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Abstract. Recently, change detection (CD) of remote sensing images
have achieved great progress with the advances of deep learning. How-
ever, current methods generally deliver incomplete CD regions and ir-
regular CD boundaries due to the limited representation ability of the
extracted visual features. To relieve these issues, in this work we propose
a novel learning framework named Fully Transformer Network (FTN) for
remote sensing image CD, which improves the feature extraction from a
global view and combines multi-level visual features in a pyramid man-
ner. More speci�cally, the proposed framework �rst utilizes the advan-
tages of Transformers in long-range dependency modeling. It can help to
learn more discriminative global-level features and obtain complete CD
regions. Then, we introduce a pyramid structure to aggregate multi-level
visual features from Transformers for feature enhancement. The pyra-
mid structure grafted with a Progressive Attention Module (PAM) can
improve the feature representation ability with additional interdepen-
dencies through channel attentions. Finally, to better train the frame-
work, we utilize the deeply-supervised learning with multiple boundary-
aware loss functions. Extensive experiments demonstrate that our pro-
posed method achieves a new state-of-the-art performance on four public
CD benchmarks. For model reproduction, the source code is released at
https://github.com/AI-Zhpp/FTN.

Keywords: Fully Transformer Network · Change Detection · Remote
Sensing Image.

1 Introduction

Change Detection (CD) plays an important role in the �eld of remote sensing. It
aims to detect the key change regions in dual-phase remote sensing images cap-
tured at di�erent times but over the same area. Remote sensing image CD has
been used in many real-world applications, such as land-use planning, urban ex-
pansion management, geological disaster monitoring, ecological environment pro-
tection. However, due to change regions can be any shapes in complex scenarios,
there are still many challenges for high-accuracy CD. In addition, remote sensing
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image CD by handcrafted methods is time-consuming and labor-intensive, thus
there is a great need for fully-automatic and highly-e�cient CD.

In recent years, deep learning has been widely used in remote sensing image
processing due to its powerful feature representation capabilities, and has shown
great potential in CD. With deep Convolutional Neural Networks (CNN) [12,15,
17], many CD methods extract discriminative features and have demonstrated
good CD performances. However, previous methods still have the following short-
comings: 1) With the resolution improvement of remote sensing images, rich
semantic information contained in high-resolution images is not fully utilized.
As a result, current CD methods are unable to distinguish pseudo changes such
as shadow, vegetation and sunshine in sensitive areas. 2) Boundary information
in complex remote sensing images is often missing. In previous methods, the
extracted changed areas often have regional holes and their boundaries can be
very irregular, resulting in a poor visual e�ect [28]. 3) The temporal information
contained in dual-phase remote sensing images is not fully utilized, which is also
one of the reasons for the low performance of current CD methods.

To tackle above issues, in this work we propose a novel learning framework
named Fully Transformer Network (FTN) for remote sensing image CD, which
improves the feature extraction from a global view and combines multi-level vi-
sual features in a pyramid manner. More speci�cally, the proposed framework
is a three-branch structure whose input is a dual-phase remote sensing image
pair. We �rst utilize the advantages of Transformers [9,29,42] in long-range de-
pendency modeling to learn more discriminative global-level features. Then, to
highlight the change regions, the summation features and di�erence features are
generated by directly comparing the temporal features of dual-phase remote sens-
ing images. Thus, one can obtain complete CD regions. To improve the boundary
perception ability, we further introduce a pyramid structure to aggregate multi-
level visual features from Transformers. The pyramid structure grafted with a
Progressive Attention Module (PAM) can improve the feature representation
ability with additional interdependencies through channel attentions. Finally, to
better train the framework, we utilize the deeply-supervised learning with multi-
ple boundary-aware loss functions. Extensive experiments show that our method
achieves a new state-of-the-art performance on four public CD benchmarks.

In summary, the main contributions of this work are as follow:

� We propose a novel learning framework (i.e., FTN) for remote sensing im-
age CD, which can improve the feature extraction from a global view and
combine multi-level visual features in a pyramid manner.

� We propose a pyramid structure grafted with a Progressive Attention Module
(PAM) to further improve the feature representation ability with additional
interdependencies through channel attentions.

� We introduce the deeply-supervised learning with multiple boundary-aware
loss functions, to address the irregular boundary problem in CD.

� Extensive experiments on four public CD benchmarks demonstrate that our
framework attains better performances than most state-of-the-art methods.
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2 Related Work

2.1 Change Detection of Remote Sensing Images

Technically, the task of change detection takes dual-phase remote sensing images
as inputs, and predicts the change regions of the same area. Before deep learn-
ing, direct classi�cation based methods witness the great progress in CD. For
example, Change Vector Analysis (CVA) [16,48] is powerful in extracting pixel-
level features and is widely utilized in CD. With the rapid improvement in image
resolution, more details of objects have been recorded in remote sensing images.
Therefore, many object-aware methods are proposed to improve the CD per-
formance. For example, Tang et al. [41] propose an object-oriented CD method
based on the Kolmogorov�Smirnov test. Li et al. [23] propose the object-oriented
CVA to reduce the number of pseudo detection pixels. With multiple classi�ers
and multi-scale uncertainty analysis, Tan et al. [40] build an object-based ap-
proach for complex scene CD. Although above methods can generate CD maps
from dual-phase remote sensing images, they generally deliver incomplete CD
regions and irregular CD boundaries due to the limited representation ability of
the extracted visual features.

With the advances of deep learning, many works improve the CD performance
by extracting more discriminative features. For example, Zhang et al. [52] uti-
lize a Deep Belief Network (DBN) to extract deep features and represent the
change regions by patch di�erences. Saha et al. [36] combine a pre-trained deep
CNN and traditional CVA to generate certain change regions. Hou et al. [14]
take the advantages of deep features and introduce the low rank analysis to
improve the CD results. Peng et al. [33] utilize saliency detection analysis and
pre-trained deep networks to achieve unsupervised CD. Since change regions
may appear any places, Lei et al. [22] integrate Stacked Denoising AutoEncoders
(SDAE) with the multi-scale superpixel segmentation to realize superpixel-based
CD. Similarly, Lv et al. [31] utilize a Stacked Contractive AutoEncoder (SCAE)
to extract temporal change features from superpixels, then adopt a clustering
method to produce CD maps. Meanwhile, some methods formulate the CD task
into a binary image segmentation task. Thus, CD can be �nished in a super-
vised manner. For example, Alcantarilla et al. [1] �rst concatenate dual-phase
images as one image with six channels. Then, the six-channel image is fed into a
Fully Convolutional Network (FCN) to realize the CD. Similarly, Peng et al. [34]
combine bi-temporal remote sensing images as one input, which is then fed into
a modi�ed U-Net++ [57] for CD. Daudt et al. [7] utilize Siamese networks to
extract features for each remote sensing image, then predict the CD maps with
fused features. The experimental results prove the e�ciency of Siamese networks.
Further more, Guo et al. [11] use a fully convolutional Siamese network with a
contrastive loss to measure the change regions. Zhang et al. [49] propose a deeply-
supervised image fusion network for CD. There are also some works focused on
speci�c object CD. For example, Liu et al. [28] propose a dual-task constrained
deep Siamese convolutional network for building CD. Jiang et al. [19] propose a
pyramid feature-based attention-guided Siamese network for building CD. Lei et
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al. [21] propose a hierarchical paired channel fusion network for street scene CD.
The aforementioned methods have shown great success in feature learning for
CD. However, these methods have limited global representation capabilities and
usually focus on local regions of changed objects. We �nd that Transformers have
strong characteristics in extracting global features. Thus, di�erent from previ-
ous works, we take the advantages of Transformers, and propose a new learning
framework for more discriminative feature representations.

2.2 Vision Transformers for Change Detection

Recently, Transformers [42] have been applied to many computer vision tasks,
such as image classi�cation [9, 29], object detection [4], semantic segmenta-
tion [44], person re-identi�cation [27, 51] and so on. Inspired by that, Zhang et

al. [50] deploy a Swin Transformer [29] with a U-Net [35] structure for re-
mote sensing image CD. Zheng et al. [56] design a deep Multi-task Encoder-
Transformer-Decoder (METD) architecture for semantic CD. Wang et al. [45]
incorporate a Siamese Vision Transformer (SViT) into a feature di�erence frame-
work for CD. To take the advantages of both Transformers and CNNs, Wang et

al. [43] propose to combine a Transformer and a CNN for remote sensing image
CD. Li et al. [24] propose an encoding-decoding hybrid framework for CD, which
has the advantages of both Transformers and U-Net. Bandara et al. [3] unify hier-
archically structured Transformer encoders with Multi-Layer Perception (MLP)
decoders in a Siamese network to e�ciently render multi-scale long-range details
for accurate CD. Chen et al. [5] propose a Bitemporal Image Transformer (BIT)
to e�ciently and e�ectively model contexts within the spatial-temporal domain
for CD. Ke et al. [20] propose a hybrid Transformer with token aggregation for
remote sensing image CD. Song et al. [39] combine the multi-scale Swin Trans-
former and a deeply-supervised network for CD. All these methods have shown
that Transformers can model the inter-patch relations for strong feature repre-
sentations. However, these methods do not take the full abilities of Transformers
in multi-level feature learning. Di�erent from existing Transformer-based CD
methods, our proposed approach improves the feature extraction from a global
view and combines multi-level visual features in a pyramid manner.

3 Proposed Approach

As shown in Fig. 1, the proposed framework includes three key components, i.e.,
Siamese Feature Extraction (SFE), Deep Feature Enhancement (DFE) and Pro-
gressive Change Prediction (PCP). By taking dual-phase remote sensing images
as inputs, SFE �rst extracts multi-level visual features through two shared Swin
Transformers. Then, DFE utilizes the multi-level visual features to generate sum-
mation features and di�erence features, which highlight the change regions with
temporal information. Finally, by integrating all above features, PCP introduces
a pyramid structure grafted with a Progressive Attention Module (PAM) for the
�nal CD prediction. To train our framework, we introduce the deeply-supervised
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Fig. 1. The overall structure of our proposed framework.

learning with multiple boundary-aware loss functions for each feature level. We
will elaborate these key modules in the following subsections.

3.1 Siamese Feature Extraction

Following previous works, we introduce a Siamese structure to extract multi-
level features from the dual-phase remote sensing images. More speci�cally, the
Siamese structure contains two encoder branches, which share learnable weights
and are used for the multi-level feature extraction of images at temporal phase
1 (T1) and temporal phase 2 (T2), respectively. As shown in the left part of
Fig. 1, we take the Swin Transformer [29] as the basic backbone of the Siamese
structure, which involves �ve stages in total.
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Fig. 2. The basic structure of the used Swin Transformer block.

Di�erent from other typical Transformers [9, 42], the Swin Transformer re-
places the standard Multi-Head Self-Attention (MHSA) with Window-based
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Multi-Head Self-Attention (W-MHSA) and Shifted Window-based Multi-Head
Self-Attention (SW-MHSA), to reduce the computational complexity of the
global self-attention. To improve the representation ability, the Swin Transformer
also introduces MLP, LayerNorm (LN) and residual connections. Fig. 2 shows
the basic structure of the Swin Transformer block used in this work. Technically,
the calculation formulas of all the procedures are given as follows:

X̄
l

= W-MHSA(LN(Xl−1)) +Xl−1, (1)

Xl = MLP(LN(X̄
l−1

)) + X̄
l
, (2)

X̄
l+1

= SW-MHSA(LN(X̄
l
)) +Xl, (3)

Xl+1 = MLP(LN(X̄
l+1

)) + X̄
l+1

, (4)

where X̄ is the output of the W-MHSA or SW-MHSA module and X is the
output of the MLP module. At each stage of the original Swin Transformers,
the feature resolution is halved, while the channel dimension is doubled. More
speci�cally, the feature resolution is reduced from (H/4) × (W/4) to (H/32) ×
(W/32), and the channel dimension is increased from C to 8C. In order to
take advantages of global-level information, we introduce an additional Swin
Transformer block to enlarge the receptive �eld of the feature maps. Besides,
to reduce the computation, we uniformly reduce the channel dimension to C,
and generate encoded features [E1

T1,E
2
T1, ...,E

5
T1] and [E1

T2,E
2
T2, ...,E

5
T2] for the

T1 and T2 images, respectively. Based on the shared Swin Transformers, the
multi-level visual features can be extracted. In general, features in the high-level
capture more global semantic information, while features in the low-level retain
more local detail information. Both of them help the detection of change regions.

3.2 Deep Feature Enhancement

In complex scenarios, there are many visual challenges for remote sensing image
CD. Thus, only depending on the above features is not enough. To highlight
the change regions, we propose to enhance the multi-level visual features with
feature summation and di�erence, as shown in the top part and bottom part of
Fig. 1. More speci�cally, we �rst perform feature summation and di�erence, then
introduce a contrast feature associated to each local feature [30]. The enhanced
features can be represented as:

Ē
k
S = ReLU(BN(Conv(Ek

T1 +Ek
T2))), (5)

Ek
S = [Ē

k
S , Ē

k
S − Pool(Ē

k
S)], (6)

Ē
k
D = ReLU(BN(Conv(Ek

T1 −E
k
T2))), (7)

Ek
D = [Ē

k
D, Ē

k
D − Pool(Ē

k
D)], (8)

where Ek
S and Ek

D (k = 1, 2, ..., 5) are the enhanced features with point-wise
summation and di�erence, respectively. ReLU is the recti�ed linear unit, BN is
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the batch normalization, Conv is a 1× 1 convolution, and Pool is a 3× 3 aver-
age pooling with padding=1 and stride=1. [,] is the concatenation operation in
channel. Through the proposed DFE, change regions and boundaries are high-
lighted with temporal information. Thus, the framework can make the extracted
features more discriminative and obtain better CD results.

3.3 Progressive Change Prediction

Since change regions can be any shapes and appear in any scales, we should con-
sider the CD predictions at various cases. Inspired by the feature pyramid [25],
we propose a progressive change prediction, as shown in the middle part of Fig. 1.
To improve the representation ability, a pyramid structure with a Progressive
Attention Module (PAM) is utilized with additional interdependencies through
channel attentions. The structure of the proposed PAM is illustrated in Fig. 3.
It �rst takes the summation features and di�erence features as inputs, then a
channel-level attention is applied to enhance the features related to change re-
gions. Besides, we also introduce a residual connection to improve the learning
ability. The �nal feature map can be obtained by a 1× 1 convolution. Formally,
the PAM can be represented as:

Fk = ReLU(BN(Conv([Ek
S ,E

k
D]))), (9)

Fk
A = Fk ∗ σ(Conv(GAP(Fk))) + Fk, (10)

where σ is the Sigmoid function and GAP is the global average pooling.

Conv1x1-BN-ReLU

Conv1x1+Sigmoid

Global Average Pooling

Summation Features

Difference Features

Conv1x1-BN-ReLU

C

Difference Features

Fig. 3. The structure of our proposed Progressive Attention Module (PAM).

To achieve the progressive change prediction, we build the decoder pyramid
grafted with a PAM as follows:

Fk
P =

{
Fk

A, k = 5,

UM(SwinBlockn(Fk+1
P ))) + Fk

A, 1 ≤ k < 5.
(11)

where UM is the patch unmerging block used in Swin Transformers for upsam-
pling, and SwinBlockn is the Swin Transformer block with n layers. From the
above formula, one can see that our PCP can make full use of the interdependen-
cies within channels, and can progressively aggregate multi-level visual features
to improve the perception ability of the change regions.
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3.4 Loss Function

To optimize our framework, we adopt the deeply-supervised learning [53�55] with
multiple boundary-aware loss functions for each feature level. The overall loss is
de�ned as the summation over all side-outputs and the �nal fusion prediction:

L = Lf +

S∑
s=1

αsLs (12)

where Lf is the loss of the �nal fusion prediction and Ls is the loss of the
s-th side-output, respectively. S denotes the total number of the side-outputs
and αs is the weight for each level loss. In this work, our method includes �ve
side-outputs, i.e., S = 5.

To obtain complete CD regions and regular CD boundaries, we de�ne Lf or
Ls as a combined loss with three terms:

Lf/s = LWBCE + LSSIM + LSIoU , (13)

where LWBCE is the weighted binary cross-entropy loss, LSSIM is the structural
similarity loss and LSIoU is the soft intersection over union loss. The LWBCE

provides a probabilistic measure of similarity between the prediction and ground
truth from a pixel-level view. The LSSIM captures the structural information of
change regions in patch-level. The LSIoU is inspired by measuring the similarity
of two sets, and yields a global similarity in map-level. More speci�cally, given
the ground truth probability gl(x) and the estimated probability pl(x) at pixel
x to belong to the class l, the LWBCE loss function is

LWBCE = −
∑
x

w(x)gl(x)log(pl(x)). (14)

Here, we utilize weights w(x) to handle challenges appeared in CD: the class
imbalance and the errors along CD boundaries. Given the frequency fl of class
l in the training data, the indicator function I, the training prediction P , and
the gradient operator ∇, weights are de�ned as:

w(x) =
∑
l

I(P (x == l))
median(f)

fl
+ w0I(|∇P (x)| > 0), (15)

where f = [f1, ..., fL] is the vector of all class frequencies. The �rst term models
median frequency balancing [2] to handle the class imbalance problem by high-
lighting classes with low probability. The second term assigns higher weights on
the CD boundaries to emphasize on the correct prediction of boundaries.

The LSSIM loss considers a local neighborhood of each pixel [46]. Let x̂ =
{xj : j = 1, ..., N2} and ŷ = {yj : j = 1, ..., N2} be the pixel values of two
corresponding patches (size: N × N) cropped from the prediction P and the
ground truth G respectively, the LSSIM loss is de�ned as:

LSSIM = 1− (2µxµx + ε)(2σxy + ε)

(µ2
x

+ µ2
y

+ ε)(σ2
x

+ σ2
y

+ ε)
, (16)
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where µx, µy and σx, σy are the mean and standard deviations of x̂ and ŷ

respectively. σxy is their covariance. ε = 10−4 is used to avoid dividing by zero.

In this work, one metric of interest at test time is the Intersection over Union
(IoU). Thus, we also introduce the soft IoU loss [32], which is di�erentiable for
learning. The LSIoU is de�ned as:

LSIoU = 1−
∑

x
pl(x)gl(x)∑

x
[pl(x) + gl(x)− pl(x)gl(x)]

. (17)

When utilizing all above losses, the LWBCE loss can relieve the imbalance prob-
lem for change pixels, the LSSIM loss highlights the local structure of change
boundaries, and the LSIoU loss gives more focus on the change regions. Thus,
we can obtain better CD results and make the framework easier to optimize.

4 Experiments

4.1 Datasets

LEVIR-CD [6] is a public large-scale CD dataset. It contains 637 remote sens-
ing image pairs with a 1024×1024 resolution (0.5m). We follow its default dataset
split, and crop original images into small patches of size 256×256 with no over-
lapping. Therefore, we obtain 7120/1024/2048 pairs of image patches for train-
ing/validation/test, respectively.

WHU-CD [18] is a public building CD dataset. It contains one pair of high-
resolution (0.075m) aerial images of size 32507×15354. As no de�nite data split
is widely-used, we crop the original image into small patches of size 256×256
with no overlap and randomly split it into three parts: 6096/762/762 for train-
ing/validation/test, respectively.

SYSU-CD [37] is also a public building CD dataset. It contains 20000 pairs
of high-resolution (0.5m) images of size 256×256. We follow its default dataset
split for experiments. There are 12000/4000/4000 pairs of image patches for
training/validation/test, respectively.

Google-CD [26] is a very recent and public CD dataset. It contains 19
image pairs, originating from Google Earth Map. The image resolutions are
ranging from 1006×1168 pixels to 4936×5224 pixels. We crop the images into
small patches of size 256×256 with no overlap and randomly split it into three
parts: 2504/313/313 for training/validation/test, respectively.

4.2 Evaluation Metrics

To verify the performance, we follow previous works [3,49] and mainly utilize F1
and Intersection over Union (IoU) scores with regard to the change-class as the
primary evaluation metrics. Additionally, we also report the precision and recall
of the change category and overall accuracy (OA).
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4.3 Implementation Details

We perform experiments with the public MindSpore toolbox and one NVIDIA
A30 GPU. We used the mini-batch SGD algorithm to train our framework with
an initial learning rate 10−3, moment 0.9 and weight decay 0.0005. The batch
size is set to 6. For the Siamese feature extraction backbone, we adopt the Swin
Transformer pre-trained on ImageNet-22k classi�cation task [8]. To �t the input
size of the pre-trained Swin Transformer, we uniformly resize image patches to
384×384. For other layers, we randomly initialize them and set the learning rate
with 10 times than the initial learning rate. We train the framework with 100
epochs. The learning rate decreases to the 1/10 of the initial learning rate at
every 20 epoch. To improve the robustness, data augmentation is performed by
random rotation and �ipping of the input images. For the loss function in the
model training, the weight parameters of each level are set equally. For model
reproduction, the source code is released at https://github.com/AI-Zhpp/FTN.

4.4 Comparisons with Sate-of-the-arts

In this section, we compare the proposed method with other outstanding meth-
ods on four public CD datasets. The experimental results fully verify the e�ec-
tiveness of our proposed method.

Table 1. Quantitative comparisons on LEVIR-CD and WHU-CD datasets.

Methods
LEVIR-CD WHU-CD

Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA

FC-EF [7] 86.91 80.17 83.40 71.53 98.39 71.63 67.25 69.37 53.11 97.61
FC-Siam-Di� [7] 89.53 83.31 86.31 75.92 98.67 47.33 77.66 58.81 41.66 95.63
FC-Siam-Conc [7] 91.99 76.77 83.69 71.96 98.49 60.88 73.58 66.63 49.95 97.04
BiDateNet [28] 85.65 89.98 87.76 78.19 98.52 78.28 71.59 74.79 59.73 81.92
U-Net++MSOF [34] 90.33 81.82 85.86 75.24 98.41 91.96 89.40 90.66 82.92 96.98
DTCDSCN [28] 88.53 86.83 87.67 78.05 98.77 63.92 82.30 71.95 56.19 97.42
DASNet [28] 80.76 79.53 79.91 74.65 94.32 68.14 73.03 70.50 54.41 97.29
STANet [6] 83.81 91.00 87.26 77.40 98.66 79.37 85.50 82.32 69.95 98.52
MSTDSNet [39] 85.52 90.84 88.10 78.73 98.56 �� �� �� �� ��
IFNet [49] 94.02 82.93 88.13 78.77 98.87 96.91 73.19 83.40 71.52 98.83
SNUNet [10] 89.18 87.17 88.16 78.83 98.82 85.60 81.49 83.50 71.67 98.71
BIT [5] 89.24 89.37 89.31 80.68 98.92 86.64 81.48 83.98 72.39 98.75
H-TransCD [20] 91.45 88.72 90.06 81.92 99.00 93.85 88.73 91.22 83.85 99.24
ChangeFormer [3] 92.05 88.80 90.40 82.48 99.04 91.83 88.02 89.88 81.63 99.12
Ours 92.71 89.37 91.01 83.51 99.06 93.09 91.24 92.16 85.45 99.37

Quantitative Comparisons.We present the comparative results in Tab. 1
and Tab. 2. The results show that our method delivers excellent performance.
More speci�cally, our method achieves the best F1 and IoU values of 91.01% and
83.51% on the LEVIR-CD dataset, respectively. They are much better than pre-
vious methods. Besides, compared with other Transformer-based methods, such

1700
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as BIT [5], H-TransCD [20] and ChangeFormer [3], our method shows consistent
improvements in terms of all evaluation metrics. On the WHU-CD dataset, our
method shows signi�cant improvement with the F1 and IoU values of 92.16%
and 85.45%, respectively. Compared with the second-best method, our method
improves the F1 and IoU values by 0.9% and 1.6%, respectively. On the SYSU-
CD dataset, our method achieves the F1 and IoU values of 81.53% and 68.82%,
respectively. The SYSU-CD dataset includes more large-scale change regions. We
think the improvements are mainly based on the proposed DFE. On the Google-
CD dataset, our method shows much better results than compared methods. In
fact, our method achieves the F1 and IoU values of 85.58% and 74.79%, respec-
tively. We note that the Google-CD dataset is recently proposed and it is much
challenging than other three datasets. We also note that the performance of
precision, recall and OA is not consistent in all methods. Our method generally
achieve better recall values than most methods. The main reason may be that
our method gives higher con�dences to the change regions.

Table 2. Quantitative comparisons on SYSU-CD and Google-CD datasets.

Methods
SYSU-CD Google-CD

Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA

FC-EF [7] 74.32 75.84 75.07 60.09 86.02 80.81 64.39 71.67 55.85 85.85
FC-Siam-Di� [7] 89.13 61.21 72.57 56.96 82.11 85.44 63.28 72.71 57.12 87.27
FC-Siam-Conc [7] 82.54 71.03 76.35 61.75 86.17 82.07 64.73 72.38 56.71 84.56
BiDateNet [28] 81.84 72.60 76.94 62.52 89.74 78.28 71.59 74.79 59.73 81.92
U-Net++MSOF [34] 81.36 75.39 78.26 62.14 86.39 91.21 57.60 70.61 54.57 95.21
DASNet [28] 68.14 70.01 69.14 60.65 80.14 71.01 44.85 54.98 37.91 90.87
STANet [6] 70.76 85.33 77.37 63.09 87.96 89.37 65.02 75.27 60.35 82.58
DSAMNet [49] 74.81 81.86 78.18 64.18 89.22 72.12 80.37 76.02 61.32 94.93
MSTDSNet [39] 79.91 80.76 80.33 67.13 90.67 �� �� �� �� ��
SRCDNet [26] 75.54 81.06 78.20 64.21 89.34 83.74 71.49 77.13 62.77 83.18
BIT [5] 82.18 74.49 78.15 64.13 90.18 92.04 72.03 80.82 67.81 96.59
H-TransCD [20] 83.05 77.40 80.13 66.84 90.95 85.93 81.73 83.78 72.08 97.64
Ours 86.86 76.82 81.53 68.82 91.79 86.99 84.21 85.58 74.79 97.92

Qualitative Comparisons. To illustrate the visual e�ect, we display some
typical CD results on the four datasets, as shown in Fig. 4. From the results, we
can see that our method generally shows best CD results. For example, when
change regions have multiple scales, our method can correctly identify most of
them, as shown in the �rst row. When change objects cover most of the image
regions, most of current methods can not detect them. However, our method can
still detect them with clear boundaries, as shown in the second row. In addition,
when change regions appear in complex scenes, our method can maintain the
contour shape. While most of compared methods fail, as shown in the third row.
When distractors appear, our method can reduce the e�ect and correctly detect
change regions, as shown in the fourth row. From these visual results, we can
see that our method shows superior performance than most methods.
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Fig. 4. Comparison of typical change detection results on four CD datasets.

To further verify the e�ectiveness, we provide more hard samples in Fig. 5. As
can be seen, our method performs better than most methods (1st row). Most of
current methods can not detect the two small change regions in the center, while
our method can accurately localize them. Besides, we also show failed examples
in the second row of Fig. 5. As can be seen, all compared methods can not detect
all the change regions. However, our method shows more reasonable results.

T1 Image T2 Image GT Ours DTCDSCN IFNet CFormer

Fig. 5. Comparison of typical change detection results on hard and failed samples.

4.5 Ablation study

In this subsection, we perform extensive ablation studies to verify the e�ect of
key components in our framework. The experiments are conducted on LEVIR-
CD dataset. However, other datasets have similar performance trends.

E�ects of di�erent Siamese backbones. As shown in the 2-3 rows of
Tab. 3, we introduce the VGGNet-16 [38] and Swin Transformer as Siamese
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backbones. To ensure a fair comparison, we utilize the basic Feature Pyramid
(FP) structure [25]. From the results, one can see that the performance with
the Swin Transformer can be consistently improved in terms of Recall, F1, IoU
and OA. The main reason is that the Swin Transformer has a better ability of
modeling long-range dependency than VGGNet-16.

Table 3. Performance comparisons with di�erent model variants on LEVIR-CD.

Models Pre. Rec. F1 IoU OA

(a) VGGNet-16+FP 91.98 82.65 87.06 77.09 98.75

(b) SwinT+FP 91.12 87.42 89.23 80.56 98.91

(c) SwinT+DFE+FP 91.73 88.43 90.05 81.89 99.00

(d) SwinT+DFE+PCP 92.71 89.37 91.01 83.51 99.06

E�ects of DFE. The fourth row of Tab. 3 shows the e�ect of our proposed
DFE. When compared with the Model(b) SwinT + FP , DFE improves the F1
value from 89.23% to 90.05%, and the IoU value from 80.56% to 81.89%, re-
spectively. The main reason is that our DFE considers the temporal information
with feature summation and di�erence, which highlight change regions.

E�ects of PCP. In order to better detect multi-scale change regions, we
introduce the PCP, which is a pyramid structure grafted with a PAM. We com-
pare it with FP. From the results in the last row of Tab. 3, one can see that our
PCP achieves a signi�cant improvement in all metrics. Furthermore, adding the
PCP also achieves a better visual e�ect, in which the extracted change regions
are complete and the boundaries are regular, as shown in Fig. 6.

T1 Image T2 Image Model (a) Model (b) Model (c) Model (d) GT

Fig. 6. Visual comparisons of predicted change maps with di�erent models.

In addition, we also introduce the Swin Transformer blocks in the PCP as
shown in Eq. 11. To verify the e�ect of di�erent layers, we report the results in
Tab. 4. From the results, we can see that the models show better results with
equal layers. The best results can be achieved with n = 4. With more layers, the
computation is larger and the performance decreases in our framework.

E�ects of di�erent losses. In this work, we introduce multiple loss func-
tions to improve the CD results. Tab. 5 shows the e�ects of these losses. It can
be seen that using the WBCE loss can improve the F1 value from 88.75% to
90.01% and the IoU from 79.78% to 81.83%. Using the SSIM loss achieves the
F1 value of 90.11% and the IoU of 82.27%. Using the SIoU loss achieves the
F1 value of 91.01% and the IoU of 83.51%. In fact, combining all of them can
achieve the best results, which prove the e�ectiveness of all loss terms.
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Table 4. Performance comparisons with di�erent decoder layers on LEVIR-CD.

Layers Pre. Rec. F1 IoU OA

(2,2,2,2) 91.18 87.00 89.04 80.24 98.90

(4,4,4,4) 91.65 88.42 90.01 81.83 99.00

(6,6,6,6) 91.70 88.30 89.96 81.76 98.99

(8,8,8,8) 91.55 88.47 89.98 81.79 98.99

(2,4,6,8) 92.13 85.71 88.80 79.86 98.89

Table 5. Performance comparisons with di�erent losses on LEVIR-CD.

Losses Pre. Rec. F1 IoU OA

BCE 90.68 86.91 88.75 79.78 98.88

WBCE 91.65 88.42 90.01 81.83 99.00

WBCE+SSIM 91.71 88.57 90.11 82.27 99.01

WBCE+SSIM+SIoU 92.71 89.37 91.01 83.51 99.06

More structure discussions. There are some key di�erences between our
work and previous fully Transformer structures: The works in [13,47] are taking
single images as inputs and using an encoder-decoder structure. However, our
framework utilizes a Siamese structure to process dual-phase images. In order to
fuse features from two encoder streams, we propose a pyramid structure grafted
with a PAM for the �nal CD prediction. Thus, apart from the input di�erence,
our work progressively aggregates multi-level features for feature enhancement.

5 Conclusion

In this work, we propose a new learning framework named FTN for change
detection of dual-phase remote sensing images. Technically, we �rst utilizes a
Siamese network with the pre-trained Swin Transformers to extract long-range
dependency information. Then, we introduce a pyramid structure to aggregate
multi-level visual features, improving the feature representation ability. Finally,
we utilize the deeply-supervised learning with multiple loss functions for model
training. Extensive experiments on four public CD benchmarks demonstrate
that our proposed framework shows better performances than most state-of-
the-art methods. In future works, we will explore more e�cient structures of
Transformers to reduce the computation and develop unsupervised or weakly-
supervised methods to relieve the burden of remote sensing image labeling.
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