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Abstract. Unlike 2D face images, obtaining a 3D face is not easy. Exist-
ing methods, therefore, create a 3D face from a 2D face image (3D face
reconstruction). A user might wish to edit the reconstructed 3D face,
but 3D face editing has seldom been studied. This paper presents such
method and shows that reconstruction and editing can help each other.
In the presented framework named NEO-3DF, the 3D face model we pro-
pose has independent sub-models corresponding to semantic face parts.
It allows us to achieve both local intuitive editing and better 3D-to-2D
alignment. Each face part in our model has a set of controllers designed
to allow users to edit the corresponding features (e.g., nose height). In ad-
dition, we propose a differentiable module for blending the face parts and
making it possible to automatically adjust the face parts (both the shapes
and the locations) so that they are better aligned with the original 2D
image. Experiments show that the results of NEO-3DF outperform exist-
ing methods in intuitive face editing and have better 3D-to-2D alignment
accuracy (14% higher IoU) than global face model-based reconstruction.
Code available at https://github.com/ubc-3d-vision-lab/NEO-3DF

Keywords: 3D Face Editing · 3D-to-2D Face Alignment.

1 Introduction

It has become popular for individuals recently to allow their faces to be used
in 3D virtual reality (VR) applications and user-generated content games. For
example, in a virtual conference or a virtual get-together meeting, the use of
reconstructed 3D faces that resemble those of the real users helps the partic-
ipants to identify the persons behind the avatars. Enabling a user to change
some features, i.e. edit their reconstructed 3D face, can solve a main problem in
existing 3D face reconstruction methods. As the reconstructed 3D face is usually
⋆ This work was done when James Gregson was at Huawei Technologies Canada.
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not accurate enough, the user may want to correct their reconstructed 3D face.
Also when the user is not satisfied with some parts of their actual face, then they
can modify those parts. While 3D face reconstruction has been well-studied in
the past two decades [3,8,9,17,35,38], editing of 3D reconstructed faces has not.
We believe there is a great potential for deep learning-based 3D face editing in
many real-world applications, including 3D gaming, film-making, VR, and plas-
tic surgery. 3D face editing can also benefit 2D face editing because the 3D face
can provide explicit geometry information to 2D generative models [7, 27,37].

3D editing is a challenging task. Editing a 3D shape usually requires strong
spatial thinking ability, and traditional 3D editing tools are designed for use by
artists. Moreover, editing of 3D faces is even more difficult than editing many
other 3D shapes. This is because people are very sensitive to the appearance
of a human face. Minor modifications of a 3D face could cause very different
feelings in people. Because facial parts such as eyebrows and nose are relatively
independent, segmenting the 3D face into parts and independently editing each
part makes 3D face editing easier to handle [13, 14, 34]. In this work, we want
to take one step further to bridge single-image 3D face reconstruction (SIFR)
and 3D face editing. Since ambiguities such as depth and lighting will cause the
reconstructed 3D face to be different from the actual face, the SIFR is an ill-posed
problem. Recent works on SIFR display limited improvement in reconstruction
when compared to the 3D ground-truth [8,11], whereas 3D-to-2D alignment, i.e.
aligning the 3D face with the image it was reconstructed from, is still an open
challenge [25]. Therefore, we also explore improving the 3D-to-2D alignment
by taking advantage of 3D face editing. Inspired by [17, 38], we use 2D face
semantic segmentation/parsing to provide ground truth in aligning the 3D face
to the image. This requires us to segment our 3D face model based on the 2D
face parsing, which is different from how a 3D face is segmented in [13,14,34].

In this paper, we propose a novel framework (which we named NEO-3DF)
that allows the reconstructed 3D face to be edited locally. The features that can
be edited are defined by the designer, but the extent of editing is determined by
the user. Most SIFR methods use a global face model (i.e., the 3D face shape is
modeled as a whole) which makes it extremely challenging for editing [8,11,21].
Our 3D face modeling however uses different sub-models for the different seman-
tic segments (parts) of the face. This ensures that editing the shape of one part
of a face does not cause changes in other parts, resulting in easier and more con-
venient editing. This approach also allows us to improve the 3D reconstruction
accuracy using 2D supervision (see Section 3). We developed a way of using the
As-Rigid-As-Possible (ARAP) method [33] to blend the face segments (parts),
so the face appears natural at the segment boundaries. Importantly, we propose
a differentiable version of ARAP that makes it possible to use gradient descent-
based optimization to improve the alignment between the 3D reconstructed face
segments and those of the original 2D image (i.e., 3D-to-2D alignment).

In summary, our main contributions are: (1) We proposed NEO-3DF, the
first method that couples single-image 3D face reconstruction and intuitive 3D
face editing. (2) The NEO-3DF is face-parts-based and follows 2D semantic
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face segmentation, which makes it possible for an automatic shape adjusting
process. (3) We proposed a differentiable version of ARAP to allow us to use
2D face segmentation as guidance to adjust the reconstructed 3D face shape
automatically. (4) We associated editing controllers with the latent space and
justified the effectiveness of its use in an automatic 3D-to-2D alignment process.

2 Related Works

3D Face Modeling and Reconstruction. The 3D face is usually represented
by the 3D mesh structure, where the vertices and facets define the surface of
the 3D face. A straightforward way to create a 3D face is by using a weighted
average of a linear combination of a set of example 3D faces [36]. An improved
version of this approach, the 3D Morphable Face Model (3DMM), transforms the
scanned and processed example 3D faces to a vector space representation, using
Principal Component Analysis (PCA) [3]. The PCA captures the primary modes
of variation in the pre-collected 3D face dataset. Although 3DMM was proposed
two decades ago, it is still widely used in current human face-related research
and applications, such as 3D face reconstruction [24,38], controllable face image
generation [7, 37], and 3D face animation [2]. In recent years, research on the
use of deep learning to learn the general 3D face model shows the advantage of
neural network-based 3D face models over traditional 3DMMs [4,29,35].

Single-image 3D face reconstruction (SIFR) is an important application of
both 3DMMs and neural network-based 3D face models [9]. The task is to re-
construct a 3D face from a given single-view face image. In most cases, the
camera intrinsic and lighting conditions are unknown. In addition, for images
where the faces appear identical, the actual 3D shape of these faces can be dif-
ferent due to potential ambiguities. Thus, the SIFR is an ill-posed problem, and
we can only approximately reconstruct a 3D face from a single image. How-
ever, compared with accurate 3D reconstruction methods, using expensive 3D
scanning devices or multi-view images, SIFR is more accessible to users of con-
sumer electronics. We can roughly group the existing SIFR methods as fitting-
based methods [3,38] and learning-based methods [8,12,17,35]. Generally, both
fitting-based and learning-based methods use a 3D face model such as linear
3DMM [8, 11, 17, 38] or non-linear neural network-based model [12, 35] to serve
as a priori knowledge. The main difference is that the fitting-based methods will
iteratively optimize the variables to make the generated 3D face look more like
the face in the photo. The learning-based method uses another parametric model
(usually a neural network) to regress those variables.

General-Purpose 3D Mesh Editing. Many 3D mesh editing methods allow
the user to modify the location of some vertices (constraint vertices) to edit the
3D mesh. The cage-based deformation (CBD) method warps the space enclosed
by “cages” to deform the mesh surface [19]. CBD is usually used for large-scale
deformations such as human body postures and is not ideal for 3D face editing
because the latter focuses more on local details. Building the appropriate “cages”
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is also a challenging task. The ARAP method is a detail-preserving mesh surface
deformation method [33]. ARAP assumes that by making the local surface de-
formation close to rigid, one can preserve the local surface details. In editing 3D
face shapes, neither CBD nor ARAP can prevent improper edits, this is because
these methods do not have prior knowledge on 3D faces. In comparison, the
blendshape methods solve the face shape editing problem by using a set of pre-
defined shape offsets to deform a given face shape [22]. Although the concept of
the blendshape is straightforward, developing intuitive meaningful blendshapes
is labor-intensive. 3DMMs can be considered as a special type of blendshape
method, where the blendshapes are derived from 3D scans and compressed by
PCA. However, the eigenvectors do not have intuitive meaning.

3D Face Editing. In the video gaming industry, 3D face editing systems are
usually designed by artists. For example, the artists can define meaningful con-
trollers (e.g., nose height) with corresponding handcrafted blendshapes to allow
users to easily change the shape of a 3D face [32]. Foti et al. proposed the Latent
Disentanglement Variational Autoencoder (LD-VAE) and demonstrated that it
can be used for constraint vertex-based face shape editing [13]. Because latent
disentanglement in terms of the face parts is an objective during the training
of LD-VAE, the local editing result is better than using a traditional 3DMM.
Whereas this type of editing still requires the user to have some skills in arts.
Ghafourzadeh et al. developed a face editing system that uses a face parts-
based 3DMM (PB-3DMM) [14]. This method decomposes the face shape into
five manually selected non-overlapping parts to gain local control. The models
of these face parts are built using PCA on 135 3D face scans. They also use the
method proposed by Allen et al. to find a linear mapping between anthropo-
metric measurement space and the PCA coefficient spaces to achieve intuitive
control/editing (such as changing the nose height) [1]. PB-3DMM is the first
data-driven 3D face model that supports intuitive local editing. However, like
traditional 3DMM [3], the PB-3DMM still relies on 3D scans, which are ex-
pensive to collect and process. Moreover, PB-3DMM uses a specially designed
low-polygon mesh topology and is not optimized for single-image 3D face recon-
struction and 3D-to-2D face alignment. We briefly summarize some important
factors of PB-3DMM, LD-VAE and the proposed NEO-3DF in Table 1.

Table 1. Comparison of the NEO-3DF and other parts-based 3D face methods.
Method Model Mesh Info.

(Vertices)
Face

Parsing
Intuitive
Editing

Parts-
Blending

Back-
prop. SIFR

PB-3DMM
[14]

multiple
PCAs

specially
designed
(6,014)

✗ ✓ ✓ ✗ ✗

LD-VAE
[13]

single
VAE

FLAME [23]
(71,928) ✗ ✗ N/A ✓ ✗

NEO-3DF
(proposed)

multiple
VAEs

modified
BFM [8,26]

(35,709)
✓ ✓ ✓ ✓ ✓
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3 The Proposed Method
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Fig. 1. Flowchart of the proposed NEO-3DF. FaceNet: The convolutional neural net-
work encodes the 2D face image to a vector representation. Networks Fi estimate latent
representations z′i of corresponding face segments, and shape decoders Di reconstruct
the segment shape S′

i from z′i. The Offset Regressor predicts offsets used to assemble
the segment shapes to their correct location.

Overview. The proposed framework (see Fig. 1) supports single-view 3D face
reconstruction and its further editing. In this work, we first reconstruct a neutral
3D face shape. The expression and texture of the 3D face can be added later
through existing methods (such as [5] and [24]). We use a pre-trained FaceNet [31]
as the face image encoder. In this work we segment our 3D face topology into six
segments (parts). Each segment has its own editing controllers. These controllers
determine the variables that can be changed in this segment (e.g., nose height).
For each segment i, we have a regressor network Fi that estimates the latent
encoding z′i of the segment. Following each encoder Fi is the shape decoder Di,
which reconstructs the shape S′

i. The set of editing controllers enables intuitive
face shape editing. To find the mapping between the editing controllers space
and the neural network latent space, we use a similar way as used in [1,14]. The
main idea is to construct a linear system representing the mapping function and
solve the unknown parameters of the mapping function. The blending module
uses ARAP optimization to derive an overall natural-looking face shape.

Semantic Face-Segment Based 3D Face Model. To develop a face model
based on semantic face-segment, we use the Basel Face Model (BFM) [26] as
the base model. We consider the face to have six segments: five semantic face
segments (eyebrows, eyes, nose, upper and lower lips) and one segment for the
rest of the face. Following [8], we remove the neck and ears from the original BFM
mesh topology. The resulting 3D face mesh has 35,709 vertices. To automatically
segment the 3D face, we use a similar approach as in [17]. The main idea is to
render the randomly synthesized 3D faces to 2D, then run the 2D face parsing
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model to get 2D parsing labels. Finally, we can map the 2D pixel-level labels
back to 3D vertices. This automatic 3D face segmentation process ensures the 3D
vertex labels are consistent with the mainstream face image semantic parsing,
which is essential in our following work on fine-tuning the model, using ground-
truth 2D face parsing masks as supervision. Fig. 2 (left) shows the face parts of
our 3D face mesh topology.

Fig. 2. Left: The six face segments considered. Right: Shape boundaries (semantic
segment boundaries in red lines, outer boundary in blue line) and transition area (in
green).

We denote the 3D shape S as a set of vertices S = {vi|vi ∈ R3}i∈V , where V
is the set of vertex indices of the shape S, vi represents the 3D location of the ith

vertex in S. We use Sk(k ∈ {1..5}) to represent the five semantic face segments
of eyebrows, eyes, nose, upper lip, and lower lip respectively. For convenience, we
call Sks the five-segments. The shape of the rest segment Srest is a little different
from Sks, because it has a one-ring overlap with each of the Sks. This one-ring
overlap is important in our ARAP-based blending module which provides the
curvature information at the segment boundaries (see Fig. 2).

We use Multi-Layer Perceptron (MLP) based Variational Autoencoders (VAEs)
to learn the 3D shape representation. In total, we train six VAEs for each face
segment i (Ei and Di are encoder and decoder respectively). For Srest, the latent
representation is a vector z0 ∈ R1×30, and for Sks, zk ∈ R1×10. We pre-process
each segment shape in the dataset, except Srest, to make the geometric center
of the dataset’s 3D bounding box as the origin of the 3D Cartesian coordinate
system. The reason is that we expect the shape decoders of the five-segments to
only care about the shape itself rather than the relative location of the segment
on the face. The loss in training the VAEs is defined as:

LVAE = λreconLrecon + λKLLKL + λsmoothLsmooth, (1)

where Lrecon is the shape reconstruction loss, LKL is the Kullback-Leibler (KL)
divergence loss, Lsmooth is the cotangent-weight Laplacian loss, and the λs are
loss term weights. Denote v and v′ as the vertices of the ground-truth shape
S and reconstructed shape S′ respectively. We compute the reconstruction loss
Lrecon as

∑
i∈V ∥vi − v′i∥22. The LKL is the KL divergence of the distribution of

z ∈ R1×dz from a multivariate normal distribution N (0, I), where I ∈ Rdz×dz
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is the identity matrix and 0 ∈ R1×dz is a vector of zeros. The Laplacian loss
Lsmooth helps the decoder to generate smooth mesh surfaces.

Because the input to Ei is the 3D shape, we still need to couple the 2D face
image encoding with the 3D shape decoders Di. To do this, after VAE training
we discard the VAE encoders Ei and add another set of regressor networks Fi

between the 2D face image encoding and the 3D shape decoders Di. To pre-train
Fi, we freeze the parameters of the face image encoder and shape decoders. The
loss function is the same as (1) except for discarding the Lsmooth term. Here,
LKL acts as a regularization term to prevent over-fitting.

Assembling Face Segments and Network Fine-Tuning. There are two
remaining issues. The first is that we re-centered the Sks for training the cor-
responding shape decoders to disentangle the five-parts shapes from the global
face shape. Therefore, these decoders are not aware of the relative position of
Sks to Srest. The second issue is that the pre-trained FaceNet is not optimized
for 3D face reconstruction.

To address the first issue, we train an offset regressor that takes Srest’s la-
tent representation z′0 as input to predict an offset (0, ∆yk, ∆zk) for each recon-
structed segment shape S′

k. Because the human face is bilaterally symmetric, we
do not add any offset along the x-axis. After adding the offsets, we can assemble
the Sks with Srest to get a full 3D face S′

overall. Note that S′
overall is likely to

have visible segment boundaries without proper blending.
To address the second issue, we fine-tune all the networks except the shape

decoders Dis to improve the reconstruction accuracy. Besides using the target
shapes as supervision, we leverage the ground-truth 2D face parsing masks as
additional supervision. The loss function for fine-tuning is defined as:

L = λsLs + λpLp + λKLLKL. (2)

Ls is the shape loss between Soverall and S′
overall, the computation is the

same as Lrecon. Define P ∈ RH×W×5 as the ground-truth parsing mask of Sks,
where H and W are the height and width of the mask. Pijk represents the binary
label that indicates whether a pixel at image location (i, j) belongs to the kth

(k ∈ {1..5}) segment or not. We include the estimated expression and pose and
use a differentiable renderer to render S′

overall to 2D, denoted by P′. The renderer
is modified to use the vertex one-hot semantic labels as five-channel colors for
shading. To prevent the gradient from vanishing when the displacement between
P and P′ is too large, we follow the idea in [17] to use Gaussian filter (we set the
standard deviation to be 1 and filter size to be 10 × 10) to soften both P and
P′. The parsing loss is then defined as: Lp = ∥P − P′∥2. Here, the LKL acts as
a regularization term.

Face Segments Blending. An evident challenge for the segment-based face
model is that it is not straightforward to ensure the transition between segments
is natural-looking. Simply smoothing the region between different face segments
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could destroy the high-frequency local structure. Our goal is to preserve the
surface details as much as possible so that the final shape will still looks human
and to make the transitions between face segments look natural without abrupt
boundaries between segments. To achieve this, we use the As-Rigid-As-Possible
(ARAP) [33] for mesh deformation optimization in our blending module.

Our blending module will only deform some areas on S′
rest that connects it

to the five-segments. We call these areas the transition area (see Fig. 2 right).
We define the transition area using the average BFM face shape. The transition
area covers the vertices on S′

rest whose Euclidean distances are less than 30mm
from their nearest vertices on the segment boundaries (see Fig. 2 right, the red
lines). The outer contour of the transition area is the outer boundary (see Fig. 2
right, the blue lines). We use the ARAP method to deform the shape of the
transition area. The constraints are formed by two groups of vertices – vertices
from the five-segments lying on the segment boundaries and vertices from S′

rest

lying on the outer boundary. In our experiments, we run the ARAP optimization
for three iterations.

Intuitive Face Editing. We expect the editing to be intuitive. For example,
one can increase/decrease the nose width by an adjustable strength. The overall
idea is to find mappings between the pre-defined facial feature measurements
space and the latent encoding space. Different from [14], our editing is not based
on the exact measurement values (e.g., the exact width of the nose bridge). It
is based on the direction (+ for increase, − for decrease) and strength (how
many standard deviations from the mean shape). We refer to some studies on
facial feature measurements [10, 16, 28, 30] and derive a list of features for edit-
ing purposes (see supplementary material). We grouped the features by the six
segments. For example, nose height is a feature of the nose segment.

We denote N as the number of face shapes in the dataset and m as the num-
ber of features of the shape S (S can be the shape of any of the six segments).
For each S in the dataset, we record the measurements of its features (the mea-
surement is done automatically using pre-defined measurement rules) as a row
in the matrix X ∈ RN×m, and also record its latent encoding vector z as a row
in the latent matrix Z ∈ RN×dz . We compute the average face shape S̄ over the
dataset and record its latent encoding as z̄. Next, we subtract the measurements
of average shape S̄ from each row in X and denote the resultant matrix as ∆X.
Similarly, we subtract z̄ from each row in Z and denote the resultant matrix as
∆Z. Assume there is a linear mapping M ∈ Rm×dz such that ∆XM = ∆Z, we
can estimate M by solving the linear system M = ∆X†∆Z, where ∆X† is the
Moore–Penrose pseudo inverse of ∆X.

We define the editing controllers as a vector c ∈ R1×m. Each value in c
controls a corresponding feature. We compute the standard deviation of each
column in ∆X, and record it as Σ ∈ R1×m. Finally, we represent the editing as
the modification of latent encoding space: z̃ = z +∆z = z + (c ◦Σ)M , where z
is the latent encoding of the original shape S, and ◦ is the Hadamard product
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operator. Using the shape decoder to decode the new latent encoding z̃, we get
the edited shape. We need to compute an M and a Σ for each segment.

Differentiable Blending Module in Shape Adjusting. To further improve
the 3D-to-2D alignment accuracy, we propose a novel differentiable version of
ARAP in our blending module. Our differentiable ARAP is fully functional,
transforming traditional ARAP optimization iterations into a sequence of differ-
entiable operations through which loss function gradients can back-propagate.
Our method is different from [38], which has proposed the use of the ARAP
energy as a loss function but did not carry out the ARAP optimization itself. In
contrast, our method back-propagates through the ARAP algorithm, including
estimating neighborhood rotations and solving the linear system. In principle,
our ARAP deformer module can be applied to many deep learning-based geom-
etry processing tasks and used as a component in end-to-end training. However,
here we use it to fine-tune the editing controllers due to the high vertex count
of our facial model.

We define np as the number of vertices of the face mesh, and nc as the number
of constraint vertices. We represent the vertex positions of the 3D mesh as a
matrix P ∈ Rnp×3, and the constraint vertex positions as a matrix H ∈ Rnc×3.
We first build a sparse constraint matrix C ∈ Rnc×np , such that Cij = 1 only
if the jth vertex of the mesh is the ith constraint vertex. Then we compute the
combinatorial Laplacian of the 3D mesh denoted by L ∈ Rnp×np . The reason for
using the combinatorial Laplacian rather than the cotangent Laplacian is that
the former only depends on the mesh topology so that we can reuse it on different
3D faces with the same mesh topology. We define P ′ ∈ Rnp×3 as the new vertex
positions, R as the right-hand-side of linear system AW = R, where A is a sparse
matrix (3) and (Wij)i∈{1..np},j∈{1..3} is P ′. The estimation of R needs both P and
P ′, thus the optimization of P ′ is done by alternatively estimating R and solving
the linear system AW = R for multiple iterations. Because A only depends
on the mesh topology, the system only needs to be formed and inverted once.
Algorithm 1 is the pseudo-code of the proposed differentiable ARAP, where niter

is the number of iterations we would like to run the ARAP optimization. In our
experiment, we choose niter = 3. Please refer to the supplementary material for
more details of our differentiable ARAP and the pseudo-code of estimate_rhs().

Unlike our fine-tuning of the network, we do not apply the Gaussian filter on
both the ground-truth parsing P and the rendered parsing P′, instead we only
apply distance-transform to P. We empirically find that this approach leads to
a better result. Importantly, we directly adjust the editing controllers instead
of adjusting the segment latent representations. In the optimization process, we
only minimize ∥P− P′∥2. The optimization is performed on a single shape each
time.

A =

[
LTL CT

C 0

]
∈ R(np+nc)×(np+nc). (3)
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10 P. Yan et al.

Algorithm 1 Differentiable ARAP
Input: P , H, L, and A−1

Output: P ′

Require: niter ≥ 1
iter ← 0
while iter ≤ niter do

if iter = 0 then

R←
[
LTLP
H

]
//Initialize the right-hand-side.

else
R←

[
estimate_rhs()

H

]
//Estimate new right-hand-side.

end if
W ← A−1R //Solve the linear system AW = R.
P ′ ← (Wij)i∈{1..np},j∈{1..3} //Update new vertex positions.
iter ← iter + 1

end while

4 Experiments

Data and Training. The face images we use in our experiments are from
CelebAMask-HQ dataset (30,000 images) [20] and FFHQ dataset (70,000 im-
ages) [15]. We run Deng et al.’s method (Deep 3DMM) [8] on both datasets to
get the estimated BFM coefficients for each image. An alternative option is to use
the synthesis-by-analysis method [3] to estimate the coefficients, but it would be
slow. Then, we use the BFM coefficients to recover the 3D faces and get 100,000
3D faces. Because the CelebAMask-HQ dataset comes with ground-truth seman-
tic face parsing masks, we use its first 5,000 images to form the validation set.
The rest of the 95,000 images and their 3D reconstructions are used to train the
models. We use the 25,000 training images from the CelebAMask-HQ dataset
and their corresponding semantic parsing masks to fine-tune our network. We
also use all the 95,000 3D reconstructions in the training set to compute the map-
pings for intuitive editing. The loss term weights are set as follows: λrecon = 1,
λKL = 0.01, λsmooth = 1, λs = 1, λp = 1. We use Adam optimizer with a con-
stant learning rate of 10−4. The training batch size is 16. Our framework has
an average per-vertex mean squared error of 9.0× 10−3 on validation data (3D
mesh data is measured in millimeters).

3D-to-2D Segments Alignment. In the single-image 3D face reconstruction
task, the best that can be done is to make the rendered 3D face look as close
as possible to the face in the image. It is challenging for existing global-based
3D face reconstruction methods to make each 3D semantic face segment better
align with its corresponding 2D image semantic segment. We presume that the
global-based 3D face model has strong constraints to ensure the entire 3D face
looks as natural as possible. The drawback is that small face segments such as
the eyes and the lips may not look realistic and are prone to be misaligned. In
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addition, the human visual system is very sensitive to tiny differences in a face.
Thus, the global-based methods are usually not able to provide satisfactory re-
constructions. Some research works [6,18] try to mitigate this problem by using
more realistic textures to cheat the human viewers. In this work, we take advan-
tage of our segment-based face model to improve the shape accuracy by tuning
each 3D semantic segment, so it better aligns with the image. Learning realis-
tic texture will also benefit from better aligned 3D shapes [24]. We conjecture
that improved registration of 3D geometry to semantic face segments will assist
texture reconstruction models in learning realistic textures, although it is not a
focus of the current work.

We use the average Intersection-over-Union (IoU) metric to evaluate the 3D-
to-2D alignment accuracy. Table 2 compares the deep 3DMM (global method),
PB-3DMM, LD-VAE, and the proposed NEO-3DF. Note that both PB-3DMM
and LD-VAE are not designed for single-image 3D face reconstruction, and both
methods originally use different mesh topologies other than BFM, which we use.
To compare with PB-3DMM and LD-VAE, we use the BFM mesh topology and
our parsing-based face segmentation. Because both PB-3DMM and LD-VAE are
local models, we use the similar network architecture of NEO-3DF to give both
methods the single-image 3D face reconstruction ability. For PB-3DMM, the
shape decoders are from BFM. For LD-VAE, the shape decoder is pre-trained
using the original LD-VAE code, but on our dataset. We fine-tuned both variants
under the same setting as training NEO-3DF.

Table 2. 3D-to-2D alignment results on validation data. Metric: average IoU.

Part Name Deep
3DMM [8]

PB-3DMM
[14]

LD-VAE
[13] NEO-3DF

Eyebrows 0.312 0.302 0.279 0.363
Eyes 0.387 0.377 0.372 0.553
Nose 0.766 0.728 0.735 0.789

Upper Lip 0.483 0.482 0.436 0.531
Lower Lip 0.468 0.424 0.418 0.614

All Five Parts 0.593 0.566 0.560 0.616

For single-sample shape adjusting, we use Adam optimizer with a learning
rate of 10−3. We run 20 gradient-descent optimization iterations for each shape,
and the shape adjusting takes around 31 seconds for each iteration (on a work-
station with one Nvidia Tesla V100-PCIe GPU). On the validation data, the
average IoU of five-segment shapes after fitting is 0.683 (discussed in Ablation
Study), which is 11% higher than the raw network prediction (0.616 as shown
in Table 2). Fig. 3 shows some visualization of the alignment performance com-
parison. For each method, we use one column to show the rendered 3D face on
top of the original image, and another column to show the union minus the in-
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Image Deep 3DMM NEO-3DF (Proposed)
IoU = 0.732

IoU = 0.712

IoU = 0.595

IoU = 0.604

IoU = 0.586

IoU = 0.490

Fig. 3. 3D-to-2D semantic face segments alignment results. Compared with Deep
3DMM, we can see that our method gives better aligned facial segments (yields higher
segmentation accuracy, as measured by IoU) and produces more consistent rendered
results with original images.

tersection of P and P′. If the shapes of the face segments are better aligned to
the 2D image, the black areas should be less visible.

Intuitive Editing. We compare our method with global VAE and LD-VAE [13].
We use the same MLP network structure for both global VAE and the LD-
VAE, where the decoder structure is the same as non-linear 3DMM’s shape
decoder [35]. Our shape decoders have a similar decoder structure (same number
of layers and hidden neurons), but each has a smaller output layer because the
shape of a segment has fewer vertices than the entire face shape. We group the
controllers by segments. In each group, we tune each controller separately to
be −3σ and +3σ, then aggregate all the edited shapes and show the maximum
change of each vertex location (Euclidean distance measured in millimeters) from
the original mean face shape. The results are visualized as rendered 2D heatmaps
(see Fig. 4). Fig. 5 shows the results of applying the same set of edits on the
nose (Tip −3σ, Breadth +3σ, Bridge Width −3σ) using different methods. To
demonstrate the application of our framework in customizing a reconstructed 3D
face, we randomly apply a sequence of edits to the reconstructed faces. Fig. 6
shows some example intuitive editing results.

Ablation Study. We first investigate the necessity of employing the proposed
offset regressor and blending module. Fig. 7 shows the original shape and the
editing we made (lift the nose tip) using our unmodified framework, our frame-
work without offset regressor, and our framework without blending module. Note
that, in this experiment, only the nose is editable. Without the offset regressor,
we need to use the absolute vertex locations to train the five-segments decoders.
So the relative location of a five-part shape is still entangled into the latent rep-
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Fig. 4. Vertex location change heatmaps. For visualization purposes, the values in each
heatmap are normalized to be from 0 to 1.0. The value above each heatmap indicates
the highest value of that heatmap. We can see that our method gives near-perfect
disentanglement while the other methods cannot isolate local edits well.

LD-VAE Global-VAE Original Shape
NEO-3DF 

(Proposed) 3DMM (BFM) 

Fig. 5. Nose shape editing comparison.

Image Reconstruction
Mandibular

Width Eye Height Nose Breadth Lip Height Eyebrow
Thickness 

Fig. 6. Reconstruction and further editing examples. The edits are made cumulatively
from left to right. Editing via our framework is more intuitive and expressive since
subsequent changes (on different segments) will not affect earlier ones.

Original Shape Edited w/o Blendingw/o Offset

Fig. 7. Ablation study shows that the offset regressor and blending module are nec-
essary for our framework. Without the offsets, alignment between segments is com-
promised, while visible seams appear around the edited segment without the blending
module.
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resentation. As a result, after removing the offset regressor, we see that the entire
nose moves up when lifting the nose tip. The issue of eliminating the blending
module is evident, as we can see the juncture around the nose.

We also investigate different ways of improving the 3D-to-2D alignment in
our fitting-based single shape adjusting (see Table 3). We find that with the help
of our differentiable ARAP, the best results are obtained by the fine-tuning of
the editing controllers and the shape offsets. This yields 7% higher IoU than
by directly adjusting the latent encodings and offsets (IoU is 0.632). Our expla-
nation for this finding is that the editing controllers’ space is less complex and
more interpretable than the latent encoding space, thus reducing the learning
complexity. Interestingly, we noticed that it does not work if we do not optimize
the offsets and only optimize the editing controllers. We presume that the face
segments must be roughly aligned to provide useful loss information.

Table 3. Single-sample automatic 3D part shapes adjustment results. (Metric: IoU
averaged on validation data)

w/o Blending w/ diff. ARAP
Blending

Latent Representations Only 0.621 0.626
Editing Controllers Only 0.581 0.566

Latent Representations & Offsets 0.629 0.632
Editing Controllers & Offsets 0.649 0.683

5 Conclusion

We proposed NEO-3DF, a 3D face creation framework that models the different
segments of the 3D face independently. NEO-3DF is the first method that couples
single-image 3D face reconstruction and 3D face intuitive editing. To train NEO-
3DF, we created a 3D face dataset using existing large 2D face image datasets
and an off-the-shelf 3D face reconstruction method named deep 3DMM. The
face segment-based model of the 3D face structure makes face editing more
intuitive and user-friendly. It also allows fine-tuning the reconstructed 3D face
by using 2D semantic face segments as guidance and yields 14% improvement in
IoU. We also proposed a differentiable version of ARAP to obtain an end-to-end
trainable framework, which enables the automatic adjusting of the variables in
the editing controllers. This resulted in an additional 5% improvement in IoU.
The main limitation of our current framework is that the differentiable ARAP
is computationally expensive and only used to fine-tune the result at the last
construction stage. We will explore a less expensive method for blending the face
segments in the future. We believe our concept of combining the 3D face editing
and reconstruction also sets a new direction in 3D face reconstruction research.
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