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Abstract. Face forgery detection has been increasingly investigated due
to the great success of various deepfake techniques. While most existing
face forgery detection methods have achieved excellent results on the
test split of the same dataset or the same type of manipulations, they
often do not work well on unseen datasets or unseen manipulations due
to the issue of model generalization. Therefore, in this paper, we propose
a novel contrastive distillation calibration (CDC) framework, which dis-
tills the contrastive representations with confidence calibraion to address
this generalization issue. Different from previous methods that equally
treat the two forgery types, Face Swapping and Face Reenactment, we
devise a dual-teacher module where the knowledge is separately learned
for each forgery type. A contrastive representation learning strategy is
further presented to enhance the representations of diverse forgery ar-
tifacts. To prevent the proposed model from being overconfident, we
propose a novel Kullback-Leibler divergence loss with dynamic weights
to moderate the dual-teacher’s outputs. In addition, we introduce label
smoothing to calibrate the model confidence with the target outputs. Ex-
tensive experiments on three popular datasets show that our proposed
method achieves the state-of-the-art performance for cross-dataset face
forgery detection.

Keywords: Deepfake Detection · Confidence Calibration · Knowledge
Distillation.

1 Introduction

Recent years have witnessed the rapid development of various deepfake tech-
niques, such as face swapping and face reenactment [27, 46–48]. As a result, face
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Fig. 1. Forgery samples from FaceForensic++ (FF++) [40]. Face Swapping wants to
change the identity and keep the motion of the target face. On the contrary, Face
Reenactment wants to preserve the identity and change the motion of the target face.
Different forgery artifacts are generated during the different forgery processes. Based on
this observation, we propose a feature-augmented contrastive representation approach.

forgery detection has been increasingly investigated to address the societal con-
cerns on identity fraud, and many face forgery detection methods have been
developed with promising progress[15, 55, 56].

Existing methods generally learn representations from spatial, temporal, and
frequency domains to distinguish forged faces from genuine ones. Early studies
focused on detecting face forgery in a single domain[38, 37]. Although these meth-
ods achieved excellent performance on seen datasets and manipulations, they
lack generalization to unseen datasets and manipulations. Then multi-domain
methods[35, 33] were proposed to improve generalization by fusing the features of
multiple domains. However, the redundant representations introduced by multi-
domain features can easily lead to over-fitting. As a result, additional constraints
on inter-domain independence are required, which eventually increases computa-
tional costs. Recently, deep learning based methods[1, 40] have been investigated
to learn features common to different types of forgeries. However, none of the
existing techniques consider the forgery artifact differences between different
types of forgery. As illustrated in Fig. 1, two types of forgeries, Face Swapping
and Face Reenactment, have distinct characteristics due to different objectives,
which need to be exploited separately.

Therefore, in this paper, we propose a novel contrastive representation distil-
lation model to address the issue of model generalization. Specifically, we devise
a dual-teacher module in which each teacher is trained with one of two forgery
types. That is, a Face Swap teacher and a Face Reenactment teacher are trained
separately to obtain discriminative features for individual forgeries. Then, the
knowledge from both teachers will be jointly distilled to a student model for
improved model generalization.

To further improve model generalization, we refine the task of face forgery
detection from binary classification (i.e., fake vs real) to fine-grained confidence
scores in the range of [0, 1]. To this end, we propose to calibrate the model
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confidence with the scores. Therefore, we further devise a new loss function,
namely Confidence Calibration Loss, to calibrate the output of our framework.
We exploit label smoothing to quantify the target output at finer levels. The
distribution of targets is changed into a uniform distribution between the ground-
truth labels and the labels processed by label smoothing regularization. The new
targets will guide the model to make more fine-grained predictions to alleviate
the issue of being overconfident. In addition, according to the outputs from each
teacher, two dynamic confidence weights are assigned to each input sample. A
loss with dynamic weights expresses the prediction from two teachers to the
current sample more accurately. Therefore, we name our proposed framework
as Contrastive Distillation Calibration (CDC). Overall, the key contributions of
this paper are summarized as follows:

– We propose a novel contrastive distillation calibration framework to enhance
the generalization of face forgery detection by designing a dual-teacher mod-
ule for knowledge distillation and utilizing contrastive representation learn-
ing without additional disentangling.

– We propose to calibrate the model confidence with the targets for the first
time for face forgery detection and devise a new Kullback-Leibler divergence
based loss function with label smoothing strategy.

– We perform comprehensive experiments on three widely used benchmark
datasets: FaceForensics++[40], Celeb-DF[31], and DFDC[8] to demonstrate
that our proposed method outperforms the state-of-the-art face forgery de-
tection methods on unseen datasets.

Code is publicly available at: https://github.com/Puning97/CDC_face_
forgery_detection

2 Related Work

2.1 Face forgery Detection

Most of the existing face forgery detection methods identify forgery traces from
the perspective of spatial[28, 53, 37, 40], frequency[33, 38], and temporal[35, 56,
29] domains. For example, Face x-ray[28] mainly paid attention to the mixing
step existing in most face forgery cases and achieved state-of-the-art perfor-
mance from the generalization perspective on raw videos. F3-Net[38] exploited
Discrete Cosine Transform (DCT) coefficients to extract the frequency features
and achieved state-of-the-art performance on highly compressed videos. Various
methods have also been proposed to exploit specific temporal incoherence in the
temporal domain, such as eye blinking[29], lips motion[15], or expression[35].

However, these methods generally focus on learning low-level features from
given datasets with a specific type of forgery, which could not be generalized
across different datasets and different types of forgeries. In our work, we propose
a dual-teacher module to enhance the learning of generalized representations
with contrastive learning.
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2.2 Knowledge Distillation

Knowledge distillation refers to a learning process of distilling knowledge from
a big teacher model to a small student model. It has a history of more than
ten years. Busira et al. [3] presented a method to compress a set of models into
a single model without significant accuracy loss. Ba and Caruana [2] extended
this idea to deep learning by using the logits of the teacher model. Hinton et
al. [21] revived this idea under the name of knowledge distillation that distills
class probabilities by minimizing the Kullback-Leibler (KL)-divergence between
the softmax outputs of the teacher and student. In addition, the hidden repre-
sentation from the teacher has been proved to hold additional knowledge that
can contribute to improving the student’s performance. Especially in computer
vision, some recent knowledge distillation methods[39, 24, 54, 42] were proposed
to minimize the mean squared error (MSE) between the representation-level
knowledge of two models. They addressed how to better extract more useful
knowledge from the teacher model and transfer it to the student. In the case
of vision tasks, the most common methods[14, 20, 10] of knowledge distillation
focus on combining the ground truth and the teacher’s predictions as the overall
targets to train students.

On the one hand, we continue the idea of most knowledge distillation models:
distilling the knowledge of the teacher model into the student model. On the
other hand, existing distillation methods generally aim to transfer features from
a big model to a small one. Such an operation often leads to an issue that the
student lacks prominent local advantages and the global representation ability
is weaker than their teachers. Therefore, we first train two small teachers with
local salient feature representation, and then distill these two small teachers’
knowledge into a big student model. Theoretically, the large student preserves
the representations of both teachers and improve model generalization through
the transfer process.

2.3 Confidence Calibration

Modifying model improves its robustness and generalization [17, 18]. Confidence
calibration is effective in enhancing the generalization of a model and improv-
ing its reliability to be deployed in realistic scenarios[43, 13]. As there exists an
overfitting issue for deep neural networks, Guo et al.[13] explained that existing
neural networks often make overconfident predictions and proposed the concept
of confidence calibration. Hein et al.[19] suggested that neural networks using the
ReLU activation function are essentially piecewise linear functions, thus explain-
ing why out-of-distribution data can easily cause softmax classifiers to generate
highly confident but incorrect outputs: piecewise linear functions imply that the
methods which operate on the output of classifiers cannot recognize an input as
out-of-distribution inputs. Confidence calibration improves the generalization of
a model from this perspective.

Many confidence calibration methods have been proposed in recent years, in-
cluding temperature scaling[32, 22], mixup[49], label smoothing[44], Monte Carlo
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Fig. 2. Overview of our proposed CDC framework, we firstly perform the Contrastive
Dual-teacher Learning to train the two teachers. Then, we undertake contrastive
representation-based distillation with confidence calibration. Note that abbreviations
have been used for some symbols. For instance, ŷm = ŷmotion, th = thard, ŷi = ŷid,
ŝs = ŝstu.

Dropout[12], and Deep Ensembles[26]. Label smoothing is a method of fusing
the ground truth with a uniform distribution. It enforces a model to generate
a smoother probability distribution to fit the soft targets, which is utilized in
our distillation framework. In addition to label smoothing, we also propose to
exploit dynamic confidence weights to better leverage the knowledge of the two
teachers.

3 Methodology

As shown in Fig. 2, our proposed forgery detection method consists of three key
components: a dual-teacher block, a student block, and a confidence calibration
block. Firstly, we divide the FF++ dataset into two sub-datasets: Face Swap-
ping Dataset (FSD) containing face swapped images and their corresponding
genuine images and Face Reenactment Dataset (FRD) containing motion reen-
acted images and their corresponding genuine images, and obtain an id-teacher
and a motion-teacher by training our backbone on FSD and FRD, respectively.
Secondly, the knowledge of both teachers in the dual-teacher block is transferred
to the student by training it on a multi-category forgery dataset. Finally, to
achieve fine-grained classification of multiple types of forgeries, we devise confi-
dence calibration-based loss functions with dynamic weights and introduce label
smoothing to better supervise network training.
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Teachers Face Swapping Face Reenactment

ID-Teacher 99.53 58.12
Motion-Teacher 76.58 99.25

Table 1. Cross-evaluation results of the Dual-teacher block in terms of AUC (%) on
FSD and FRD.

3.1 Feature Representation

Existing forgery methods include two modes: face swapping and face reenact-
ment. Face swapping aims to exchange identity information while keeping the
motion information maximally. On the contrary, face reenactment aims to ex-
change the motion information and keep the identity information. Inspired by
the principle of contrastive learning, we divide the FF++ dataset into two sub-
datasets: Face Swapping Dataset, which includes face swapped forgeries and
corresponding genuine images, and Face Reenactment Dataset, which provides
face reenacted forgeries and corresponding genuine images. Two backbones are
trained on these two sub-datasets, respectively. Now we obtain two teachers:
ID-Teacher and Motion-Teacher. A cross-evaluation experiment was undertaken
with results shown in Tab. 1, to verify the independence and validity between the
ID-Teacher and the Motion-Teacher. The difference in cross-category evaluation
indicates existing face reenactment forgery methods keep the identity informa-
tion well. However, face swapping methods do not keep the motion information
well.

We introduce the details of our backbone, which consists of two parts: the
EfficientNet-B3[45] and the Feature Transformer. These two parts are trained in
an end-to-end manner for teacher training. Overall, given a suspect image I ∈
RH×W×3, the first stage is the EfficientNet-B3[45] pre-trained from TIMM[52].
It extracts identity or motion feature F = ΦEfficientNet−B3(I), F ∈ RH′×W ′×C .

The second stage is Feature Transformer based on Vision Transformer[9].
With the EfficientNet-B3, we obtain the features F ∈ RH′×W ′×C . Note that
a global feature F can be represented as a sequence of local features Fl ∈
RH′×W ′

, l ∈ 1, 2, ..., C, which is a 2D sequence of token embeddings in the stan-
dard Vision Transformer[9]. Note that C denotes the input sequence length, H
and W are as same as the input patch size p. Following the settings in ViT[9], we
flatten the patches and map them to D dimensions with a trainable linear pro-
jection (Eq.1). We add a learnable class embedding to the sequence of embedded
patches (z00 = Fclass), learnable 1D position embeddings (Epos) also have been
included to retain positional information.

z0 = [Fclass;F1E;F2E; · · · ;FCE] + Epos, (1)

Where Fn denotes the n-th part in feature F, E ∈ R(H
′·W ′)×D, Epos ∈ R(C+1)×D.

The core block of Feature Transformer is L standard Transformer Encoder
blocks and each block consists of a multi-head self-attention(MSA) (Eq.2) block
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and an MLP block (Eq.3). Layernorm (LN)[50] is applied before every block
and residual connections after every block. The MLP contains two layers with a
GELU activation function:

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 · · ·L, (2)

zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1 · · ·L. (3)

The output of the Transformer Encoder (z0L) is the representation of the image.
We can apply an MLP head for the final prediction:

y = MLP(LN(z0L)). (4)

Fig. 3. Illustration of the backbone architecture which consists of EfficientNet-B3 and
a variant of Vision Transformer. We split the features extracted from EfficientNet-
B3 along the channel dimension and feed the sequences of features to a standard
Transformer Encoder.

3.2 Dual-teacher Knowledge Distillation (DKD)

Now we have two teachers to form the dual-teacher block. Specifically, the ID-
Teacher maps face swapped samples Iid to the output yid, and the Motion-
Teacher maps face reenacted samples Imotion to the output ymotion. Our goal
is to teach a student that inherits advantages from both teachers by distilling
the knowledge from the dual-teacher block. Considering that the scales of the
data between teachers and students are different, we fine-tuned the backbone
structure. The difference between teachers and student is the number of layers
and heads in the Feature Transformer encoder. A given image Itrain is fed to
three branches: the ID-Teacher, the Motion-Teacher, and the Student. On the
one hand, we obtain the predictions ŝ from the Student and the hard targets
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thard from the groundtruth of the training dataset. On the other hand, the ID-
Teacher and the Motion-Teacher respectively predict a score of the input, then
we get ŷid and ŷmotion. We use the binary cross-entropy (BCE) loss to supervise
the prediction on hard targets (Eq.5). The learning process between teachers
and student is supervised by the Kullback-Leibler (KL) divergence loss (Eq.6).

Lhard =
1

N

N∑
1

BCE(ŝstu, t̂hard), (5)

Lteacher =
1

N

N∑
1

(KL(ŝstu, ŷid) + KL(ŝstu, ŷmotion)). (6)

The overall loss function of our distillation model is as follows:

Ldistill = λLhard + λLteacher. (7)

3.3 Confidence Calibration Loss (CCL)

As shown in Fig. 4, our model also suffers from overconfidence. It is necessary
to calibrate the confidence of our framework. We present two sub-functions to
achieve this goal: Dynamic Confidence Weights and Label Smoothing Regular-
ization.

Dynamic Confidence Weights (DCW) Given a training sample, we usually
get different results from the two teachers, which means different levels of con-
fidence. Therefore we propose the Dynamic Confidence Weight strategy, which
is based on the outputs from the teachers. For instance, one teacher’s output of
a training sample is ŷs, the probability on the other category is 1 − ŷs. We de-
fine the absolute value (Eq.8) between these two probability scores as the model
confidence index, which represents the teacher’s confidence in its prediction.

λs = |1− (ŷs)− ŷs| = |2ŷs − 1|. (8)

For each sample, we get two dynamic confidence weights λid and λmotion:

λid = |2ŷid − 1|, λmotion = |2ŷmotion − 1|. (9)

we can calculate the loss of samples:

Lid =
1

N

N∑
1

(λidKL(ŝstu, ŷid)), (10)

Lmotion =
1

N

N∑
1

(λmotionKL(ŝstu, ŷmotion)), (11)

and the final loss function can be written as:

L′
teacher = Lid + Lmotion. (12)
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Label Smoothing Regularization(LSR) To further improve the general-
ization ability, we exploit the label smoothing method in our task. Based on our
observations, forged images often contain some genuine content. For instance,
both face swapped samples and face reenacted samples have common real con-
tents: the background in the images. Besides, face swapped samples also have
part of the same motion information as the genuine samples. Coincidentally,
face reenacted samples have the same identity information as the genuine sam-
ples. Thus, it is reasonable to set the targets from the combination between the
ground-truth labels and its converted outputs. Considering a smoothing param-
eter ϵ, a sample of the ground-truth label y, we replace the label distribution:

Pi =

{
1, if(i = y)

0, if(i ̸= y)
⇒ Pi =

{
(1− ϵ), if(i = y)

ϵ, if(i ̸= y)
. (13)

Now we get a new label distribution, which is a mixture of the original
ground-truth distribution and the converted distribution with weights 1− ϵ and
ϵ. We practically interpret LSR with the cross entropy:

LS(p̂, t) =

{
(1− ϵ) ∗ (−

∑1
i=0 ti log p̂i), if(i = y)

ϵ ∗ (−
∑1

i=0 ti log p̂i), if(i ̸= y)
. (14)

The final label smoothing loss is:

Lsmoothing =
1

N

N∑
1

LS(ŝstu.thard). (15)

Finally, our total loss function is as follows:

Ltotal = (1− λt)Lhard + λtL′
teacher + λlLsmoothing. (16)

4 Experimental Results and Discussions

We evaluated the performance of our proposed CDC (i.e., DKD + CCL) against
multiple state-of-the-art methods on three publicly available datasets. We show
that our model achieves convincing performance under the in-dataset setting.
To demonstrate the robust generalization ability of our model, we conducted
the cross-dataset evaluation by training the model with only FF++[40] datasets
and testing on unseen datasets. Ablation studies explore the contribution of each
component in our framework, such as the impact of DKD and CCL.

4.1 Experimental Settings

Datasets. Following recent related works on face forgery detection [33, 55, 1, 30],
we conducted our experiments on the three benchmark public deepfake datasets:
FaceForensics++ (FF++)[40], Celeb-DF[31], and Deepfake Detection Challenge
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(DFDC)[8]. FaceForensics++ (FF++) is the most widely used dataset in many
deepfake detection approaches. It contains 1,000 original real videos from the
Internet, and each real video corresponds to 4 forgery ones, which are manip-
ulated by Deepfakes[11], NeuralTextures[47], FaceSwap[25], and Face2Face[48],
respectively. Celeb-DF consists of high-quality forged celebrity videos using an
advanced synthesis process. Deepfake Detection Challenge (DFDC) public test
set was released for the Deepfake Detection Challenge, which contains many
low-quality videos and makes it exceptionally challenging.
Evaluation Metrics.We utilized the Accuracy rate (ACC) and the Area Under
Receiver Characteristic Curve (AUC) as our evaluation metrics. (1) ACC. The
accuracy rate is the most popular metric in the classification task. It is also
applied to evaluate the performance of face forgery detection, and we used ACC
as one of the evaluation metrics in the experiment. (2) AUC. Following the Celeb-
DF[31] and DFDC[8], we used AUC as the other evaluation metric to evaluate
the performance in the cross-dataset evaluation.
Pre-processing and Training Setting. For all video frames, we used Retina-
face[7] to detect faces and saved the aligned facial images as inputs with a size
of 224× 224. We augmented our training data using Albumentations[4]. We set
hyper-parameters λt = 0.15, λl = 0.1 in the Equation 16. Optimizer was set to
Adam[23] for end-to-end training of the complete model with a learning rate of
1e − 4 and decay of 1e − 6. We trained our models with a batch size of 32 for
100 epochs. All our results were obtained on four NVIDIA RTX3090 GPUs.

4.2 In-dataset Evaluation

Although our framework focuses on the generalization ability for the face forgery
detection task, it still achieves competitive results in the in-dataset evaluation
with FF++[40] and DFDC[8]. Given a dataset, our model is trained on both
genuine and deepfake data from train split, and its performance is evaluated
with the corresponding test split. Different from existing works, we compare
the performance in two sub-datasets: the Face Swapping Dataset and the Face
Reenactment Dataset. As shown in Tab. 2, 3, and Fig. 4, our framework is on par
with existing state-of-the-art methods. Selim [41] achieved a better performance
in terms of AUC than our framework because it was devised for the setting of the

Method
Face Swapping Face Reenactment
ACC AUC ACC AUC

Face X-ray[28] 98.97 99.18 98.73 98.99
I3D[5] 97.85 98.32 94.65 95.17
MIL[51] 97.54 97.21 98.19 98.27

Ours 99.45 99.52 98.12 98.56

Table 2. Detection performance on unseen manipulations with our framework and
others compared on the FF++ dataset.

48



Face Forgery Detection with the CDC 11

known DFDC dataset and our model was not fine-tuned for the known dataset
evaluation. Besides, model confidence index distribution demonstrates that the
model’s confidence is also better calibrated without a clear loss of detection
accuracy.

4.3 Cross-dataset Evaluation

In real-world scenarios, the target of the forgery detection task is often the out-
come of images generated by a new model with an unknown source. Successfully
detecting unseen images indicates the robustness of the model. Cross-dataset
evaluation can reflect the generalization ability of the model well. Our experi-
ments were designed to train our framework on the FF++ dataset and then test
it on the Celeb-DF dataset to verify the model’s generalization ability. As shown
in Fig. 4 and Tab. 3, our model outperforms the state-of-the-art methods. Be-
sides, the benefit of calibrating model confidence in the training phase has been
reflected in a more reasonable confidence index distribution and a higher AUC
in the cross-dataset evaluation.

Method DFDC (AUC (%))

Capsule[37] 53.3
Multi-task[36] 53.6
HeadPose[53] 55.9
Two-stream[57] 61.4
VA-MLP[34] 61.9
VA-LogReg 66.2

MesoInception4 73.2
Meso4[1] 75.3

Xception-raw[40] 49.9
Xception-c40 69.7
Xception-c23 72.2
FWA[30] 72.7

DSP-FWA[30] 75.5
Emotion[35] 84.4
Selim[41] 98.6

Ours 97.9

Methods FF++ Celeb-DF

Two-stream[57] 70.1 53.8
Multi-task[36] 76.3 54.3
HeadPose[53] 47.3 54.6
Meso4[1] 84.7 54.8

MesoInception4 83.0 53.6
VA-MLP[34] 66.4 55.0
VA-LogReg 78.0 55.1
FWA[30] 80.1 56.9

Capsule[37] 96.6 57.5
Xception-raw[40] 99.7 48.2
Xception-c23 99.7 65.3
Xception-c40 95.5 65.5
DSP-FWA[30] 93.0 64.6
F3-Net[38] 98.1 65.2

Multi-attentional[55] 99.8 67.4
Two-branch[33] 93.2 73.4
Face X-ray[28] 99.2 74.8

Ours 99.1 75.1

Table 3. Detection performance on known dataset (DFDC, on the left) and unseen
dataset (Celeb-DF, on the right) with our framework and others compared in terms of
AUC (%). Our method’s performance is comparable to that of the best model Selim
result[48] in the DFDC competition and obtains the state-of- the-art performance in
the cross-dataset evaluation. Results of some other methods are cited directly from
[33].
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Fig. 4. Model Confidence Index(Eq. 8) on the FF++ dataset (left) and the Celeb-DF
dataset (right), and we can conclude that CCL can effectively mitigate the model’s
overconfidence problem. On the unseen data, unlike the baseline lack of confidence, the
model using CCL can confidently predict the authenticity of an image.

4.4 Ablation Study

We performed comprehensive studies on the FF++[40] and the Celeb-DF[31]
dataset to validate our design of the overall framework. In summary, compared
with the ablation study that removes any components, the proposed framework
shows higher detection accuracy in different face forgery models and general
authenticity detection. Specifically, We have analyzed the performance of each
component separately from the two major aspects of DKD and CCL. The results
are as shown below:

Effect of DKD. We first validate the backbone of teachers and students. For
example, for the Motion Teacher, we trained five variants of our framework: 1)
ResNet-50; 2) Xception; 3) EfficientNet-B7; 4) EfficientNet-B4; 5) EfficientNet-
B3.

Teacher Backbone FF++ Celeb-DF Params

ResNet-50[16] 98.62 66.83 24M
Xception[6] 98.85 67.42 23M

EfficientNet-B7[45] 99.64 67.59 88M
EfficientNet-B4[45] 99.42 67.55 19M
EfficientNet-B3[45] 99.24 67.49 12M

Table 4. Abalation Studies for backbone variants . Frame-level AUC(%) is reported.

Tab. 4 has shown the results of different backbones. We can conclude that
different backbones have little influence on the detection results under the in-
dataset and cross-dataset settings. Considering the computation cost, we finally
chose EfficientNet-B3 as our backbone.

To validate the effectiveness of our Feature Transformer, we performed an
ablation study on the framework. We trained four layer variants and four head
variants of our framework. The results are presented in Tab. 5.
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Teacher Model FF++ Celeb-DF

B3+FTL × 12 99.32 67.27
B3+FTL × 3 99.12 67.58
B3+FTL × 2 98.99 67.62
B3+FTL × 1 98.89 67.72

B3+FTL × 1+HEAD × 12 98.89 67.72
B3+FTL × 1+HEAD × 16 98.95 67.70
B3+FTL × 1+HEAD × 8 98.84 68.02
B3+FTL × 1+HEAD × 6 98.78 68.98

Table 5. Ablation study on the number of layers and heads of the Feature Transformer
Encoder in our teacher framework. Frame-level AUC(%) is reported.

We notice that 1) Feature Transformer can improve the generalization ca-
pability; 2) too many layers of the standard encoder in Feature Transformer
cannot further improve the teacher’s performance; and 3) an appropriate num-
ber of heads can achieve the best result.

With two teachers, we automatically choose the same structure for the stu-
dent. However, the student with the same structure as teachers was mediocre.
We speculated that the current structure is too small to accommodate the hypo-
thetical space of two teachers simultaneously. Thus, we adjusted the structural
parameters of the student model. As shown in Tab. 6, the student with two lay-
ers of the Feature Transformer encoder and twelve heads in each layer achieves
the best performance.

Effect of CCL. After verifying and carefully adjusting the structure of teach-
ers and students, we confirmed the necessity of the various components of the
calibration section and adjusted them.

As shown in Tab. 7, we firstly validated the effectiveness of dynamic confi-
dence weights and label smoothing. The result shows that while the model gen-
eralization ability is improved, the in-dataset evaluation is almost unaffected.

Student Model (Model Only) FF++ Celeb-DF

B3+FTL × 1+HEAD × 6 98.97 68.78
B3+FTL × 1+HEAD × 8 98.92 69.84
B3+FTL × 1+HEAD × 10 98.88 69.82
B3+FTL × 1+HEAD × 12 98.94 70.68
B3+FTL × 1+HEAD × 14 99.01 70.32
B3+FTL × 2+HEAD × 12 99.13 71.62
B3+FTL × 4+HEAD × 12 99.17 68.73

Table 6. Ablation study on the number of heads in each layer of the Feature Trans-
former Encoder in our student framework. Frame-level AUC(%) is reported.
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Calibration Components Datasets
Backbone DCW LSR FF++ Celeb-DF

√
99.13 71.62√ √
99.17 73.66√ √
99.20 72.18√ √ √
99.19 75.12

Table 7. Ablation study of calibration components in our framework, Frame-level
AUC(%) is reported.

Secondly, we adjusted the proportion of each part in the loss function, namely
the weight hyperparameters λt and λl. As shown in Tab. 8, the performance
increases as the proportion of the two calibration components increase. However,
after their ratio reaches a specific value, the performance decreases again. There
are two possible reasons. On the one hand, we speculate that the excessively high
proportion of label smoothing causes the difference between targets to become
too small. On the other hand, over-proportioned dynamic confidence weights
will cause students to learn in the wrong direction when both teachers make
mistakes.

λt λl FF++ Celeb-DF

0.1 0.1 98.84 70.98
0.2 0.1 98.95 71.72
0.15 0.1 99.04 72.09
0.15 0.2 99.17 75.12
0.15 0.4 99.25 73.47

Table 8. Ablation study on different hyper-parameters λt and λl in our framework.
Frame-level AUC(%) is reported.

Due to the limited space, more ablation studies are available in supplemen-
tary materials.

5 Conclusions

In this paper, we have presented the CDC framework for improved generalization
on face forgery detection. The proposed framework consists of three components:
contrastive representation learning, dual-teacher distillation, and confidence cal-
ibration. Instead of treating forgery detection as a simple binary classification
task, we calibrate the labels and model confidence to refine the targets. Through
extensive experiments with contrastive representation distillation and confidence
calibration, we demonstrated the superiority of our method compared with the
state-of-the-art method in terms of AUC.

52



Face Forgery Detection with the CDC 15

References

1. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video
forgery detection network. In: WIFS (2018)

2. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NIPS (2014)
3. Busira, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: ACM KDD

(2006)
4. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin,

A.A.: Albumentations: fast and flexible image augmentations. Information (2020)
5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the

kinetics dataset. In: CVPR (2017)
6. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:

CVPR (2017)
7. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: Single-stage

dense face localisation in the wild. arXiv preprint arXiv:1905.00641 (2019)
8. Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer, C.C.:

The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397
(2020)

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

10. Du, S., You, S., Li, X., Wu, J., Wang, F., Qian, C., Zhang, C.: Agree to disagree:
Adaptive ensemble knowledge distillation in gradient space. NIPS (2020)

11. FaceSwapDevs: Deepfakes (2019), https://github.com/deepfakes/faceswap Ac-
cessed Novemember 7, 2021

12. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: ICML (2016)

13. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: ICML (2017)

14. Guo, J., Han, K., Wang, Y., Wu, H., Chen, X., Xu, C., Xu, C.: Distilling object
detectors via decoupled features. In: CVPR (2021)

15. Haliassos, A., Vougioukas, K., Petridis, S., Pantic, M.: Lips don’t lie: A generalis-
able and robust approach to face forgery detection. In: CVPR (2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

17. He, R., Hu, B.G., Yuan, X.T.: Robust discriminant analysis based on nonparamet-
ric maximum entropy. In: Asian Conference on Machine Learning. pp. 120–134.
Springer (2009)

18. He, R., Hu, B., Yuan, X., Zheng, W.S.: Principal component analysis based on
non-parametric maximum entropy. Neurocomputing 73(10-12), 1840–1852 (2010)

19. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: CVPR (2019)

20. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: ICCV (2019)

21. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Workshop (2015)

22. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In: CVPR
(2020)

53



16 P.Yang et al.

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Komodakis, N., Zagoruyko, S.: Paying more attention to attention: improving the
performance of convolutional neural networks via attention transfer. In: ICLR
(2017)

25. Kowalski, M.: Faceswap (2018), https://github.com/MarekKowalski/FaceSwap

Accessed Novemember 7, 2021
26. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive

uncertainty estimation using deep ensembles. In: NIPS (2017)
27. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity

swapping for forgery detection. In: CVPR (2020)
28. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face x-ray for

more general face forgery detection. In: CVPR (2020)
29. Li, Y., Chang, M.C., Lyu, S.: In ictu oculi: Exposing ai created fake videos by

detecting eye blinking. In: WIFS Workshop (2018)
30. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. In:

CVPR Workshops (2019)
31. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-df: A large-scale challenging dataset

for deepfake forensics. In: CVPR (2020)
32. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image

detection in neural networks. In: ICLR (2018)
33. Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-

branch recurrent network for isolating deepfakes in videos. In: ECCV (2020)
34. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deep-

fakes and face manipulations. In: WACV Workshops (2019)
35. Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., Manocha, D.: Emotions don’t

lie: An audio-visual deepfake detection method using affective cues. In: ACM MM
(2020)

36. Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting
and segmenting manipulated facial images and videos. In: BTAS (2019)

37. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: Using capsule networks
to detect forged images and videos. In: ICASSP (2019)

38. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: Face forgery
detection by mining frequency-aware clues. In: ECCV (2020)

39. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. In: ICLR (2015)

40. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: Learning to detect manipulated facial images. In: ICCV (2019)

41. Seferbekov, S.: https://github.com/selimsef/dfdc\_deepfake\_challenge

(2020)
42. Srinivas, S., Fleuret, F.: Knowledge transfer with jacobian matching. In: ICML

(2018)
43. Stutz, D., Hein, M., Schiele, B.: Confidence-calibrated adversarial training: Gen-

eralizing to unseen attacks. In: ICML (2020)
44. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-

tion architecture for computer vision. In: CVPR (2016)
45. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural

networks. In: ICML (2019)
46. Thies, J., Elgharib, M., Tewari, A., Theobalt, C., Nießner, M.: Neural voice pup-

petry: Audio-driven facial reenactment. In: ECCV (2020)

54



Face Forgery Detection with the CDC 17
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