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Abstract. Most existing domain adaptation (DA) methods align the
features based on the domain feature distributions and ignore aspects
related to fog, background and target objects, rendering suboptimal per-
formance. In our DA framework, we retain the depth and background
information during the domain feature alignment. A consistency loss be-
tween the generated depth and fog transmission map is introduced to
strengthen the retention of the depth information in the aligned fea-
tures. To address false object features potentially generated during the
DA process, we propose an encoder-decoder framework to reconstruct
the fog-free background image. This reconstruction loss also reinforces
the encoder, i.e., our DA backbone, to minimize false object features.
Moreover, we involve our target data in training both our DA module
and our detection module in a semi-supervised manner, so that our de-
tection module is also exposed to the unlabeled target data, the type
of data used in the testing stage. Using these ideas, our method signif-
icantly outperforms the state-of-the-art method (47.6 mAP against the
44.3 mAP on the Foggy Cityscapes dataset), and obtains the best per-
formance on multiple real-image public datasets. Code is available at:
https://github.com/VIML-CVDL/Object-Detection-in-Foggy-Scenes

Keywords: Domain adaptation · Object detection · Foggy scenes.

1 Introduction

Object detection is impaired by bad weather conditions, particularly fog or haze.
Addressing this problem is important, since many computer vision applications,
such as self-driving cars and video surveillance, rely on robust object detection
regardless of the weather conditions. One possible solution is to employ a pre-
processing method, such as image defogging or dehazing [25, 14] right before an
object detection module. However, this solution is suboptimal, since bad weather
image enhancement itself is still an open problem, and thus introduces a risk of
removing or altering some target object information.
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(a) Input Image (b) PBDA[21]

(c) Our Result (d) Ground-Truth

Fig. 1: (a) Input dense fog image from Foggy Cityscapes [5]. (b) Result from
PBDA [21], where many objects are undetected. (c) Ours, where more objects
are detected. (d) Ground-truth, annotated from its corresponding clear image.
Zoom in for better visualization.

Recently, object detection methods based on unsupervised domain adap-
tation (DA) (e.g., [7, 3, 4]) have shown promising performance for bad weather
conditions. By aligning the source (clear weather image) and the target (weather
degraded image) distributions in the feature level, a domain adaptive network
is expected to produce weather-invariant features. Unlike image pre-processing
methods, domain adaptive detection networks do not require an additional de-
fogging module during the inference stage, and can also work on both clear and
foggy conditions. The DA methods, however, were not initially proposed for the
adverse weather conditions, and hence align the source and target features based
only on feature alignment losses, ignoring some important aspects of the target
data, such as depth, transmission map, reconstruction of object instances of the
target data, etc. This is despite the fact that for bad weather, particularly fog or
haze, these aspects can be imposed. Sindagi et al. [21] attempt to fuse DA with
adverse weather physics models, but do not obtain a satisfactory performance
(39.3 mAP on Foggy Cityscapes, compared to 47.6 mAP of ours).

In this paper, we propose a DA method that learns domain invariant features
by considering depth cues, consistency between depth from fog transmission, and
clear-image reconstruction. Moreover, we involve the source and target data to
train our whole network in a semi-supervised manner, so that our object detec-
tion module can be exposed to the unlabeled target data, which has the same
type as data in the testing stage. Most existing DA methods aim to suppress
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any discrepancies between the source and target data in the feature space, and
this includes any depth distribution discrepancies. However, depth information
is critical in object detection [6, 23, 17], and thus the depth suppression will
signi�cantly a�ect the object detection performance. To resolve this, we pro-
pose a depth estimation module and its corresponding depth loss, so that the
depth information in our features can be retained. This depth loss forces our DA
backbone to retain the depth information during the DA process. Moreover, to
further reinforce our DA backbone to retain the depth information, we also add
a transmission-depth consistency loss.

When performing DA, the source and target images are likely to contain
di�erent object instances, and aligning two di�erent objects with di�erent ap-
pearances encourages the generation of false features. To address this problem,
we fuse a reconstruction module into our DA backbone, and propose a recon-
struction loss. Based on the features from our DA backbone's layers from the
target (fog image), our reconstruction module generates a clear image. Our re-
construction loss thus measures the di�erence between the estimated clear image
and the clear-image pseudo ground-truth of the target obtained from an exist-
ing defogging method. This reconstruction loss will then prevent false features
generated during the feature extraction process. During the training stage, the
DA model gradually becomes more robust to fog, and the predictions on the
unlabeled target images become more reliable. This gives us an opportunity to
employ the target data to train our object detection module, so that the module
can be exposed to both source and target data and becomes less biased to the
source data.

Fig. 1 shows our object detection result, which incorporates all our losses and
ideas into our DA backbone. As a summary, our contributions and novelties are
as follow:

� Without imposing our depth losses, DA features are deprived from the depth
information, due to the over-emphasis on source/target adaptation. This de-
privation negatively a�ects object detection performance. Hence, we intro-
duce depth losses to our DA backbone to retain the depth information in
our DA features.

� We propose to reinforce the target transmission map to have consistent depth
information to its corresponding depth estimation. This consistency loss con-
straints the transmission map and improves further the DA performance and
the depth retention.

� We propose to integrate an image reconstruction module into our DA back-
bone. Hence, any additional false object features existing in DA features will
be penalized, and hence minimized.

Our quantitative evaluations show that our method outperforms the state-of-
the-art methods on various public datasets, including real image datasets.
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2 Related Work

Object Detection in Foggy Scenes Most existing object detection models
require a fully-supervised training strategy [28]. However, under adverse weather
conditions, having su�cient images and precise annotations is intractable. A
possible solution is to utilize defogging algorithms. The defogged images are less
a�ected by fog, and hence they can be fed into object detection models which
are trained with clear images directly. However, defogging is still an existing
research problem and thus limits the performance potential of this approach.
Moreover, defogging introduces an additional computational overhead, hindering
the real-time process for some applications. These drawbacks were discussed and
analyzed in [19, 21, 26].
Domain Adaptation DA methods were proposed to train a single network
which can work on di�erent domains. In DA, there will be labeled images from
the source domain and unlabeled images from the the target domain. During the
training stage, images from both domains will be fed into the network. The source
images with annotations will be used for the training of object detection part.
Meanwhile, a domain discriminator will examine which domain the extracted
feature maps come from. The discriminator will be rewarded for accurate domain
prediction, but the network will be penalized. Hence, the network is encouraged
to extract domain invariant feature maps, i.e., fog free features. Since the feature
maps are already domain invariant, the detection trained with the source labels
can also detect objects from the target images. Additionally, once the network
is trained, the domain discriminator is not needed anymore, hence no additional
overhead in the inference stage.

There are a few existing DA methods that tried to perform DA between
clear weather and fog weather. Some methods investigated where and how to
put the domain discriminators, so that the DA can be more e�cient whilst re-
tain most object-related information [3, 18, 20, 4, 26]. [21, 15, 10, 22, 12, 27] aimed
to designed a more suitable domain discriminator, using transmission maps,
entropy, uncertainty masks, memory banks/dictionaries and class clusters. How-
ever, most of these methods focus on synthetic datasets, and ignores the fact
where the weather-speci�c knowledge prior can also be integrated to better de-
scribe the domain discrepancy.

3 Proposed Method

Fig. 2 shows the pipeline of our method, where clear images are our source
input, and foggy images are our target input. For the source images, we have
their corresponding annotations (bounding boxes and classes) to train our object
detection module. For the target images, we do not have any annotations. In this
DA framework, we introduce a few constraints: depth, consistency between the
transmission and depth, and clear background reconstruction. The goal of adding
these constraints is to extract features from both source (clear image) and target
(fog image) that are robust for object detection. Moreover, we exploit the target
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Fig. 2: The network consists of �ve parts. (1) Backbone extracts feature maps
from the input images. (2) Object detection head localizes and categorizes object
instances from the feature maps. (3) Domain discriminator and DEB encour-
age the backbone to extract fog-invariant features, and maintains the images'
depth distributions. (4) Reconstruction decoder minimizes the fake object fea-
tures generated by DA. (5) Pseudo-Labels involve target domain information in
the pipeline, and apply consistency regularization between fog and defogged im-
ages. The green arrows represent source data-�ow, and the red arrows represent
target data-�ow. Note, only the blue modules are needed in the testing stage.

predictions to train our object detection module, so that the module can be
exposed to the unlabeled target data, and hence less biased to the source data.

Object Detection For the object detection module, we employ Faster-RCNN [16],
which consists of a backbone F for feature extraction, and an object detection
head, G. The loss for the object detection is de�ned as:

Ldet = Lrpn + Lcls + Lbbox, (1)

where, Lrpn is the regional proposal loss, Lcls is the classi�cation loss, and Lbbox

is the localization loss.

Domain Adaptation Our domain adaptation backbone shares the same back-
bone as that of the object detection module. For the domain discriminator, we
use transmission maps as the domain indicator (i.e., the discriminator is ex-
pected to produce a blank map for source, and a transmission map for target).
The corresponding loss can be de�ned as:

Lda = ∥D(F(Is))∥22 + ∥t−D(F(It))∥22 , (2)
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where, F is the backbone, D is the domain discriminator. Is and It are the
input images from the source domain and the target domain, respectively. t is
the transmission map for the target image.

3.1 Depth Estimation Block (DEB)

In the DA process, it is unlikely that a pair of source and target images to
have the same depth distribution, since they unlikely contain the same scenes.
Thus, when the existing DA methods suppress the domain discrepancies, the
depth information is also suppressed in the process. However, recent methods
have shown that the depth information bene�ts object detection [6, 23, 17], which
implies that suppression of depth can a�ect the performance of object detection.

To address this problem, we need to retain the depth information during the
DA feature alignment. We introduce Depth Estimation Block (DEB), a block
that generates a depth map based on the extracted features from our DA back-
bone. We de�ne the depth recovery loss as follows:

Ldepth = ∥DEB(F(Is))−Dgt∥22 , (3)

where, Dgt is the ground-truth depth map, which is resized to the same size as
the corresponding feature map. F(Is) represents the source feature maps, and
DEB() is our DEB module. For datasets such as Cityscapes [5], they provide the
ground-truth depth maps. For the other datasets which do not provide depth
ground-truth, we need to generate the depth maps as a pseudo ground-truth
using the existing depth estimation networks, such as [8, 2, 9]. Note, DEB is only
trained on the source images. Unlike the transmission DA loss in Eq. (2), we
backpropagate the depth loss over both our DA backbone and DEB to retain
the depth information in our DA features. Fig. 3 shows our depth estimations.
Note that our goal here is not to have accurate depth estimation, but to retain
depth cues in our features.

3.2 Transmission-Depth Consistency

In foggy scenes, we can model the transmission of light throughout the fog par-
ticles as t = exp(−βD), where t is the transmission, D is the depth, and β as
the fog particles attenuation factor. As one can notice, there is a strong corre-
lation between the transmission and depth. Hence, we reinforce our predicted
transmission and depth to be consistent:

Lcst = ∥Norm(− log(D(F(It))))−Norm(DEB(F(It)))∥22 , (4)

where D(F(It)) is the generated transmission map from the domain discrimina-
tor, and DEB(F(It)) represents the estimated depth map. Norm() represents a
normalization operator. Like most defogging methods, we assume that β is uni-
form across the input target. Since the transmission and the depth values are the
same only up to a scale, we normalize their values, and thus consequently cancel
out β in the process. This consistency loss enforces the consistency between the
depth encoded in the estimated transmission and the depth from our DEB, this
constraint leads to more robust depth information in our features.
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(a) Depth estimation 1 (b) Depth ground-truth 1

(c) Depth estimation 2 (d) Depth ground-truth 2

Fig. 3: Examples of the estimated depths in comparison with the ground-truths.
Note that, the estimated depths look blurry as they have a low resolution (38×
75). We can observe that the estimated depth maps (a) and (c) from DEB match
the depth distribution patterns in the ground-truth depth maps (b) and (d),
respectively, which indicates that our feature maps retain the depth information.

3.3 Reconstruction DA

Since DA methods use unpaired source and target that most likely contain di�er-
ent object instances, when the DA backbone aligns the features, the alignment
will occur on two di�erent object instances (e.g., car in the source, and motorbike
in the target). Hence, when the DA backbone is suppressing such discrepancy,
consequently it can generate false features, which can harm the object detection
performance.

To address this problem, we regularize the generation of object features by
fusing a reconstruction decoder into our DA backbone. This decoder reconstructs
the features back to the clear background image. To train this decoder, we use
either the clear image or the defogged image of the target image as the ground-
truths. Since the reconstruction ground-truths have the same object instances
as in the target images, the reconstruction loss will prevent our DA backbone
from generating false instance features. Our reconstruction loss is de�ned as:

Lrec =
∥∥R(F(It))− Ide

∥∥2
2
, (5)

whereR is the reconstruction module andR(F(It)) represents the reconstructed
target image. Ide is the clear/defogged target image, which we use as the ground-
truth for the reconstruction. Only target images are involved in the reconstruc-
tion, as there are no fog distortions in the source images.
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3.4 Learning from Target

In many DA cases, target data does not have ground-truths, and hence [21,
3, 4, 26, 18, 20, 15, 10, 22] use the source domain's knowledge to train the object
detection module, right after the domain feature adaptation process. This means
the object detection module is never exposed to the target data, which is likely
to be di�erent from the source data in terms of the appearances of the object
instances (e.g., the shapes of road signs in one country are di�erent from those
of the road signs from another country, etc.). The main problem why many
methods do not use target data in training the detection module is because the
target data is unlabeled.

With the help from our DA module, our detection module's performance
on the target data is improving over iterations. As the predictions on target
become more accurate, we can select some reliable predictions as pseudo-labels
to train our detection module. Hence, our training is split into two stages for each
iteration: In the �rst stage, we generate pseudo-labels from the whole network;
in the second stage, we do DA training involving the generated pseudo-labels. To
obtain more reliable predictions in the �rst stage, we employ a defogging method
to augment our target input. The augmented target input in the form of defogged
image will enable our network to estimate the bounding boxes and class labels. If
the network has high con�dence with these estimates, it means the estimates can
be considered as reliable and used as pseudo-labels. In the second stage, we feed
the same target input to our network without augmentation, and let it to predict
the bounding boxes and class labels. We then enforce these network's estimates
to be consistent with the pseudo-labels. This process encourages the network
to become more robust to fog, and to expose our object detection module to
the target data. Note that, in the end of each iteration, we employ Exponential
Moving Average (EMA) in our network to generate more reliable predictions.
Total Loss Combining all the losses we introduced above, we can derive our
overall loss as:

L = Ldet + λLda + aLdepth + bLcst + cLrec + Ldet_pl, (6)

where, λ, a, b, c are the weight parameters to control the importance of the losses.
Ldet_pl is the detection loss with pseudo-labels. Note that, in the testing stage,
we only use our DA backbone and the detection module. In other words, all the
additional modules (i.e., the domain discriminator, the depth estimation block,
the reconstruction module or the pseudo-labels) does not a�ect the runtime in
the testing stage.

4 Experimental Results

We compare our DA method with recent DA methods: [21, 3, 4, 26, 18, 20, 15, 10,
22, 12, 27], where the last two are published as recent as this year. To make the
comparison fair, we use the same base of object detection, which is Faster-RCNN
[24]. For the backbone, our method uses a pretrained ResNet-101 [24]. We set
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the con�dence threshold τ to be 0.8 for all the experiments. More details of
our blocks can be found in the supplementary material. Our overall network is
trained end-to-end. We follow the same training settings as in [21, 3, 4, 18, 20],
where the networks are trained for 60K iterations, with a learning rate of 0.002.
We decrease the learning rate by a factor of 10 for every 20K iterations. The
weights parameters λ, a, b, c are empirically set to be 0.1, 10, 1, 1, respectively.

As for the datasets, the Cityscapes dataset is a real world street scene dataset
provided by [5], and all images were taken under clear weather. Based on this
dataset, [19] simulates synthetic fog on each clear image, and creates the Foggy
Cityscapes dataset. We use the same DA settings as in [21, 3, 4, 18, 20], where
2975 clear images and 2975 foggy images are used for training, and 495 foggy
images are used for evaluation.

Aside from the Cityscapes dataset, STF (Seeing Through Fog) [1], Foggy-
Driving [19], and RTTS [13] are the datasets with real world foggy images used
in our experiments. STF dataset categories its images into di�erent weather con-
ditions, we choose clear weather daytime as our source domain and fog daytime

as our target domain. We randomly select 100 images from fog daytime as our
evaluation set, and use the rest to train the network. For RTTS, we follow the
same DA settings as in [21, 20]. For FoggyDriving, it only contains 101 fog im-
ages, which is insu�cient for DA training. Hence, we evaluate the DA models
trained on Cityscapes/Foggy Cityscapes directly on these datasets.

4.1 Quantitative Results

The synthetic Foggy Cityscapes dataset has the ground-truth transmission maps,
depth maps and the clear background of the target images for reconstruction,
thus we can use the ground-truths directly in our training process, however for
fair comparisons we do not use them. Instead we employ DCP [11] to com-
pute the transmission maps, reconstruction maps, and use it as the defogging
pre-processing module when involving target predictions. As for the depth, we
employ Monodepth [8] to compute the pseudo ground-truths. We also employ
DCP and Monodepth for real data that have no ground-truths of clear images,
transmission maps, and depth maps. Note that, the methods we use to gener-
ate pseudo ground-truths (DCP and Monodepth) are not the state-of-the-art
methods, as we want to show that our DA's performances are not limited by the
precision of the pseudo ground-truths.

The results on this dataset are provided in Table 1. The mAP threshold for all
the models is 0.5. When comparing DA models, there are two important non-DA
baseline models that need to be considered. One is the model trained on clear
images but tested on foggy images, which we call Lowerbound. Any DA models
should performance better than this Lowerbound model. In our experiment,
Lowerbound is 28.12 mAP for Foggy Cityscapes dataset. The other model is
both trained and tested on clear images, which we call Upperbound. Since it is
not a�ected by fog at all, the goal of DA models is to approach its performance,
but it is not possible to exceed it. In our experiment, Upperbound is 50.08 mAP
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Table 1: Quantitative results of Ours compared to the existing DA methods
evaluated against Foggy Cityscapes testing set. AP (%) of each category and the
mAP (%) of all the classes. Bold numbers are the best scores, and underlined
numbers are the second best scores. Our mAP outperforms the best existing
method over 3%.

s
Method Backbone person rider car truck bus train motor bicycle mAP

Baseline Faster-RCNN ResNet-101 32.0 39.5 36.2 19.4 32.1 9.4 23.3 33.2 28.1

DA Methods

DA-Faster[3] ResNet-101 37.2 46.8 49.9 28.2 42.3 30.9 32.8 40.0 38.5
SWDA[18] VGG-16 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
SCL[20] ResNet-101 30.7 44.1 44.3 30.0 47.9 42.9 29.6 33.7 37.9
PBDA[21] ResNet-152 34.9 46.4 51.4 29.2 46.3 43.2 31.7 37.0 40.0
MEAA[15] ResNet-101 34.2 48.9 52.4 30.3 42.7 46.0 33.2 36.2 40.5
UaDAN[10] ResNet-50 36.5 46.1 53.6 28.9 49.4 42.7 32.3 38.9 41.1

Mega-CDA[22] VGG-16 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
SADA[4] ResNet-50-FPN 48.5 52.6 62.1 29.5 50.3 31.5 32.4 45.4 44.0
CaCo[12] VGG-16 38.3 46.7 48.1 33.2 45.9 37.6 31.0 33.0 39.2
MGA[27] VGG-16 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3
Ours ResNet-101 39.9 51.6 59.0 39.7 58.0 49.1 39.2 45.1 47.6

Table 2: Quantitative results of Ours compared to the existing DA methods
evaluated against the STF testing set. AP (%) of each category and the mAP
(%).

Method PassengerCar LargeVehicle RidableVehicle mAP

Baseline Faster-RCNN 74.0 54.1 25.7 51.3

DA Methods

DA-Faster 77.9 51.5 25.2 51.6
SWDA 77.2 50.1 24.5 50.6
SCL 78.1 52.5 20.7 50.4
SADA 78.5 52.2 24.2 51.6
Ours 78.5 57.4 30.2 55.4

for Foggy Cityscapes dataset. Table 1 shows that our proposed method performs
better than any other DA methods.

For the real world datasets, we cannot compute Lowerbound's and Upper-
bound's performance, since we do not have the clear background of the foggy
images. Thus, we can only compare our models with the performance of the other
DA methods. The results are presented in Tables. 2 to 4. Our model achieved
a better performance on all the real world datasets. For FoggyDriving, we can
observe that our model trained on synthetic dataset can also generalize well on
the real world image datasets. Note that, the compared methods are not as many
as the previous table, since some methods only provided their performances on
the synthetic datasets, and we do not have their data or code to evaluate on the
real world datasets.
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Table 3: Quantitative results of Ours compared to the existing DA methods
evaluated against the FoggyDriving testing set. mAP (%) of all the categories.

Method mAP

Baseline FRCNN 26.41

DA Methods

DA-Faster 31.60
SWDA 33.54
SCL 33.49
SADA 32.26
Ours 34.62

Table 4: Quantitative results of Ours compared to the existing DA methods
evaluated against the RTTS testing set. AP (%) of each category and the mAP
(%).

Method person car bus motor bicycle mAP

Baseline Faster-RCNN 46.6 39.8 11.7 19.0 37.0 30.9

DA Methods

DA-Faster 42.5 43.7 16.0 18.3 32.8 30.7
SWDA 40.1 44.2 16.6 23.2 41.3 33.1
SCL 33.5 48.1 18.2 15.0 28.9 28.7
PBDA 37.4 54.7 17.2 22.5 38.5 34.1
SADA 37.9 52.7 14.5 16.1 26.2 29.5
Ours 47.7 53.4 19.1 30.2 49.3 39.9

4.2 Qualitative Results

The qualitative results are presented in Fig. 4. We evaluate our model on both
synthetic and real world datasets, and compare it with DA-Faster[3] and SADA[4].
For the synthetic dataset, we also compare the model with Upperbound to visu-
alize how close their predictions are. Note again that, Upperbound is the Faster-
RCNN model trained on the clear training set and tested on the clear testing set.
We can see that our method can detect more objects compared to DA-Faster.
Both SADA and our method can detect most of the object instances in fog.
However, we can see that SADA generated some false predictions. Our method
removed some false predictions, and thus the �nal object detection performance
is approaching Upperbound.

4.3 Ablation Studies

Table 5 shows the ablation studies on Foggy Cityscapes to demonstrate the im-
portance of each loss. The check mark indicates which losses are involved. In
the table, DA represents the performance with domain discriminator only, DEB
represents the depth recovery loss, Consist represents the transmission-depth
consistency loss. Reconst represents the reconstruction loss using the pseudo

1103



12 X. Yang et al.

(a) DA-Faster (b) SADA (c) Our Result (d) Upperbound

(e) DA-Faster (f) SADA (g) Our Result (h) Upperbound

(i) DA-Faster (j) SADA (k) Our Result

(l) DA-Faster (m) SADA (n) Our Result

(o) DA-Faster (p) SADA (q) Our Result

Fig. 4: Comparisons with DA-Faster[3], SADA[4], and Upperbound. The �rst
two rows are the comparison on Cityscapes → Foggy Cityscapes. Our model
detects more objects and reduces false positive predictions and approaches the
Upperbound performance. The last three rows are the comparison on real world
images. Our model has more true positive detections and less false positive de-
tections. Di�erent bounding box's colour represents a di�erent con�dence score.
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(a) Without Lrec (b) With Lrec

(c) Without Lrec (d) With Lrec

Fig. 5: Ablation studies on our reconstruction loss. (a)(c): False positive predic-
tions when there is no reconstruction, from model (DA+DEB+Consist). (b)(d):
After we added our reconstruction loss. The false positive predictions are re-
duced.

ground-truth images generated from DCP [11]. We also provide Fig. 5 to show
the comparisons between the models with and without our reconstruction mod-
ule. PL means we include target predictions as pseudo labels for training. As
one can notice, each of the losses improves the overall mAP. The network has a
performance gain with only pseudo ground-truths of transmission maps, depth
maps, and defogged images. This once again shows that our method works with-
out the need of precise ground-truths. If we use the ground-truths of transmission
maps, depth maps, and defogged images (which are actually available for Foggy
Cityscape), our performance reaches overall 49.2 mAP. The weights of the losses
are chosen to ensure that all the losses will contribute to the training properly. If
we set a from 10 to 1, or we set b from 1 to 0.1, the performance drops by around
1 mAP. If we set c from 1 to 0.1, the performance drops by 2 mAP. Setting λ
to be 0.1 is recommended by a few DA papers. The performance drops below 40
mAP if λ becomes too large. In our method, the weights are set empirically.

5 Conclusion

We have proposed a novel DA method with a reconstruction as a regularization,
to develop an object detection network which is robust for fog or haze conditions.
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Table 5: Ablation study of our model against the Foggy Cityscapes testing set.
mAP is used to analyze the e�ectiveness of each loss.

DA DEB Consist Reconst PL mAP

✓ 42.6

✓ ✓ 43.3

✓ ✓ ✓ 45.3

✓ ✓ ✓ ✓ 45.8

✓ ✓ ✓ ✓ ✓ 47.6

To address the problem that DA process can suppress depth information, we
proposed the DEB to recover it. We proposed the transmission-depth consistency
loss to reinforce the transmission map based DA to follow the target image's
depth distribution. We integrated a reconstruction module to our DA backbone
to reconstruct a clear image of the target image and reduce the false object
instance features. We involved target domain knowledge into DA, by reusing
reliable target predictions and enforcing consistent detection. We evaluated the
framework on several benchmark datasets showing that our method outperforms
the state-of-the-art DA methods.
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