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Abstract. Depth sensing is critical to many computer vision applica-
tions but remains challenge to generate accurate dense information with
single type sensor. The stereo camera sensor can provide dense depth
prediction but underperforms in texture-less, repetitive and occlusion
areas while the LiDAR sensor can generate accurate measurements but
results in sparse map. In this paper, we advocate to fuse LiDAR and
stereo camera for accurate dense depth sensing. We consider the fusion
of multiple sensors as a multimodal prediction problem. We propose a
novel end-to-end learning framework, dubbed as LSMD-Net to faithfully
generate dense depth. The proposed method has dual-branch disparity
predictor and predicts a bimodal Laplacian distribution over disparity
at each pixel. This distribution has two modes which captures the in-
formation from two branches. Predictions from the branch with higher
confidence is selected as the final disparity result at each specific pixel.
Our fusion method can be applied for different type of LiDARs. Besides
the existing dataset captured by conventional spinning LiDAR, we build
a multiple sensor system with a non-repeating scanning LiDAR and a
stereo camera and construct a depth prediction dataset with this sys-
tem. Evaluations on both KITTI datasets and our home-made dataset
demonstrate the superiority of our proposed method in terms of accuracy
and computation time.

1 Introduction

Real-time, dense and accurate depth sensing is crucial for many computer vi-
sion applications, including SLAM, autonomous driving and augmented realities.
There are two kinds of sensors, active and passive sensors used to sense depth.
However, either active sensors like LiDAR scanner or passive sensors like stereo
camera have their limitations. On the one hand, stereo camera can provide dense
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2 Hanxi Yin et al.

Fig. 1. Illustration of predicted disparity maps (d-f) based on inputs (a-c). Green/red
dotted rectangles show the areas where the depth prediction is accurate/inaccurate.
The proposed method (f) can take full advantages of different sensors.

depth estimation but underperforms in texture-less or repetitive areas, occlu-
sion areas, thin structure and poor light conditions. On the other hand, LiDAR
scanner often provides precise but relatively sparse depth measurements. These
limitations hinder their usages in practical applications. One possible solution
to remedy this issue is to combine them by multiple sensor fusion. In terms of
fusing LiDAR with RGB camera, there are existing works proposing to fuse Li-
DAR and monocular camera [20, 36, 16]. However, the monocular camera setting
makes it depend on strong scene priors and is vulnerable to overfitting as monoc-
ular depth estimation is inherently unreliable and ambiguous. On the contrary,
in this paper, we consider LiDAR-stereo fusion. The stereo camera is more ro-
bust as it computes the geometric correspondence between an image pair. The
fused depth also benefits from the robustness.

With a stereo camera and a LiDAR sensor, there are two possible ways to
generate dense depth prediction: (1) stereo matching from a pair of stereo images,
(2) LiDAR completion from sparse LiDAR measurements and a RGB image. The
former estimates disparities between image pairs by matching pixels and recov-
ers depth through triangulation, while the latter utilizes a corresponding RGB
image to guide the depth interpolation. These two methods exploit information
from different modalities with different priori hypotheses and characteristics.
The performance of stereo camera depends on image matching, while that of
LiDAR completion is limited by the density and quality of point clouds. As il-
lustrated in Fig. 1, stereo matching works well in rich textured areas, but has
difficulties in dealing with fine structure and texture-less areas. LiDAR comple-
tion performs depth interpolation accurately. However, it has poor extrapolation
ability in areas where point clouds are too sparse or missing. Besides, the quality
of LiDAR point clouds are poor in reflective surface and distant areas. Based on
this analysis, these two methods are expected to complement each other from
the perspective of multimodal fusion.

Existing LiDAR-stereo fusion works either use LiDAR information to assist
stereo matching [37, 29] or simply combine them at the output stage [38, 28].
The former one simply injects LiDAR information into cost volume which is the
core component of stereo matching. It is confined to the stereo matching archi-
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LSMD-Net 3

tecture and therefore cannot avoid the inherent drawbacks of image matching.
The latter one lacks deep feature fusion, which makes it not fully utilize the
intrinsic information of different sources. To take full advantage of the unique
characteristics of different sources, we propose a confidence based fusion method
by combining stereo matching and LiDAR completion branches. The features
of reference image is fed into both branches to fuse with features from different
sensor. This breaks the symmetry of stereo image pair and thus gets rid of the
limitation of stereo matching pipeline. Besides, the confidence-based fusion can
better solve the redundancy and contradiction between heterogeneous sources.
Furthermore, our model is built over disparity which is inversely proportional
to depth. Inverse depth allows probability distribution to describe depth from
nearby to infinity and is more stable to regress with a finite boundary. Specifi-
cally, we formulate the task of LiDAR-Stereo fusion as a multimodal prediction
problem. Instead of regress disparity directly, we exploit a mixture density net-
work to estimate a bimodal probability distribution over possible disparities for
each pixel. Predictions from the branch with higher confidence is selected as the
final disparity result at each specific pixel.

To further evaluate our method, we have constructed a dataset based on a
solid state Livox LiDAR. Compared with conventional spinning LiDAR, Solid
state LiDAR is more suitable for our LiDAR-stereo fusion task in various sce-
narios for large FOV overlap with RGB camera, advantages in terms of point
cloud density and affordable cost.

In summary, the contributions of this paper are summarized as follows:
(I) We propose a novel end-to-end learning dual-branch framework called

LSMD-Net (LiDAR-Stereo fusion with Mixture Density Network) to fuse Li-
DAR and stereo camera for accurate and dense depth estimation in real time.

(II) We treat multisensor fusion as a multimodal prediction problem. A bi-
modal distribution is utilized to capture information from different modes and
provides a measure of confidence for them at each pixel, which can take full
advantage of different sensors for better depth prediction.

(III) We build a data collecting system equipped with a solid state LiDAR
and a stereo camera and present a depth prediction dataset.

2 Related Works

Stereo Matching. With the development of convolutional neural networks
(CNNs), learning-based stereo matching methods have achieved great success.
An end-to-end stereo matching architecture has four trainable components: (a)
feature extraction, (b) cost volume, (c) aggregation and (d) regression. Most
methods can be categorized into 2D architectures and 3D architectures accord-
ing to the type of cost volume. The first class [24, 27] performs correlation layer
to build 2D cost volume and uses 2D CNNs aggregation, which is less accurate
than the second. The second class constructs 3D cost volume by concatenating
image features [19, 4] or using group-wise correlation [13]. Although more accu-
rate, the second class suffers from computational complexities. Stereo matching
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4 Hanxi Yin et al.

Fig. 2. An overview of our method. Our model has two branches (blue and yellow)
which extract features from different sensors. Features from different branches are fused
in mixture density module. For each pixel in reference image, a bimodal Laplacian
distribution (light orange curve) is predicted. At inference time, we use the expectation
of the more confident branch as the final disparity for each specific pixel (as shown by
the dotted line).

performs bad in texture-less or repetitive areas. Fusion with LiDAR is therefore
important for obtaining reliable depth estimation.
LiDAR-RGB Fusion. LiDAR-camera fusion is well known for its practicability
in 3D perception. There are two types of fusion: LiDAR-monocular and LiDAR-
stereo fusion. The former one, also known as depth completion, regresses dense
depth from sparse depth cues with the help of monocular image information [20,
36, 16]. Relying on priors of a particular scene, LiDAR-monocular fusion is inher-
ently unreliable and ambiguous [37]. LiDAR-stereo fusion is less ambiguous in
terms of the absolute distance for stereo matching relies on the geometric corre-
spondence across images. Several works [26, 1, 9, 22, 34] studied the application of
LiDAR-stereo fusion in robotic for the past two decades. Park et al. [28] was the
first to implement CNNs in context of LiDAR and stereo fusion. Learning-based
methods can be roughly divided into feature level fusion and decision level fu-
sion. Feature level fusion [37, 29, 5, 41] encodes LiDAR information at early stage
in stereo matching while decision level fusion [38, 28] directly fuses hypotheses
generated by different sensors. Our LiDAR-stereo fusion method takes advan-
tage of both feature level fusion and confidence-based decision level fusion.
Multimodal Predictions with CNNs. Standard depth prediction works di-
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LSMD-Net 5

rectly regress a scalar depth at every pixels. However, LiDAR-stereo fusion sys-
tem is complex for there are multimodal inputs and we can obtain more than
one candidate outputs from them. A lot of works have been done for multiple
solutions from CNNs. Guzman-Rivera et al. [14] introduced the Winner-Takes-
All (WTA) loss for classification tasks while another option is Mixture Density
Networks (MDNs) by C. M. Bishop [3]. Instead of using a parametric distribu-
tion, MDNs learn parameterization as a part of the neural network. O. Makansi
et al. [23] used MDNs for Multimodal Future Prediction. G. Hager [17] proposed
a MDNs-based approach to estimate uncertainty in stereo disparity prediction
networks. F. Tosi [35] uses a bimodal approach to solve the over-smoothing is-
sue in stereo matching, which inspired us greatly. In contrast to them, we apply
bimodal distributions to capture information from two sensors, which can solve
the redundancy and contradiction between heterogeneous sources.

3 LSMD-Net

As shown in Fig. 2(a), our proposed model aims to generate an accurate dense
disparity map Dd ∈ RH×W given sparse LiDAR measurements S ∈ Rn×3 (n <
H ×W ) and a pair of stereo images Iref , Itgt ∈ RH×W×3. A dense depth map
can be further obtained by Dd. There are two stages in our model pipeline.
At the first stage (Sec. 3.1), we separately estimate dense disparity maps and
confidence related feature maps for images and LiDARmeasurements. The image
based disparity estimation is obtained by stereo matching. The LiDAR based
disparity estimation is completed by LiDAR completion with reference image.
At the second stage (Sec. 3.2), we employ a mixture density module to fuse these
estimations into a final dense depth map. Specifically, we introduce a confidence-
based fusion to effectively exploit the information from different sensors.

3.1 Dual-Branch Disparity Predictor

To estimate dense disparity and features from images and LiDAR measurements,
we employ separated disparity prediction branches of stereo matching and Li-
DAR completion. Before passing through the individual branches, we firstly pre-
process the images and LiDAR signals. The images are processed by a backbone
network to extract meaningful features. Specifically, we adopt the MobileNetV2
model [31] pre-trained on ImageNet [8] to extract image features at scales of 1/2,
1/4, 1/8, 1/16 and 1/32 of the input image resolution. Both reference and target
images are passed through the same backbone with shared weight to obtain the
corresponding feature groups Gref , Gtgt. Inspired by the parametrization for
monocular SLAM [7], we project sparse LiDAR points S onto the image plane
of Iref and convert the projected depth map to a disparity map Ds. Note that
the disparity is inversely proportional to the depth. Our network directly pre-
dicts disparity rather than depth. This conversion from depth to disparity has
two advantages. First, it allows us to consider a wider depth range in our model.
Second, the model prediction is more stable as the regression target is with finite
boundary.
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Stereo Matching Branch This branch takes as input the feature groups of
reference and target images, Gref and Gtgt to generate a disparity map µs ∈
RH×W and a feature Fs ∈ RH/4×W/4×D/4, where D is the maximum disparity
value.D is set to 192 in our network. This feature contains matching probabilities
along possible disparities and is used in the fusion stage. Denoting this stereo
matching branch as ϕ with parameters θ, we can formally write it as,

{Fs,µs} = ϕθ(Gref ,Gtgt). (1)

Our design of this stereo matching branch follows the mainstream learning-
based stereo matching framework. It consists of matching cost computation,
cost aggregation, and disparity regression. With feature groups Gref , Gtgt as
input, a U-Net [30] style upsampling module with long skip connections at each
scale level is built to propagate context information to higher resolution layers.
Image features with less than 1/4 of the input image resolution in Gref , Gtgt

are upsampled by this module to a quarter of the input image resolution. The
cost volume is then built by computing the correlation between the outputs of
the upsample module. We keep the size of cost volume at H/4 ×W/4 × D/4
to reduce cost aggregation computing costs. As for cost aggregation, instead of
employing neighborhood aggregation, we first capture geometric features from
cost volume by 3D convolutions, and then utilize the guidance weights generated
from image features to redistribute this geometric information to local features
as in CoEx [2]. The output feature Fs is from the aggregated cost volume. To
reduce the computation time of regression, our model regresses disparity at 1/4
of the input image resolution from cost volume and finally upsamples it to the
original input image resolution.

LiDAR Completion Branch This branch takes as input the feature group
of reference image Gref and a sparse disparity map Ds to generate a dense
disparity map µl ∈ RH×W and a feature map Fl ∈ RH/4×W/4×C , where C is set
to 64. This feature contains information extracted from LiDAR measurement
and reference image and is used in the fusion stage. Denoting this disparity
completion branch as ψ with parameters ω, we can formally write it as,

{Fl,µl} = ψω(Gref ,D
s). (2)

This disparity completion can be considered as a disparity map interpolation
guided by the reference image feature. Similar to MSG-CHN [20], we use coarse
to fine cascade hourglass CNNs to interpolate the disparity features at three
levels. The output of the coarse level is upsampled and concatenated with the
sparse disparity map at corresponding scale as the input of the fine level. At
each level, the hourglass CNNs refine the disparity features according to both
the input disparity features and the corresponding scale image features from
Gref . The disparity features and the image features are fused by concatenation.
We expect that this design can exploit the clues from reference image to guide
the interpolation of disparities for LiDAR. The output feature Fl is extracted
from the last hourglass CNNs. It contains LiDAR and image information and is
with the same resolution as Fs.
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3.2 Mixture Density Module

The mixture density module is used to fuse the disparity information from two
branches. We view the estimated disparity at each pixel as a probability distri-
bution over the possible range of disparities. And the fusion of disparity esti-
mations leads to the final probability distribution, from which we can get the
output disparity. To be specific, we utilize the Laplacian distribution to model
the probability distribution for each branch as

P (d) =
1

2b
e(−

|µ−d|
b ), (3)

where µ is the location parameter map and b is the scale parameter map. We opt
to the Laplacian distribution rather than the widely used Gaussian distribution.
This is because the Gaussian assumption is sensitive to outliers but the Laplacian
distribution is more robust as it has a heavier tails than Gaussian.

We take the estimated disparities from each branch, µs and µl as the location
parameters. Rather than setting a global scale parameter for each branch, we
propose to learn pixel wise parameters b from the features of each branch Fs

and Fl with two independent networks, as shown in Fig. 2(d).

bs = σ(MLP (Fs)), bl = σ(MLP (Fl)), (4)

where σ(·) is the activation function. An exponential activation function is
adopted in traditional mixture density network to predict parameters with pos-
itive value. However, the exponential increases to a very large value in case of
high variance, which makes the training unstable. In this work, following [12], we
choose ELU as the activation function. The ELU activation function shares the
same exponential behavior for small activation value but is linear to the input
for large activation value.

f(β, x) = ELU(β, x) + 1 =

{
β(ex − 1) + 1, x < 0
x+ 1, x ≥ 0

, (5)

where β is a parameter to control the slope and is set to 1 in our work.
With the Laplacian distributions of two branches, Ps and Pl at hand, we

compute the final probability distribution as a weighted sum of these two distri-
butions.

Pm(d) = αPs(d) + (1−α)Pl(d) =
α

2bs
e−

|µs−d|
bs +

1−α

2bl
e
− |µl−d|

bl (6)

whereα is a parameter map weighting the contributions of different branches. We
also design a network to learn α from the branch features Fs and Fl (Fig. 2(d)).
Convolutional layers are applied to process and aggregate the branch features
followed by MLP and a sigmoid activation function. We can use the fused dis-
tribution in Eq. 6 to compute the loss at training stage. However, at inference
stage, we aims to predict a single disparity value for each pixel. One possible
solution is to use the conditional expectation as the final output. In our case,

558



8 Hanxi Yin et al.

Fig. 3. Illustration of characteristics of two LiDARs. (a) shows that solid state LiDAR
(red) fits better with camera (green) than conventional LiDAR (blue) in terms of FoV.
(b) and (c) illustrates point cloud accumulation of solid state Livox LiDAR quantita-
tively and qualitatively.

one branch may be more confident than the other branch for particular pixels.
Simply calculating the conditional expectation will deteriorate the performance
as the outliers from the less confident branch are considered. To this end, we
propose to use the expectation of the more confident branch as the final disparity
prediction d̂. And the branch confidence is determined by α.

d̂ =

{
µs, α ≥ 0.5
µl, α < 0.5

. (7)

3.3 Losses

Our model is trained with the supervision on the final output and the interme-
diate supervisions over two branches. The training objective is to minimize the
overall loss

L = ωmLm + ωsLs + ωlLl, (8)

where ωm, ωs and ωl are the weighting parameters for the three losses Lm Ls

Ll. Lm is the loss over the final output of the fusion method. Ls and Ll are
the losses over the outputs of stereo matching branch and LiDAR completion
branch, respecitvely. We compute the negative logarithm of the likelihood loss
based on the PDFs (Pm, Ps, Pl) in Eq. 6 for each loss which can be expressed as:

LNLL(θ) = −Ed,x,I logP (d|x, Iref , Itgt, Ds, θ), (9)

where d is the ground truth disparity at each pixel location x in reference image
Iref from the dataset. θ denotes parameters of our model.

4 Livox-Stereo Dataset

There are two widely used kinds of LiDAR sensors: mechanical spinning Li-
DAR and solid state LiDAR. The mechanical spinning LiDAR uses mechanical
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Fig. 4. Illustration of (a) data collecting system hardware, (b) a set of data in dataset
and (c) the depth distribution of dataset.

rotation to spin the sensor for 360 degree detection. The density of collected
point cloud is determined by the number of scanner layer. Most existing depth
sensing datasets [36, 40] use this kind of sensor to acquire LiDAR information.
The solid state LiDAR such as Livox uses prism scanning to acquire depth in-
formation in a non-repeating scanning pattern and accumulates point clouds
to generate relative dense depth maps [21, 42]. Livox LiDAR is promising for
LiDAR-stereo fusion task for three reasons. Firstly, as shown in Fig. 3(a),it fits
well with cameras because of their large overlapping FoV. Livox collects point
cloud which covers a larger image area, rather than focusing on a limited number
of scan lines with a narrow FoV like traditional LiDAR, which is illustrated in
Fig. 3(c)(d). Secondly, compared to traditional LiDAR, Livox has advantages in
terms of point cloud density within the image area when the accumulation time
is sufficient as Fig. 3(b) shows. Thirdly, Livox is promising in various scenarios
owing to its portability and advantages in terms of cost. To show the feasibility
of our proposed depth fusion method on different LiDAR sensors, we further
present a Livox-stereo dataset collected by our own system for evaluation.

4.1 Data Collecting System

As shown in Fig. 4(a), our system hardware includes two HIKVISION MV-
CA050-11UC color cameras stacked vertically and a Livox Mid-70 LiDAR. The
distance between the two cameras is 30 centimeters, which results in errors in four
centimeters for depth within three meters (see Suppl. for the error estimation).
The Livox is placed close to the reference camera (the camera below) to increase
the overlap between their FoV.

The calibration process of our system can be divided into two steps. First, We
follow the binocular calibration process in OpencV [18] to compute the intrinsic
and extrinsic parameters of the stereo cameras. After that, We use the calibrated
reference camera to calculate the extrinsic parameters of Livox. Specifically, the
Livox extrinsic parameters are derived by PnP and RANSAC after the extraction
of corresponding key points between the depth map generated by Livox and the
remapped image from the reference camera [39].
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10 Hanxi Yin et al.

Fig. 5. Illustration of noise filtering in raw point cloud. Background points (blue) on
the foreground surface are noise. Most noise have been removed successfully. We zoom-
in the areas of interest in dotted area.

4.2 Livox-Stereo Dataset

We collected 507 sets data in both indoor and outdoor scenes in residential
areas. Each set of data consists of a pair of stereo images at the resolution of
1224× 1024 and a pair of sparse and dense depth maps. We show a set of data
in Fig. 4(b). More examples are in the Suppl. The sparse and dense depth maps
are collected by the same Livox sensor on the same scene but with different
accumulation time. Specifically, we obtain a sparse depth map with the coverage
around 10% by setting the accumulation time to 0.3 seconds. The dense depth
map is obtained by accumulating the point clouds for 3 seconds to achieve a
coverage around 60%. The dense depth maps are used as ground truth to train
our fusion model. We split the dataset into train, validation and test subsets at
a ratio around 7:1:2. The specific statistics of the subsets is in Suppl.

We present the statistical information of pixel level depth in Fig. 4(b). From
the curves in the figure, we can find that the majority pixels are with small depth
values. Specifically, the depths of 53.07% pixels fall within 3 meters (80.55% and
44.27% for indoor and outdoor) and 68.75% falls within five meters. The depth
distribution matches well with the depth range that the stereo cameras can
generate depth with low errors.

During data collection, we observed that the difference of projection centers
of Livox and stereo cameras leads to noise when point clouds are projected onto
the image plane. In order to remove this noise, we identify inconsistent LiDAR
points by applying semi-global matching (SGM) [15] and refuse these points.
This point cloud filtering is based on the assumption that passive and activate
sensors rarely make the same inaccurate prediction in these problematic areas.
We show some examples of this filtering in Fig. 5. Emperically, we found that
this works well to produce clean point clouds for our task.

In Table 1, we compare our dataset with other relevant datasets. Our dataset
is unique in several senses. First, the point clouds in our dataset are collected
by Livox LiDAR. Non-repeating scanning Livox LiDAR allows our dataset to
provide sparse LiDAR inputs and to be better than other LiDAR-based datasets
in term of the density of depth information for supervision. Besides, our dataset
includes both indoor and outdoor scenes which is different from the autonomous
driving scene in existing datasets. This is promising to improve the generalization
the performance of LiDAR-RGB fusion model in practical application.
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Table 1. Comparison between our dataset and other published depth sensing datasets.

Datasets Tools Real
Sparse
LiDAR

SceneType
DataSize

Coverage
Train Test

Middlebury [32]
structured light

scanner
✓ indoor 15 15 ≈ 96%

ETH3D [33]
structured light

scanner
✓ indoor/outdoor 27 20 ≈ 69%

KITTI
stereo [25, 10]

Velodyne
HDL-64E

✓ autonomous
driving

394 395 ≈ 19%

KITTI
depth completion [36]

Velodyne
HDL-64E

✓ ✓ autonomous
driving

43k 1k 16.1%

FlyingThings3D [24] software animation 22k 42k 100%

DrivingStereo [40]
Velodyne

HDL-64E S3
✓ autonomous

driving
174k 8k ≈ 4%

Ours Livox Mid-70 ✓ ✓ indoor/outdoor 407 100 ≈ 60%

5 Experiments

In this section, we demonstrate the effectiveness of our proposed depth fusion
method on three datasets, KITTI stereo dataset [36], KITTI depth completion
dataset [25] and our new Livox-stereo dataset.

5.1 Datasets and Evaluation Metrics

KITTI Stereo 2015 and KITTI Depth Completion are real-world datasets with
street views from a driving car. We follow [37, 9, 22, 11] to evaluated our model
on the training set in Stereo 2015 dataset and the validation set in Depth Com-
pletion dataset (see Suppl. for more details).

For Stereo 2015 dataset, we report several common metrics in stereo matching
tasks: end-point error (EPE, the mean average disparity error in pixels) and the
percentage of disparity error that is greater than 1, 2 and 3 pixel(s) away from
the ground truth (> 1px, > 2px and > 3px). For Depth Completion dataset,
root mean squared error of depth (RMSE, m), mean absolute error of depth
(MAE, m), root mean squared error of the inverse depth (iRMSE, 1/km) and
mean absolute error of the inverse depth (iMAE, 1/km) are reported.

5.2 Implementation Details

The proposed network is implemented in PyTorch and optimized with Adam
(β1=0.9, β2=0.999) and a learning rate of 1e-3. Our model is trained on NVIDIA
GeForce RTX 2080 with random change of brightness and contrast, random
dropout part of disparity inputs (see Suppl. for more details) and random crop-
ping to 512×256 as data augmentation. We initialize the network with random
parameters. A weight decay of 1e-4 is applied for regularization.

For KITTI datasets, the network is trained on Depth Completion dataset
for 20 epochs with a batch size of 4 and is tested on two KITTI datasets. The
weighting parameter in loss fuction are set as ωs = 0.8, ωm, ωl = 0.1 at first 5
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12 Hanxi Yin et al.

Table 2. Comparison on the KITTI Stereo 2015 dataset.

Methods Input > 3px ↓ > 2px ↓ > 1px ↓ EPE ↓

GC-Net [19] Stereo 4.24 5.82 9.97 -
CoEx [2] Stereo 3.82 5.59 10.67 1.06

Prob. Fusion [22] Stereo + LiDAR 5.91 - - -
Park et al. [28] Stereo + LiDAR 4.84 - - -
CCVN [37] Stereo + LiDAR 3.35 4.38 6.79 -

LSMD-Net(ours) Stereo + LiDAR 2.37 3.18 5.19 0.86

Table 3. Comparison on the KITTI Depth Completion dataset.

Methods Input MAE ↓ iMAE ↓ RMSE ↓ iRMSE ↓

MSG-CHN [20] Mono + LiDAR 0.2496 1.11 0.8781 2.59

Park et al. [28] Stereo + LiDAR 0.5005 1.38 2.0212 3.39
SCADC [38] Stereo + LiDAR 0.4015 1.94 1.0096 3.96
CCVN [37] Stereo + LiDAR 0.2525 0.81 0.7493 1.40
LiStereo [41] Stereo + LiDAR 0.2839 1.10 0.8322 2.19

VPN [6] Stereo + LiDAR 0.2051 0.99 0.6362 1.87
LSMD-Net(ours) Stereo + LiDAR 0.2100 0.79 0.8845 1.85

epochs, ωl = 0.8, ωm, ωs = 0.1 for another 5 epochs and ωm = 0.7, ωs = 0.2,
ωl = 0.1 after 10 epochs. Following [37], input images are bottom-cropped to
1216×256 for there is no ground truth on the top. For our Livox-stereo dataset,
we fine-tune the network pretrained on KITTI Depth Completion dataset for
another 200 epochs. The weighting parameter in loss fuction are set as ωm = 1.0,
ωs = 0.25, ωl = 0.125.

5.3 Results on KITTI Stereo 2015 dataset

We compared the performance of LSMD-Net with stereo matching methods [19,
2] and other publicly available LiDAR-stereo fusion methods [22, 28, 37]. Note
that CoEx [2] is our baseline stereo matching method. Quantitative results in
Table 2 shows that our method outperforms other methods in terms of disparity
metrics. This further demonstrates the advantage of our LSMD-Net in depth
prediction since disparity is inversely proportional to depth.

5.4 Results on KITTI Depth Completion dataset

We converted predicted disparity maps into depth maps and compared our
LSMD-Net with other depth prediction methods in Table 3. Our method is
comparable to other depth prediction methods in terms of depth prediction.

A qualitative comparison on test set is shown in Fig. 6. LiDAR completion
(MSG-CHN) is more accurate than stereo matching (CoEx) in depth measure-
ment, but has poor performance at the upper side of maps due to the absence
of point clouds. Stereo matching is less precise and performs bad in fine struc-
ture, whereas is more stable than LiDAR. Our methods can leverage the unique
characteristics of different sensors and provide accurate depth measurements
throughout maps.
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Fig. 6. Qualitative results on KITTI Depth completion test set. Predicted depth map
of three scenes from methods based on different sensors are illustrated. We zoom-in
the boxes of interest at the bottom on maps.

Table 4. Quantitative results on Livox-stereo test set.

Methods Input > 3px ↓ EPE ↓ MAE ↓ RMSE ↓

CoEx [2] Stereo 12.72 2.80 - -
MSG-CHN [20] Mono + LiDAR - - 0.3437 1.08
CCVN [37] Stereo + LiDAR 6.57 1.86 0.6569 1.85

LSMD-Net(ours) Stereo + LiDAR 5.28 1.32 0.1957 0.93

5.5 Results on Livox-stereo dataset

The proposed method was further evaluated on home-made Livox-stereo dataset.
LSMD-Net is compared with MSG-CHN and CoEx on depth maps and disparity
maps respectively in Table 4. Our method has obvious advantage over other
depth sensing methods in all indicators.

Qualitative results can be found in Fig. 7. As mentioned in Sec. 3.2, the
weight of two modes α determines the branch confidence. The α map in Fig. 7(e)
presents unique Livox scanning pattens and discontinuous edges of objects, which
indicates that LiDAR completion is less reliable in areas without LiDAR mea-
surements and at the edges of objects. Our method can capture the advantages
of different sensors using this map.

5.6 Ablation Study

Ablation study is performed on Livox-stereo dataset to study the effect of using
different probability distribution models. Four distribution models are tested and
their results are reported in Table 5. The Laplacian distribution over disparity
we select outperforms others.

Table 5. Comparison of different probability distribution model.

Models > 3px ↓ EPE ↓ MAE ↓ RMSE ↓

Gaussian distribution over depth 7.93 1.76 0.3294 1.29
Gaussian distribution over disparity 5.71 1.40 0.2102 0.94
Laplacian distribution over depth 6.15 1.47 0.2750 1.32

Laplacian distribution over disparity 5.28 1.32 0.1957 0.93
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Fig. 7. Qualitative results of our LSMD-Net on Livox-stereo dataset. The brighter part
of (e) indicates that LiDAR completion branch is more reliable and the darker part
indicates that stereo matching branch is more reliable.

Table 6. Computational time of different methods (unit: millisecond).

Methods GC-Net [19] CCVN [37] VPN [6] SCADC [38] CoEx [2] LSMD-Net(ours)

Time 962 1011 1400 ≈ 800 22 27

5.7 Computational Time

We provide a reference for computational time on KITTI in Table 6. The pro-
posed method takes a little bit longer time (5ms) than baseline method CoEx [2],
but provide significant improvement in performance, validating the efficiency of
our fusion scheme. Other stereo matching method [19] and LiDAR-Stereo fusion
method [37, 38, 6] take much more times than our method.

6 Conclusion

In this work, we treat multisensor fusion as a multimodal prediction problem
and present a real-time dual-branch LiDAR-Stereo fusion method for the task of
efficient depth sensing. The proposed method utilizes mixture density network
to predict a bimodal Laplacian distribution at each pixel. Each distribution
captures information from stereo matching and LiDAR completion and provide
a measure of confidence for them. Our method excels in terms of accuracy and
computational time on both KITTI and our home-made Livox-stereo datasets.
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9. Gandhi, V., Čech, J., Horaud, R.: High-resolution depth maps based on tof-stereo
fusion. In: 2012 IEEE International Conference on Robotics and Automation. pp.
4742–4749 (2012). https://doi.org/10.1109/ICRA.2012.6224771

10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3354–3361 (2012). https://doi.org/10.1109/CVPR.2012.6248074

11. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth
estimation with left-right consistency. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 6602–6611 (2017).
https://doi.org/10.1109/CVPR.2017.699

12. Guillaumes, A.B.: Mixture density networks for distribution and uncertainty esti-
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