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Abstract. The process of style image harmonization is attaching an
area of the source image to the target style image to form a harmo-
nious new image. Existing methods generally have problems such as dis-
torted foreground, missing content, and semantic inconsistencies caused
by the excessive transfer of local style. In this paper, we present a frame-
work for style image harmonization via global and local styles mutual
guided to ameliorate these problems. Specifically, we learn to extract
global and local information from the Vision Transformer and Convolu-
tional Neural Networks, and adaptively fuse the two kinds of information
under a multi-scale fusion structure to ameliorate disharmony between
foreground and background styles. Then we train the blending network
GradGAN to smooth the image gradient. Finally, we take both style and
gradient into consideration to solve the sudden change in the blended
boundary gradient. In addition, supervision is unnecessary in our train-
ing process. Our experimental results show that our algorithm can bal-
ance global and local styles in the foreground stylization, retaining the
original information of the object while keeping the boundary gradient
smooth, which is more advanced than other methods.

1 Introduction

Style image harmonization is a kind of image synthesis technique. It allows artists
to create new artworks with existing materials. When pasting keying footage
with different styles onto the background image, style image harmonization helps
pasted materials to mix the style of the background image and make the overall
image harmonious. Artistic image editing is a time-consuming process and is
difficult to edit under style images. Due to the sensitivity of the human visual
system [1], this disharmony of the synthetic image can cause visual discomfort.
These discords mainly stem from (1) the inconsistency between the foreground
and the background styles, (2) and a sudden change of gradient at the boundary
of foreground and background. The problems of inconsistent styles between the
foreground and the background, the incoordination of factors such as color and
texture between the two, and the sudden change in gradient of the boundary are
remaining to be solved.

Recently, some deep learning methods can be applied to the style image
harmonization, but there are still some other problems. Wu et al. [2] proposed
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Fig. 1. With the mask of the source image and the composite image, our algorithm
can transfer the style of the background to the foreground pasted object and smooth
the boundary to make the overall image harmonious.

to combine Generative Adversarial Networks (GANs) [3] and traditional Pois-
son blending to synthesize real-looking images, but its training required a well-
blended Ground Truth as supervision. And there was still a background color
seeping into the foreground, causing the foreground to lose its semantics. In ad-
dition, artifacts were produced in some areas. Zhang et al. [4] proposed to jointly
optimize the Poisson blending, content and style calculated from the deep net-
work to iteratively update the image blend area, but it had obvious foreground
distortion caused by excessive style transfer. In conclusion, the main reason for
the existing problem caused by the current methods is the use of Convolutional
Neural Networks (CNNs) [5–8], which cause the foreground to be affected by
the corresponding regional style of the background, resulting in distortion and
artifacts. Lately, the transformer-based style transfer proposed by Deng et al.
[9] solved the problem that CNNs have difficulty obtaining global information
and content leak of input images on style transfer, but it still cannot be applied
to the local style transfer, and having a global style on the foreground makes it
incompatible with the surroundings.

Style image harmonization consists of two parts: stylization and harmoniza-
tion. There are some excellent methods of style transfer and image harmoniza-
tion, but simple combinations cannot bring desirable results. Cong et al. [10, 11]
found that converting the foreground domain to the background domain helps to
guide the harmonization of the foreground with background information. Sofi-
iuk et al. [12] used an encoder-decoder framework, which combines pre-trained
foreground-aware deep high-resolution network to obtain composite images with
semantic visuals. However, combining the state-of-the-art methods mentioned
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above with style transfer models, will still have problems such as distortion of
the foreground leading to bad visuals.

In this paper, we present a framework for style images harmonization via
global and local styles mutual guided, which solves the problems of foreground
distortion, content loss, and semantic inconsistencies caused by the excessive
transfer of local style in the existing methods, and realize a better integration of
foreground pasted object into the background style image. For the harmonization
of foreground and background styles, we come up with a method for style trans-
fer that blends global and local styles. Learn from the Vision Transformer(ViT)
to extract global information and CNNs to extract local information, and adap-
tively fuse them using a multi-scale fusion structure. For the discord caused by
the sudden change of gradient at the boundary of foreground and background,
we train the blending network GradGAN to recover the gradient smoothness of
the blended images, and then fuse style and gradient result in a harmonious deep
image. In addition, we improved the blending loss so that the training process
does not require any supervision.

Our main contributions are as follows:

– We propose a novel Blending Decoder that learns to extract global and local
information from the ViT and CNNs, and blends this information to make
the pasted foreground have a more reasonable style.

– Motivated by Liu et al [13], we propose a multi-scale adaptive fusion struc-
ture that bridges ViT and CNNs.

– Different from Wu et al. [2], we improve the blending loss so that the train-
ing process only needs the foreground object, background image, and mask
without supervision.

– Our experimental results show that our algorithm can balance global and
local styles in the foreground stylization, retaining the original information
of the object while keeping the boundary gradient smooth, which is more
advanced than other methods. Some parts of the results as shown in Fig. 1.

2 Relative Work

2.1 Style Transfer

The task of style transfer is to transfer the style of one drawing into another [5,
6, 14, 15]. Early style transfer was achieved by histogram matching [16] or global
image statistics transfer [17]. Gatys et al. [5] designed the first style transfer
algorithm with neural networks, using the convolutional features of VGG19 [18]
and its Gram matrix to represent content and style. Huang et al. [6] proposed
model-based arbitrary style transfer by making the mean and standard deviation
of each channel of the content images the same as those of the style images, which
is commonly used in various generation tasks [19–22]. Li et al. [7] utilized the
idea of de-stylization and stylization, making the multi-layer stylization modules
enable the styles of rendered images to be transferred on multiple feature scales.
Recently, Vision Transformer (ViT) [22] has been widely used in the field of
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vision [23–26]. In order to solve the locality and spatial invariance of CNNs,
Deng et al. [9] proposed transformer-based style transfer and Content-aware
Positional Encoding (CAPE) to adapt to different input sizes. However, there
are few methods specifically addressing the problem of local style transfer in the
harmonization of style images.

2.2 Image Blending

The task of image blending is to paste an area of the cropped source image
onto the target image and make the image looks harmonious as a whole. Tra-
ditional blending methods use low-level appearance statistics [27–30] to adjust
the foreground image. Alpha Blend [31] uses alpha channel values of the fore-
ground and background to blend images. Recent blending techniques primarily
use gradient smoothing [32–34], which targets the smooth transition of gradients
at blend boundaries due to human sensitivity to regions of the sudden change of
gradient. The earliest work [35] reconstructs pixels in blended regions through
gradient-domain consistency. A large number of methods are used for realistic
image blending [36, 37, 12], only a few methods are for style images. Luan et al.
[38] proposed the use of iterative stylistic transfers and refining them with adja-
cent pixels, which was the first method of blending paintings. Recent methods [2,
4] combined neural networks and Poisson blending to generate realistic images.
Jiang et al. [39] used cropping perturbed images to handle the stylistic images
blending, which uses 3D color lookup tables (LUTs) to find information such as
hue, brightness, and contrast. All of these approaches distort the foreground and
lose its semantics. Our algorithm blends global and local styles, then smooths
the blended boundary, and improves the deficiencies in the existing methods.

3 Algorithm

3.1 Overview

Our model achieves style image harmonization followed by StyTr2 [9], WCT [7],
and GP-GAN [2]. Our training data pair is (x, y,m), x, y,m ∈ RW×H×3. x is a
composite image containing the foreground, y is the corresponding background
image, and m is mask of the foreground. The goal is to blend the foreground of x
into the entire image, maintain its texture and semantics while transferring style,
and smoothly transitioning the paste boundary gradient with the surrounding
gradient. We learn from a generator with an encoder-decoder structure to turn
the source image into the target image. The objective function is shown in Eq. 1.

target = style(BD(TE(p), CE(p))) + poisson(GradGAN(p)), p = (x, y,m).
(1)

TE is Transformer Encoder, CE is CNN Encoder, BD is Blending Decoder,
GradGAN is a network for image preliminary blending, style and poisson are
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style constraint and poisson constraint for images, and target is the generation
target.

Our framework contains five main components: A global style transfer based
on the transformer, a local style transfer based on CNN, a global and local blend-
ing module, a gradient smoothing module, and a style-gradient fusion module.
Fig. 2 provides an overview of our framework. First, we will introduce global and
local mutual guided style transfer (Sec. 3.2), so that the source cropped area has
the target style while more in line with its semantics. Second, gradient-guided
image fusion (Sec. 3.3) to make the stylized areas smoother in the gradient at
the paste boundary. Finally, we detail the objective function (Sec. 3.4).

Fig. 2. Our framework contains five main components. Global style transfer based on
the transformer (green part) and local style transfer based on CNN (pink part) encode
style and content image separately. The global and local blending module Blending
Decoder (blue part) decodes the latent code to get an image of the stylized foreground.
GradGAN (orange part) generates a gradient smooth image of the boundary of the
pasted area, blending styles and gradients (yellow part), and so on getting the final
stylistic image harmonization output.

3.2 Global and Local Mutual Guided Style Transfer

To solve the discord caused by excessively style transfer, we propose a global and
local mutual guided style transfer, using a multi-scale fusion structure to bridge
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transformer and CNN. Blend the extracted global and local style to make the
foreground has a more reasonable style. The framework consists of two encoders
and one decoder.

Encoder We utilize WCT decoders, which extract features from high-level
(relu 5) to low-level (relu 1) via VGG19 [18] for Whitening and Coloring Trans-
form (WCT).

We use transformer encoder [9] as another encoder, which contains a style
encoder and a content encoder. As shown in Fig. 2, the composition and back-
ground images are used to obtain the patch sequence of images through linear
projection respectively, and Content-aware Positional Encoding (CAPE) is used
only for the content sequence. The input sequence is encoded as Q (query) K
(key) V (value), giving the sequence outputs of style and content respectively.

Fig. 3. We propose an adaptive multi-scale Blending Decoder. Using a multi-scale
fusion structure to connect the equivalent feature maps of transformers and CNNs,
bridge transformer decoders and CNN decoders, which blends global and local styles.

Adaptive Multi-scale Blending Decoder Inspired by ASFF [13], we propose
an adaptive multi-scale fusion structure that bridges the WCT decoder and the
transformer decoder.

As shown in Fig. 3, in the CNN decoder path, we change the VGG19 decoder’s
structure in the WCT to extract three feature maps of different scales. In the
transformer decoder path, the style sequence is represented as K and V , and the
content sequence is represented as Q. The transformer decoder layer contains
multi-head attention and a Factorization Machine supported Neural Network
(FNN). The output sequence of the transformer is in the shape of W×H×C

64 .
Then use the decoder to obtain three feature maps that are equivalent to the
CNN decoder output size.
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Multi-scale fusion structure connects the equivalent feature maps, adaptively
learning fusion spatial weights, specifically shown in Eq. 2.

yij = α·up(α1
ij ·xC1

ij +α2
ij ·xT1

ij )+β·up(β1
ij ·xC2

ij +β2
ij ·xT2

ij )+γ·up(γ1
ij ·xC3

ij +γ2
ij ·xT3

ij ),
(2)

Where yij represents the pixel value at (i, j) of the output image, xC1
ij , xC2

ij , xC3
ij

represent pixel values at (i, j) of the feature maps of three different scales of CNN
path, xT1

ij , xT2
ij , xT3

ij represent the pixel values at (i, j) of the feature map of three
different scales of the transformer path, αij ∈ α, βij ∈ β, γij ∈ γ represent the
spatial weight values at different scales, up represents upsampling, and α, β, γ
represent the fusion weights of different scales. At the meantime, make α1
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Spatial fusion weights at each scale are obtained through back propagation.
The middle output y is decoded as a fusion map after the style transfer.

3.3 Gradient-guided Image Fusion

After obtaining a stylized foreground, sudden change of the boundary gradient
can still cause visual discomfort. Therefore, we introduce gradient-guided image
fusion based on style transfer. Utilize the style information of the stylized image
and the gradient information of the fusion image to make the final output more
harmonious. To achieve this goal, the GAN is firstly trained to generate gradient
fusion images, and then the gradient and style are fused using style and gradient
constraint.

GradGAN We use the VGG encoder-decoder [18] structure as a generator to
fuse the composite image to obtain an image after gradient smoothing. And use
the patch discriminator to train against the generator to get a more realistic
one.

Fusion We smooth the gradient of the foreground boundary of the composite
image using GradGAN, but it is still not harmonious. Different from GP-GAN [2]
which needs the gradient of the original image, we fuse the gradient and the style
of the generated image to obtain the final deep blending image. The low-level
style and the high-level gradient are used for fusion, and the underlying features
are extracted as the style constraint and the high-level features are extracted as
gradient constraint.

S(x, xstyle) =
∑
ij

||F (xij)− xstyle
ij ||2,

G(x, xgrad) =
∑
ij

||P (xgrad
ij )− L(xij)||2.

(4)
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The style constraint and gradient constraint for the target are shown in Eq. 4.
xstyle is the image generated by style transfer, xgrad is GradGAN blending image,
P is gradient operator, F is the filter and L is the Laplace operator that extracts
the low-level style and the high-level gradient of the image respectively.

T (x) = ω · S(x, xstyle) + φ ·G(x, xgrad). (5)

The final optimization goal is shown in Eq. 5. ω is style reserved parameters
and φ is gradient reserved parameters.

3.4 Optimization

Style Transfer Loss The result of the style transfer should have the same
content as the composite image and the same style as the background image [7].
Therefore, the style transfer loss consists of three parts: the content perception
loss, the style perception loss, and the reconstruction loss. This loss is defined
by Eq. 6.

Lc =
1

Nc

Nc∑
i=1

||ϕi[x]− ϕi[x
compose]||2,

Ls =
1

Ns

Ns∑
i=1

||Grami[x]−Grami[x
background]||2, Grami = ϕi[·]ϕi[·]T ,

(6)

where x is output image, xcompose is the composite image, xbackground is the
background image, and ϕi is the feature map of middle layer of VGG19.

Self-supervision can help network training [40]. Therefore, we use the recon-
struction loss Lrec = Lc(x, I)+Ls(x, I) to learn more accurate content and style
representations. Input two identical images I, both as content images and as
style images.

Ltransfer = λcLc + λsLs + λrecLrec. (7)

The total style transfer loss is shown in Eq. 7. λc, λs, λrec is set separately
for the weights of each loss.

Blending Loss Different from GP-GAN which requires Ground Truth to re-
cover low-resolution coarse images, our model only uses composite images and
background images to recover preliminary fusion image. Specifically, blending
loss consists of three parts: the generating adversarial loss, the perceptual loss,
and the gradient loss.

LG
adv = Ex′∼Pdata(x′)[logD(x′)] + EI∼Pdata(I)(log(1−D(decoder(encoder(I))))),

LD
adv = −Ex′∼Pdata(x′)[logD(x′)]− Ex∼PG

[log(1−D(x)].
(8)

Generative adversarial loss is defined by Eq. 8, where I is the source com-
posite image, x′ is the real background image, x is the generated image, and D
is the discriminator.
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Fig. 4. The source composite image and mask and mask dilated corresponding to
the foreground. We dilate the mask and calculate only the gradient loss inside the
mask dilated.

The perceptual loss is L2 loss [41], which accelerates training and produces
sharp images compared to the L1 loss [42]. We use L2 loss to make the output
content the same as the foreground content of the composite image, and the
output style the same as the background style.

Lgrad =
∑
ij

(|xi,j − xi−1,j |+ |xi,j−1 − xi,j |). (9)

The gradient loss penalizes the output gradient. Since only the gradient of
the composite image boundary needs to be smoothed, we dilate the mask and
only calculate the gradient loss inside the dilated mask. Mask and dilated mask
are shown in Fig. 4. This loss is defined by Eq. 9, where x is the generated image.

Lharmony = λadvLadv + λ2L2 + λgradLgrad. (10)

The total fusion loss is shown in Eq. 10. λadv, λ2, λgrad is set separately for
the weights of each loss.

4 Experiments

4.1 Implementation Details

This section describes the implementation details of our method. For style trans-
fer branches, we use StyTr2 [9] and VGG19 [18] as pre-trained models, adopt
Adam [43] optimizer, and employ warm-up training strategies [44]. The initial
learning rate is set to 5× 10−4, and the decays to 10−5. The conv1 1, conv2 1,
conv3 1, conv4 1 of VGG19 are chosen as style representation and conv4 1 as
content representation. λc is set to 7, λs is set to 10, and λrec is set to 10 in
Eq. 7. For GradGAN branches, we adopt Adam optimizer, where α is set to
10−4, β1 is set to 0.9, and β2 is set to 0.999. ω is set to 1, φ is set to 1, λ2 is
set to 10 in Eq. 10. All images are reshaped into 256× 256, and the datasets we
used are from [2, 38].
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4.2 Experimental Results

In this section, we compare our method with the existing methods. Qualita-
tive and quantitative comparisons were made, including ablation experiments,
comparative experiments, and user studies.

Ablation Experiments To fully illustrate the need for global and local blend-
ing, and gradient fusion, example results with different degrees of texture in-
formation richness are shown. As shown in the Fig. 5, the full model is supe-
rior to other baseline models. The result of w/o global (WCT [7] combine with
GradGAN) is that the local style around the foreground transfer to the object,
which causes the object to lose its original semantics and produce distortion.
The result of w/o global&grad (WCT [7]) seems to be more harmonious with
the entire image in the gradient, but the original information in the foreground is
seriously missing due to its local style transfer. The result of w/o local (stytr2 [9]
combined with GradGAN) is that this position-independent global style makes
the foreground incompatible with the surrounding. The result of w/o local&grad
(StyTr2 [9]) retains the original information, but it is still relatively abrupt in
the entire image because it does not transfer local style and may have a big
change in the gradient. The result of w/o grad (only style transfer) is more rea-
sonable than the first two in style processing, but there is still a certain degree
of texture loss. In contrast, The full model shows the best results, with the fore-
ground area retaining its original texture and semantics while transferring the
background style, and aligning with the surrounding style, while its boundary
and background gradients are smoother.

Comparative Experiment We compare our method with three others (See
Fig. 6): GP-GAN [2], SSH [39], and Deep Image Blending [4]. GP-GAN is an
image fusion algorithm that combines Poisson fusion and GAN, and is trained
in a supervised manner. However, the color is transferred to the foreground from
around, making it inconsistent with the original semantics, and it also creates
artifacts in some areas. SSH uses dual data enhancement to crop perturbed
images, and uses 3D color lookup tables to find information such as hue, bright-
ness, contrast, etc., to process both real and stylistic images. However, the pasted
boundary of the processed style image is very obtrusive. Deep Image Blending
is an improved method based on GP-GAN, using VGG19 for style transfer, and
joint optimization of Poisson loss and content style loss to blend deep images.
But it distorts and produces artifacts more heavily in the foreground. Due to
using VGG19 [18] as a style transfer network, the foreground has a distinctly
localized style, which is unrealistic. Our model shows the best results, balancing
global and local styles in the foreground stylization, maintaining the original
information of the object, and making the surrounding gradient smoother.

Fig. 7 shows the results of stylizing and harmonizing the image foreground
using the mainstream styles transfer models [9, 7], harmonization models [10,
11], and stylization and harmonization of combination models separately. As
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Fig. 5. Experimental study of ablation of global, local, and gradient fusion. The full
model shows the best result, however other baseline models either distort the original
information or are not in harmony with the surrounding, or there are problems such
as a sudden change in the gradient.

shown in the Fig. 7, the style transfer models of the traditional CNN places more
emphasis on local style, and produces content distortion, such as the result of the
WCT that distorts the eye part of the foreground character. Recent style transfer
using transformers places more emphasis on global style, but is less coordinated
with the surroundings, and the variation of gradient makes the visual effect
more obtrusive. The harmonization models do not handle stylistic images very
well. BargainNet [10] and Dovenet [11] converted the foreground domain to a
background domain, with background information guiding the harmonization of
the foreground. But we can see that the brightness of the foreground is relatively
obtrusive relative to the surrounding pixels. There are translation failures in
some images: the foreground lacks style information and does not fit well into the
background. The result of stylization and harmonization of combination models
still has foreground distortion or boundary pixel obtrusion, and the style image
harmonization is not well handled. We blend global and local styles, smooth the
boundary, and achieve good results.

User Studies We conducted user studies to quantitatively evaluate the exper-
imental results. The first experiment verifies the quality of the image generated
by judging whether the provided image has been edited by the user. The second
experiment compares the quality of ours and others by selecting the optimal one
from the images generated by different methods. At the same time, we also mea-
sured the user reaction time to further verify the effectiveness and robustness of
our method.
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Fig. 6. Comparison of our method with others. The results of GP-GAN and Deep
Image Blending show that the foreground is distorted and artifacts are produced. The
gradient of pasted boundary processed by SSH is very obtrusive. Our model shows the
best results, balancing global and local styles, maintaining the original information of
the object, and smoother with the surrounding gradients.
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Fig. 7. Either direct use of mainstream or the latest stylized and harmonized combi-
nation models to stylize and harmonize the foreground can handle the harmonization
task of style images very well. And our model blends global and local styles, smooths
the boundary, and achieves the best results. (See the supplementary materials for a
clearer version.)

User Study 1: Whether to Edit We invited 30 users, and randomly se-
lected 20 images generated by four different methods (sec. 4.2), and unprocessed
images. The user needs to answer whether it has been edited and click on the
edited part. We recorded the response time of the user’s answer. We asked the
user in advance if they were familiar with the image in case of the impact of prior
knowledge. And we only think that the correct answer is the sample if both the
edit and the part click are correct, in case other parts that may be edited will
cause interference. We counted the response time and error rate of each image
being answered, and the unedited image statistics were answered correctly for
ease of comparison. As shown in Fig. 8, it is clear that our method has a higher
answer error rate and a longer user response time than other methods, which
is closest to the unedited image. The high rate of answer errors indicates that
most users believe that this is an unedited image. The longer the user’s reaction
time, indicating that the user’s observation time is longer, the more difficult it is
to distinguish. The larger the area that intersects the coordinate axis, the better
the result obtained by the method in general.

User Study 2: Quality Comparison We invited 30 users, and randomly
selected 10 groups of images, and each group was processed by four different
methods. The user needed to choose the one with the best effect in each group,
and we recorded the reaction time selected by the user. The faster the reaction
time, the better the method is than the others. As shown in Fig. 8, ours are
considered by most users to be the best, and some images are far better than
others.
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Fig. 8. Statistical results of ”User Study 1 - Whether to Edit” and ”User Study 2 -
Quality Comparison”. The higher the answer error rate, the longer the average reaction
time, and the larger the area that intersects the coordinate axis, the better the result.
Our method has the best results and is closer to the unprocessed image. And ours is
the most selected by the user, and some images are far better than others.

5 Conclusion

Style image harmonization is the process of pasting the cropped areas from the
source image into the background style image and harmonizing two as a whole.
We propose a style image harmonization in which global and local information
guide mutually, and solve the problems of foreground distortion, content loss,
and semantic inconsistencies caused by the excessive transfer of local styles in the
existing methods. Firstly, global and local styles are extracted by the transformer
and CNNs separately, and an adaptive multi-scale fusion structure bridges the
transformer decoder and CNNs decoder to fuse global and local styles. Secondly,
the blending network GradGAN smooths the image gradient. Finally, the fusion
style and gradient result in a harmonious deep image.

To evaluate the method presented, we made quantitative and qualitative com-
parisons. Compared to the existing methods, our model shows the best results,
balancing the global and local styles on the foreground stylization, maintaining
the original information of the object, and smoother with the surrounding gra-
dient. User studies have shown that the images processed by our model are often
considered unedited ones, which is superior to the results of other methods. We
believe that our approach assists artists in editing their work, providing more
possibilities for users to create works of art.
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