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Abstract. Recently, 3D data generation problems have attracted more
and more research attention and have been addressed through various
approaches. However, most of them fail to generate objects with given de-
sired categories and tend to produce hybrids of multiple types. Thus, this
paper proposes a generative model for synthesizing high-quality point
clouds with conditional information, which is called Point Cloud con-
ditional Generative Adversarial Network (PC-cGAN). The generative
model of the proposed PC-cGAN consists of two main components: a
pre-generator to generate rough point clouds and a conditional modifier
to refine the last outputs with specific categories. To improve the per-
formance for multi-class conditional generation for point clouds, an im-
proved tree-structured graph convolution network, called BranchGCN, is
adopted to aggregate information from both ancestor and neighbor fea-
tures. Experimental results demonstrate that the proposed PC-cGAN
outperforms state-of-the-art GANs in terms of conventional distance
metrics and novel latent metric, Frechet Point Distance, and avoids the
intra-category hybridization problem and the unbalanced issue in gener-
ated sample distribution effectively. The results also show that PC-cGAN
enables us to gain explicit control over the object category while main-
taining good generation quality and diversity. The implementation of
PC-cGAN is available at https://github.com/zlyang3/PC-cGAN.

1 Introduction

In recent years, point clouds, a popular representation for 3D realistic objects
data, are adopted in various applications (e.g., object classification [7, 9, 12, 18,
21,23,32,36] , semantic segmentation [12,21,23,32,36], and shape completion [28,
33,35]) and have become increasingly attractive in computer vision application,
such as augmented reality [19,20,25] and virtual reality [2,29]. As each point in
raw point clouds consists of a Cartesian coordinate, along with other additional
information such as a surface normal estimate and RGB color value, point clouds
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can represent a 3D object to capture intricate details by an unordered set of
irregular points collected from the surface of the objects.

With huge demand for data to train models for the aforementioned applica-
tions, generative models, including generative adversarial networks (GANs) [10]
and variational autoencoders (VAEs) [15], have draw significant attention to
generate point cloud data with high quality and diversity. Some researchers [1]
stacked fully connected layers to convert random latent codes into 3D point
clouds, which were borrowed from the image generative domain. Additionally,
some generative models [26, 31] have utilized graph convolution networks and
k-nearest neighbor techniques to generate point clouds. Recently, SP-GAN [17]
succeeds in synthesize diverse and high-quality shapes and promote controllabil-
ity for part-aware generation and manipulation without any part annotations.
And a novel GAN was proposed to generate 3D objects conditioned on a con-
tinuous parameter in [30].

However, part of these generative models need to train separate models for
each categories, leading to poor reusability of them. Worse, most of the gen-
erative model for point clouds fail to actively synthesize objects with specific
categories, which causes the intra-category hybridization problem. Since these
models are trained to simulate the distribution of the training data with all
kind of point clouds and generate objects in random category, they are likely
to generate point clouds composed of parts of several different classes of objects
as Figure 1 shown. In addition, as the datasets are unbalanced with regard to
categories, aforementioned generative models also tend to generate point cloud
with unbalanced distribution. Therefore, this paper proposes a novel framework,
called PC-cGAN that can generate 3D point clouds from random latent codes
with categories as auxiliary information to avoid the intra-category hybridization
problem and data unbalance problem. Besides, to enhance our performance in
terms of high quality and diversity, graph convolution layer, called BranchGCN,
to aggregate information from ancestors and neighbors in feature spaces.

The main contributions of this paper are listed as follows.

– We present a BranchGCN, which passes messages from not only ancestors,
but also neighbors.

– We propose a generative model, consisting of a pre-generator and a condi-
tional modifier, to generate 3D point clouds based on the given category
information in a supervised way.

– Using the conditional generation framework, the intra-category hybridization
problem and the data unbalance problem in generated distribution can be
solved directly.

The remainder of this paper is organized as follows. We give a summary
about related studies in Section 2. In Section 3, we introduce the basic related
concepts about GANs and graph convolution networks. And the details of our
model are provided in Section 4. Next, We present the experimental setup and
results in Section 5. A conclusion of our work is given in Section 6.
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Fig. 1. An example of the intra-category hybridization phenomenon: The
point cloud is combination of a chair and an airplane.

2 Related Works

Graph Convolutional Networks. During the past years, many works have fo-
cused on the generalization of neural networks for graph structures. [5] proposed
graph convolution network for classification tasks. [16] introduced the Cheby-
shev approximation of spectral graph convolutions for semi-supervised graph
learning. Even GCN [34] can be adopted to extract spatial-temporal features
for time series data. And dynamic graph convolution network [32] was designed
to extract feature for point clouds using the connectivity of pre-defined graphs.
Similarly, TreeGCN [27] was introduced to represent the diverse typologies of
point clouds.

GANs for Point Cloud. Although GANs for image generation takes have
been comprehensively studies with success [3,8,10,11,14,24,37], but GANs for 3D
point clouds have seldom been studies in computer vision domain. Recently, [1]
proposed a GAN for 3D point clouds called r-GAN, the generator of which is
based on fully connected layers. Since these layers failed to utilize the structural
information of point clouds, the r-GAN met difficulty to synthesize realistic
objects with diversity. In order to utilize the structural information in point
clouds, [31] used graph convolutions in the generator for the first time. However,
the computational cost for the construction of adjacency matrices is O(V 2),
which leads to lengthy training period. Therefore, tree-GAN [27] saved compu-
tational cost and time without construction of adjacency matrices. Instead, its
generator used ancestor information from the tree to exploit the connectivity of
a graph, in which only a list of tree structure is needed. But tree-GAN lacked
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attention on neighbor information of each point clouds, which leaded to slow
convergence in its training process.

Conditional Generation. In contrast to the aforementioned generative model
that learned to directly generate point clouds without regard to category, several
generative models in image processing received additional conditional parame-
ters to construct specific objects or styles. Conditional GAN [22] used explicit
condition to generate hand-written digit images by an additional auxiliary classi-
fier, which formed the basis of many other conditional generative models. Style-
GAN [14] and others [8, 37] investigated how to enhance desirable attributes of
generated images selectively. However, in 3D computer vision, conditional gen-
erative models are rarely adopted to synthesize point cloud data. Recently, the
generator of [4] introduced a progressive generative network that created both
geometry and color for point clouds based on the given class labels. Their work
focus on generating dense and colored point clouds and struggled with gener-
ating objects that have fewer samples in the training data. And SP-GAN [17]
is able to promote controllability for part-aware shape generation and manip-
ulation without any part annotations, while SP-GAN requires huge amount of
training epochs. Moreover, the work in [30] proposed conditioning point cloud
generation using continuous physical parameters, but not category information.

3 Preliminaries

3.1 GAN

In general, a generative adversarial network (GAN) is designed to train a genera-
tive sub-network that transfers Gaussian random vectors z ∈ Z (Z is a Gaussian
distribution by default) into data in a real sample space x ∈ X (X is the set of
training samples) to foolish the discriminator, and the discriminator that learns
to judge samples from the given dataset and generator as real or fake. Therefore,
the task of GAN could be formulated as the minimax objective:

min
G

max
D

Ex∼Pr [log(D((x))] + Ex̃∼Pg [log(1−D(x̃))], (1)

where Pr is the data distribution from the given dataset and Pg is the generative
distribution defined by x̃ = G(z), z ∼ N (0, I). Additionally, in order to increase
diversity and stability of GAN, a gradient penalty that penalize the norm of
gradient of the critic with respect to its input is utilized in improved WGAN, so
that it can satisfy the 1-Lipschitz condition.

3.2 Graph Convolution Network

The classical graph convolution network can be defined as a network with mul-
tiple message passing layers of the form

xl+1
i = σ

W lxl
i +

∑
j∈N (i)

U lxl
j + bl

 , (2)
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where σ(·) is the activation unit, xl
i denotes the feature (e.g., 3D coordinate of a

point cloud at the first layer) of i-th vertex in the graph at l-th layer, while N (i)
denotes the set of all neighbor vertices of the i-th vertex. And Wl, Ul is learnable
weights at l-th layer, with bl as learnable bias at l-th layer. The first and second
term in (2) are called the self-loop term and the neighbors term, respectively.

In tree-GAN [27], a novel GCN, called TreeGCN, is defined with tree struc-
ture, passing information from ancestors to descendants of points. TreeGCN can
be formulated as

pl+1
i = σ

W lpli +
∑

qlj∈A(pl
i)

U lqlj + bl

 , (3)

where pli is the i-th point in the point cloud at the l-th layer, qlj is the j-th

neighbor of pli, and A(pli) denotes the set of all ancestors of pli. That means the
second term in Equation 3 updates a current point based on all its ancestors but
not its neighbors.

4 Methodology

We propose an approach inspired by cGAN [22] in image generation and tree-
structured graph convolution operations in [27]. Instead of synthesizing samples
without any instruction like previous GAN models for point clouds, we design
a supervised generative model by restricting the output samples to a specific
category and train a discriminator to judge whether the given samples are real
or fake, and which categories the samples belong to.

Unlike previous conditional GANs in image processing, our generative model
does not take a random vector and the given condition information as the direct
input. The model generates an artificial sample without any restriction in the
first step, which accelerates the convergence speed. Then the unconditioned sam-
ple is modified by the rest of the model with the given category condition. After
modification, the conditional input forces the model to transform the generated
sample to the givn category. We present the overview of our GAN framework
in Figure 2. BrachGCN, the basic module of PC-cGAN, is introduced in Sec-
tion 4.1, while in Section 4.2, we discuss the auxiliary supervised module to help
GAN to generate category-special objects. And the loss functions for training
procedure is explained in Section 4.3.

4.1 BranchGCN

To improve TreeGCN adopted in [27], we propose a new GCN combining TreeGCN
with Dynamic Graph Convolution [32] and define it as BranchGCN. Since a set
of point clouds is unable to be converted into a fixed graph before being pro-
cessed, and those traditional GCNs require information about connectivity of a
graph, tree-GAN [27] introduced TreeGCN to avoid use prior information about
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Fig. 2. Overview of model architecture: Our model consists of four parts: 1)
Pre-Generator, 2) Conditional Modifier, 3) Discriminator, and 4) Classifier. The Pre-
Generator generates the rough point clouds without any auxiliary information. The
Conditional Modifier modifies the output point clouds of the Pre-Generator based on
the given category labels. The Discriminator, meanwhile, tries to discriminate between
the real point clouds and the generated point clouds. The classifier learns to classify
the given point clouds, no matter whether they are real or artificial.

connectivity among vertices. However, TreeGCN only considers information from
ancestors, but does not take horizontal connection into account. Therefore, we
remain the ancestor term in TreeGCN, but add an extract term: neighbor term.
The additional neighbor term is able to aggregate the information of vertices
from their nearest neighbors. The neighbor term is beneficial to recompute the
graph structure by using nearest neighbors in the embedded feature spaces pro-
duced by each layer. By adding the neighbor term, the receptive field can be
expanded to the diameter of the point cloud. Specifically, we compute a pairwise
Euclidean distance matrix in the feature spaces and then take closest k vertices
for each single vertex in our experimental implementation. Figure 3 illustrates
the differences between TreeGCN and BranchGCN.

Fig. 3. TreeGCN (left) and BranchGCN (right).

To assist the neighbor term, we construct Gl as the k-nearest neighbor (k-
NN) graph of points at l-th layer based on the pairwise distance between their
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features, so that the connectivity E l ⊆ V × V between each point could be ob-
tained. Accordingly, the output of this term could be formulated as∑

k:(i,k)∈E

H lplk, (4)

where H l is also learnable weights at l-th layer. It is noticeable that the graph
structure is recomputed using nearest neighbors in the feature space built in
each layer. By adding this neighbors term, the Branching plays an effective role
to aggregate local features during generative procedure.

4.2 Conditional Generative Model

Since there is a lack of control on traditional GANs to generate artificial samples
of specific categories, these models tend to learn one-to-one mappings from a
random distribution to the distribution of the real dataset, which suffer from
the risk to produce mixtures of different kinds of samples and tend to produce a
unbalanced distribution just like the real dataset. We attribute these two issues
to the lack of explicit control on generated samples’ category. On the contrary,
the conditional version of GAN takes the combination of a random vector and a
specific label about the desired class at the input layer to generate samples with
the specific shape. Therefore, to address these issues, the proposed GAN adopts
another strategy to utilize conditional information in our work. We divide the
generative model into two part: a pre-generator similar to the existing GANs,
and a conditional modifier that enables the generative model to employ category
information to generated point clouds. As for the pre-generator, we take the
generator of tree-GAN as our backbone but replace the TreeGCN module with
our BranchGCN, as Figure 2 shown. Meanwhile, we keep the Branching module
in [27] to upsample the generated points from low-dimension random vectors. On
the another hand, we extend the architecture of DGCNN to receive the output
point clouds from the pre-generator, and an additional input that is represented
as a one-hot code about category information. These codes and the outputs
from the pre-generator are fed into the sub-network in our modifier together to
synthesize point clouds based on the given labels.

With regard to our discriminator, since we add auxiliary information into
generator, the corresponding discriminator should have the ability to distinguish
which category the given point clouds belong to, and whether they are real or
artificial. Consequently, an extra classifier is employed to recognize them. And
our discriminator has two outputs: one for the adversarial feedback D(x), and
another to determine the classification results ŷ = C(x). To adapt the new strat-
egy, we train the overall model by Algorithm 1. Different from traditional GANs,
we need to train the generator, the discriminator, and classifier simultaneously
in each iteration.

3195
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Algorithm 1: Training the PC-cGAN model

1 θ(Gen,Mod), θDisc, θCls ← initialize parameters
2 repeat
3 (X, c)← random point clouds and their category labels from dataset;
4 Z← samples from prior N (0, I) ;

5 X̃←Mod(Gen(X, c)) ;

6 X̂← samples from line segments between X and X̃;

7 L(Gen,Mod) ← −Disc(X̃);

8 LDisc ← Disc(X̃)−Disc(X) + λgp(‖∇Disc(X̂)‖2 − 1)2;

9 LCls ← CrossEntropy(Cls(X), c) + CrossEntropy(Cls(X̃), c);
// Update parameters according to gradients

10 θ(Gen,Mod)
+← −∇θ(Gen,Mod)

(L(Gen,Mod)) ;

11 θDisc
+← −∇θDisc(LDisc);

12 θCls
+← −∇θCls(LCls);

13 until deadline;

4.3 Loss Functions

The optimization objective for general GANs is composed of two components,
the generative loss, adversarial loss with a gradient penalty, just like the improved
WGAN [11]. However, since the category information is added into the proposed
GAN, there are some differences inside the loss functions. In PC-cGAN, the loss
function of the generator, Lgen, is defined as

Lgen = −Ez∈Z,c∈C [D(G(z, c))] + Lc(G(z, c), c), (5)

where G and D represent the generator and discriminator, respectively. Z and C
denote a latent Gaussian distribution, and the set of all the class labels. Besides,
the last term in Equation 5 represents the loss for multi-class classification of
generated point clouds, defined as Lc(G(z, c), c) = CrossEntropy(C(G(z, c)), c),
where C denotes the multi-class classifier. On the another hand, the loss of the
discriminator Ldisc is formulated as

Ldisc = Ez∈Z,c∈C [D(G(z, c))]− Ex∈R[D(x)] + λgpLgp + Lc(x, c), (6)

where x denotes real point clouds belonging to a real data distribution R.
Accordingly, in our model, we adopt a gradient penalty from WGAN, Lgp =
Ex̂[(‖∇x̂D(x̂)‖2 − 1)2], where x̂ is sampled uniformly along straight lines be-
tween pairs of points samples from the data distribution R and the generated
distribution G(z) (z ∈ Z), and λgp is a weighting parameter that we set to 10.

For better convergence of our model, we add another discriminator to distin-
guish the generated point clouds from the pre-generator, which is illustrated in
Figure 4. Therefore, the loss function of the generative model is refined as

L′gen = Lgen − Ez∈Z [D′(G′(z))], (7)
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Fig. 4. The difference between the frameworks of the original PC-cGAN (left) and the
improved PC-cGAN (right).

where G′ and D′ denote the pre-generator and the extra discriminator. Since
the output point clouds from the pre-generator are lack of category constraint,
the additional loss for multi-class classification L′c is unnecessary. Similarly, the
loss function of discriminator part is modified as

L′disc = Ldisc + Ez∈Z [D′(G′(z))]− Ex∈R[D′(x)] + λgpL′gp, (8)

where L′gp is the gradient penalty term for the extra discriminator D′.

5 Experimental Results

In this section, we demonstrate the point cloud generation using PC-cGAN on
ShapeNetBenchmark [6] in two tasks: point cloud generation, and point cloud
modification.

5.1 Generation Point Cloud Assessment

As for experimental details, an Adam optimizer is adopted to train both our
generator and discriminator sub-networks with a learning rate of α = 10−4, β1 =
0 and β2 = 0.99. The discriminator with a classifier was updated ten times
per iteration, while the generator was updated one time per iteration. After
setting these hyper-parameters, a latent vector z ∈ R96 sampled from a Gaussian
distribution N (0, I) , and the total number of generated point clouds was set to
n = 2048.

The conventional quantitative metrics proposed by [1] are used to evaluated
the quality of generated point clouds by measuring matching distances between
real and artificial point clouds. Besides, we also adopt Fréchet dynamic distance
(FPD) [27], a nontrivial extension of Fréchet inception distance (FID) [13], to
quantitatively evaluate generated point clouds. We generated 1000 random sam-
ples for each class and performed an evaluation using the aforementioned matri-
ces. Table 1 presents the results along with quantitative comparison to previous
studies [1] on conventional metrics, and Table 2 presents the FPD score. Note
that separated models were trained in all the comparative methods to generated
point clouds for different classes except [4] used the same model to generate point
clouds for five classes, while the proposed model is able to generate point clouds
of any category (16 classes) simultaneously on ShapeNetBenchmark dataset.

3197



10 Z. Yang et al.

Table 1. A quantitative evaluation of the Jensen-Shannon divergence (JSD), the min-
imum matching distance (MMD), coverage (COV) with the Earth mover’s distance
(EMD), and the pseudo-chamfer distance (CD). Please refer to [1] for details regarding
the metrics. For the GANs with ?, we adopted the results from [4]. The red and blue
values indicate the best and the second best results for each metric, respectively. The
resolution of the evaluated point clouds was 2048× 3.

Class Model JSD ↓ MMD ↓ COV ↑
CD EMD CD EMD

Airplane

r-GAN (dense)? 0.182 0.0009 0.094 31 9
r-GAN (conv)? 0.350 0.0008 0.101 26 7

Valsesia et al. (no up.) 0.164 0.0010 0.102 24 13
Valsesia et al. (up.) 0.0830.0830.083 0.0008 0.071 31 14

tree-GAN? 0.097 0.00040.00040.0004 0.0680.0680.068 616161 202020
PC-cGAN (ours) 0.0860.0860.086 0.00060.00060.0006 0.0610.0610.061 535353 232323

Chair

r-GAN (dense)? 0.235 0.0029 0.136 33 13
r-GAN (conv)? 0.517 0.0030 0.223 23 4

Valsesia et al. (no up.) 0.119 0.0033 0.104 26 20
Valsesia et al. (up.) 0.1000.1000.100 0.0029 0.0970.0970.097 30 26

tree-GAN? 0.119 0.00160.00160.0016 0.101 585858 303030
PCGAN? 0.0890.0890.089 0.0027 0.0930.0930.093 30 333333

PC-cGAN (ours) 0.119 0.00260.00260.0026 0.109 383838 24

Table
PCGAN? 0.250 0.00160.00160.0016 0.097 10 9
tree-GAN 0.074 0.0032 0.115 46 35

PC-cGAN (ours) 0.0480.0480.048 0.0030 0.0960.0960.096 505050 474747

Motorbike
PCGAN? 0.093 0.0035 0.089 454545 434343
tree-GAN 0.116 0.0015 0.0560.0560.056 18 35

PC-cGAN (ours) 0.0620.0620.062 0.00130.00130.0013 0.069 25 38

Car
tree-GAN 0.080 0.0014 0.089 35 18

PC-cGAN (ours) 0.0700.0700.070 0.0014 0.0730.0730.073 383838 191919

Guitar
tree-GAN 0.0460.0460.046 0.0008 0.0510.0510.051 404040 18

PC-cGAN (ours) 0.083 0.00060.00060.0006 0.061 32 232323

All
(16 classes)

r-GAN (dense) 0.171 0.0021 0.155 58 29
tree-GAN 0.105 0.00180.00180.0018 0.107 666666 39

PC-cGAN (ours) 0.0340.0340.034 0.0034 0.1060.1060.106 47 444444

Table 2. The FPD score for point cloud samples generated by generative models.
Notice that the score for real point clouds are almost zero. The point clouds were
evaluated at a resolution of 2048× 3. The bold values denote the best results.

Class r-GAN tree-GAN PC-cGAN (ours)

Airplane 1.860 0.4390.4390.439 0.747
Chair 1.016 0.8090.8090.809 1.948

All (16 classes) 4.726 3.600 2.1202.1202.120
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According to the quantitative results from the given tables, we have achieved
comparable results in synthesizing high-quality point clouds for each category.
Even though our model fails to achieve the best in terms of some metrics for
some classes, the model outperforms other GANs on the most metrics (i.e.,JSD,
MMD-EMD, COV-EMD, and FPD), which demonstrates the effectiveness of
the proposed method for multi-class generation. Again, we point out that all the
methods train a separate network for each single class except that PCGAN [4]
trains the single model for only five classes because of their lack of ability for
conditional generation. By contrast, the proposed model uses the same network
to generate samples of every single category (16 classes in total) to avoid the hy-
bridization problem and data unbalance issue. Therefore, the quantitative results
demonstrate that the proposed method can achieve the comparable performance
alongside conditional generation.

In addition to the quantitative results, Figure 5 and Figure 6 show point
clouds from the real dataset, and ones generated by the baseline in [27], and our
PC-cGAN after 1000 epochs of training. In Figure 5, the generated samples are
more realistic due to their large sample size. As for Figure 6, even though the
generative results are not as realistic as Figure 5 owing to lack of samples, PC-
cGAN can still generate point clouds whose shapes look like the given categories.

5.2 Point Cloud Modification

Since the conditional modifier in the proposed generative model could modify
the unclassified point clouds from the pre-generator based on the given classes,
it also can generate point clouds of the specified categories from any outputs
of pre-generator. Figure 7 shows that during the former generative process, the
pre-generator produce point clouds randomly, without specified category infor-
mation, while the latter part modify the random point clouds into ones of the
specified categories. And even the point clouds from the pre-generator seem to
fall into the specified categories, the modifier also can enhance their realness by
decreasing the distance between the distribution of generated point clouds and
real point clouds further.

5.3 Ablation Study

To verify the effectiveness of the modules proposed in the previous section, in-
cluding BranchGCN in section 4.1 and the improved loss functions in section 4.3,
we further perform several ablation studies on PC-cGAN. For all experiments in
this section, the models are trained in the same experimental configuration as
section 5.1 on the table class. Note that although the table class is chosen as an
example, all the models in this section are trained on complete ShapeNetBench-
mark dataset (16 classes at all) to keep consistency with section 5.1. The results
of our ablation studies are presented in Table 3. Applying BranchGCN module to
aggregate not only ancestors’ information but also features from neighbors brings
considerable performance improvement in point cloud generation. The results
also demonstrate that the effectiveness of the improved loss functions. Although
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12 Z. Yang et al.

Fig. 5. Real point clouds from ShapeNetBenchmark [6] (left), and 3D point clouds
generated by the baseline (middle), i.e., tree-GAN [27], and our PC-cGAN (right).
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Fig. 6. A supplement for point clouds generation of other categories lacking sample
data. The same order is adopted as Figure 5

Fig. 7. Point cloud modification. The leftmost point cloud is fixed as a random
object generated by the pre-generator, whose shape is closed to a coarse airplane in
the implementation. The following four objects are generated by modifying the leftmost
point cloud according to the given classes.

3201



14 Z. Yang et al.

PC-cGAN with the losses requires more computational resources due to the ex-
tra discriminator, the additional discriminator can guarantee the pre-generator
produces more realistic samples without category constraint, and enhance the
quality of final outputs as mentioned in section 4.3.

Table 3. Supplemented ablation study on the table class. Improved loss used the
framework of improved PC-cGAN. We try replacing BranchGCN module with previ-
ous TreeGCN in [27] [BranchGCN], and removing the additional discriminator with
improved loss function [Improved Loss].

BranchGCN Improved Loss JSD↓ MMD↓ COV↑
CD EMD CD EMD

8 8 0.584 0.0215 0.178 20 15
8 4 0.174 0.0164 0.156 22 20
4 8 0.080 0.0150 0.113 46 35
4 4 0.0480.0480.048 0.00300.00300.0030 0.0960.0960.096 505050 474747

6 Conclusions

In this work, a improved tree-structured graph convolution network is proposed
to aggregate information from ancestors and neighbors in feature space. Based
on that, we propose a conditional GAN for point clouds, called PC-cGAN, to
generate 3D objects of specific categories. To introduce the given information
about categories into the generative model, we propose a two-stage generator,
which consist of a pre-generator and a conditional modifier to solve the intra-
category hybridization problem and the data unbalance issue. Based on the
two-stage structure, we build the corresponding loss functions and the training
algorithm to assist our model to converge effectively. By comparisons with recent
generation approaches, we evaluate the generated point clouds by PC-cGAN
on the conventional metrics, including FPD score. The quantitative and visual
results show that our model is capable of simulating high-quality and diverse
samples for multi-class point cloud generation.
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