsplit: An efficient splitting method for neural network
verification via indirect effect analysis. In: International Joint Conference on Artificial Intel-
ligence (2021)

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient smt
solver for verifying deep neural networks. In: International Conference on Computer Aided
Verification. pp. 97–117 (2017)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ArXiv preprint
arXiv:1412.6980 (2014)

1856

16 H Xue et al.

20. Lin, W., Yang, Z., Chen, X., Zhao, Q., Li, X., Liu, Z., He, J.: Robustness verification of
classification deep neural networks via linear programming. In: Conference on Computer
Vision and Pattern Recognition. pp. 11418–11427 (2019)

21. Lu, J., Kumar, M.P.: Neural network branching for neural network verification. In: Interna-
tional Conference on Learning Representations (2020)

22. Palma, A.D., Behl, H., Bunel, R.R., Torr, P., Kumar, M.P.: Scaling the convex barrier with
active sets. In: International Conference on Learning Representations (2021)

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative
style, high-performance deep learning library. In: Conference on Neural Information Pro-
cessing Systems, pp. 8024–8035 (2019)

24. Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying robust-
ness to adversarial examples. In: Conference on Neural Information Processing Systems. p.
10900–10910 (2018)

25. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with
provable guarantees. In: International Joint Conference on Artificial Intelligence (2018)

26. Singh, G., Ganvir, R., Puschel, M., Vechev, M.: Beyond the single neuron convex barrier
for neural network certification. In: Conference on Neural Information Processing Systems
(2019)

27. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective robustness
certification. In: Conference on Neural Information Processing Systems (2018)

28. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural net-
works. Proceedings of the ACM on Programming Languages pp. 1–30 (2019)

29. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Robustness certification with refinement. In:
International Conference on Learning Representations (2019)

30. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. In: International Conference on Learning Repre-
sentations (2014)

31. VNN-COMP: International verification of neural networks competition (vnn-comp). Inter-
national Conference on Computer Aided Verification (2020)

32. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-CROWN:
Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network verification. Advances in Neural Information Processing Systems (2021)

33. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex outer ad-
versarial polytope. In: International Conference on Machine Learning. pp. 5286–5295 (2018)

34. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.J.: Fast and Complete:
Enabling complete neural network verification with rapid and massively parallel incomplete
verifiers. In: International Conference on Learning Representations (2021)

35. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural network robust-
ness certification with general activation functions. Advances in neural information process-
ing systems (2018)

1857

