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Abstract. Recently, alpha matting has received a lot of attention be-
cause of its usefulness in mobile applications such as selfies. Therefore,
there has been a demand for a lightweight alpha matting model due
to the limited computational resources of commercial portable devices.
To this end, we suggest a distillation-based channel pruning method for
the alpha matting networks. In the pruning step, we remove channels
of a student network having fewer impacts on mimicking the knowledge
of a teacher network. Then, the pruned lightweight student network is
trained by the same distillation loss. A lightweight alpha matting model
from the proposed method outperforms existing lightweight methods. To
show superiority of our algorithm, we provide various quantitative and
qualitative experiments with in-depth analyses. Furthermore, we demon-
strate the versatility of the proposed distillation-based channel pruning
method by applying it to semantic segmentation.

Keywords: Matting · Channel Pruning · Knowledge Distillation.

1 Introduction

The purpose of a natural image matting (i.e., alpha matting) is to estimate the
transparency of the user-specified foreground in an image. The alpha matting is
formally defined as follows [12]:

I = αF + (1− α)B, (1)

where I, F and B are the observed color image, foreground, background, re-
spectively. Also, α is transparency (i.e., alpha matte). The natural image mat-
ting is a highly ill-posed problem because it needs to estimate F , B, and α
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2 D. Yoon et al.

Fig. 1. (Left) Comparison of arbitrarily pruned models. The high-level pruned model
removes channels from the high-level layers, and the low-level pruned model removes
the channels from the low-level layers. (Right) Trade-offs between accuracy and model
size. Circle dots show results of original models. Squares and triangles denote results
of pruned GCA models using uniform pruning and our method, respectively.

simultaneously from an input color image I and a trimap providing known fore-
ground and background pixels. Traditional approaches for natural image mat-
ting are categorized into affinity-based and sampling-based methods. Affinity-
based methods [43, 28, 55, 20, 27, 4, 11, 5, 1] propagate alpha values from known
regions to pixels in unknown regions by analyzing statistical correlation among
pixels. Meanwhile, sampling-based methods [48, 16, 19, 41, 40, 7, 25, 8] construct
foreground and background color sample sets using pixels in known areas, then
estimates alpha values in unknown regions. However, these algorithms often rely
on strong assumptions such as local smoothness [28] or sparsity of foreground
and background colors [48].

Since the advent of large-scale image matting datasets such as Adobe-1k [50],
deep learning-based matting algorithms been actively studied [10, 42, 9, 34, 35,
46, 2, 30, 37, 44]. These methods outperform conventional ones remarkably. Usu-
ally, the alpha matting networks are based on U-Net [38] or fully-convolutional
networks (FCN) [33]. For better performance, the number of layers or channels
can be increased and also auxiliary modules can be added to baseline networks.
However, this leads to the increased computational costs and memory require-
ments that can be problematic for mobile applications. Recently, a lightweight
alpha matting network based on similarity-preserving knowledge distillation
(SPKD) [52] was introduced to resolve these issues. It successfully transfers simi-
larities of features from the teacher network to the student network, which make
the student network achieves much better performance than the baseline student
network trained from scratch.

However, it is still an open problem that which architecture is the best one for
the lightweight student network for natural image matting. It can be seen from
the left of Figure 1 that the performance varies greatly depending on which layer
the channels are removed from. Note that the high-level pruned model has fewer
parameters than the low-level pruned model. Also, as shown in right of Figure 1,
there is a trade-off between performance and model size, thus it is important
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to find an proper network architecture. To find the optimal lightweight network
architecture, various network pruning techniques can be applied. Although it
has been actively studied in the field of classification, it has not been dealt with
much in the reconstruction problem including alpha matting. Recently, channel
pruning methods for semantic segmentation task were introduced in [6, 21], but
they mainly focus on preserving high-level semantic information rather than low-
level fine structures that are crucial for the natural image matting problems.

To focus on low-level fine details during the channel pruning, we borrow the
power of a pre-trained high-performance matting network which well preserves
fine details. In other words, in this paper, we present a distillation-based channel
pruning method that removes the channels having a low impact in mimicking
the pre-trained teacher network. In the pruning phase, we induce the sparsity of
the scaling factor of the batch normalization (BN) layer as in [31, 6, 21] and addi-
tionally apply distillation loss with a powerful pre-trained teacher model that is
capable of precisely guiding a student network to preserve fine structural details
in its prediction. In the training phase, we train the pruned lightweight net-
work by the same distillation loss used in the pruning stage. Note that proposed
method can make existing lightweight model (i.e., IndexNet) even lighter.

Our contributions can be summarized as follows. (i) We introduce a novel
channel pruning method for the natural image matting problem. To our best
knowledge, this is the first attempt to apply the network pruning technique
for the alpha matting problem. (ii) By utilizing a distillation loss within the
channel pruning step, we succeed in finding a lightweight alpha matting network
that can recover fine details. (iii) Our pruned network outperforms other baseline
pruning approaches on two publicly available alpha matting datasets (Adobe-1K,
Distinctions-646) while having a comparable number of parameters. In addition,
we provide various ablation studies for a deeper understanding.

2 Related Works

2.1 Natural Image Matting

Most image matting techniques can be categorized into affinity-based and color
sampling-based methods. In affinity-based methods, statistical affinity is ana-
lyzed among the local and non-local neighbors to propagate values of alpha to
the unknown areas from the known regions. Levin et al. [28] introduced the
closed-form solution based on matting Laplacian using the linear color model.
For handling high resolution images, He et al. [20] proposed efficient method
to solve a large kernel matting Laplacian. Furthermore, Lee and Wu [27] intro-
duced non-local matting propagating alpha values across non-local neighboring
pixels. Chen et al. [4] suggested the KNN matting which uses only k-nearest
non-local neighbors to propagate alpha values. In addition, Chen et al. [5] uti-
lized both local and non-local smoothness prior and Aksoy et al. [1] proposed
multiple definitions of affinity for natural image matting.

The color sampling-based methods find foreground and background colors
from constructed color sampler sets, then estimate alpha values in unknown

1370



4 D. Yoon et al.

regions. Bayesian matting [12] utilizes statistical models to analyze pixels in un-
known regions. Robust matting [48], shared matting [16] and weighted color and
texture matting [41] select the best color samples based on their own designed
cost functions that take into account spatial, photometric, or texture informa-
tion. He et al. [19] proposed a randomized searching method to use global samples
in the known areas to find the best combination of foreground and background
colors. Shahrian et al. [40] constructed comprehensive color sample sets to cover
broad color variations using Gaussian Mixture Model (GMM). Karacan et al. [25]
choose colors of foreground and background based on sparse representation.

After large-scale alpha matting datasets were published [50, 37], a lot of deep
learning-based works have been introduced. Xu et al. [50] proposed a simple
two-stage network for natural image matting. Lutz et al. [35] applied adversarial
training for obtaining visually appealing alpha matte results. To preserve details
of alpha mattes, Hao et al. [34] introduced IndexNet including indices-guided
unpooling operation. In addition, contextual attention [30] and hierarchical at-
tention [37] mechanisms were proposed for the matting problem. Yu et al. [53]
proposed mask-guided matting leveraging a progressive refinement network with
a general coarse mask as guidance. Although the performance of alpha matting
has been substantially improved, there are still not many studies on lightening
alpha matting networks. Recently, Yoon et al. [52] succeeded to utilize knowledge
distillation (KD) to obtain the lightweight deep-CNN model for alpha matting.
They reduce the number of channels with a fixed ratio, therefore, the optimal
channel reduction ratio should be determined empirically.

2.2 Network Pruning

The purpose of the network pruning is to reduce redundancies in the over-
parameterized deep CNN models for fast run-time while maintaining perfor-
mance. In general, network pruning is divided into unstructured pruning [18, 36,
14, 45] which requires special libraries or hardware, and structured pruning [49,
29, 3, 31] which is relatively easy to implement. In this subsection, we focus on
structured pruning that is more relevant to our work. Wen et al. [49] proposed
a Structured Sparsity Learning (SSL) method to sparsify structures including
filters, channels, or layers by using group sparsity regularization. Li et al. [29]
introduced a method to remove channels having small incoming weights in a
trained deep CNN model. Changpinyo et al. [3] deactivate connections between
filters in convolutional layers to obtain smaller networks. Liu et al. [31] proposed
the network slimming method to explicitly impose channel-wise sparsity in the
deep CNN model using scaling factors in batch normalization. Gao et al. [15]
proposed a feature boosting and suppression (FBS) method to dynamically re-
move and boost channels according to the inputs using auxiliary connections.
Despite many pruning studies, most of them focus on the classification task. For-
tunately, pruning techniques for semantic segmentation have begun to be intro-
duced recently. Chen et al. [6] suggested a channel pruning method for semantic
segmentation based on multi-task learning. Furthermore, He et al. [21] proposed
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Distillation-Based Channel Pruning 5

Fig. 2. In the pruning stage, the student network is lightweighted using scaling factor
sparsification loss and distillation loss with pre-trained teacher model. In the training
stage, the same distillation loss is used to train the pruned student network.

context-aware channel pruning method by leveraging the layer-wise channels in-
terdependency. However, pruning researches for matting network have not been
addressed yet.

Since the estimation of the fine structures in alpha mattes are the most im-
portant objective of the matting network, a powerful pruning technique suitable
for this purpose is strongly required. To this end, we present a distillation-based
channel pruning technique that exploits a powerful pre-trained alpha matting
model suitable for recovering low-level fine details.

3 Proposed Approach

In this section, we briefly describe the basics of KD and motivation of using KD
for network pruning. Then, we introduce the distillation-based channel pruning
method for sparsifying alpha matting network, and explain a method for training
pruned lightweight model with KD. We use the same distillation method for both
pruning and training stages, even though it is also possible to utilize different
methods. Related experiments are provided by the ablation studies. Overview
of our distillation-based channel pruning and training is illustrated in Figure 2.

3.1 Knowledge Distillation

Knowledge distillation (KD) [23] is a technique supervising a small student model
by a larger teacher model. The main purpose of KD is to transfer rich feature
representations of the large model trained by the huge amount of data into the
small model. Therefore, it is very useful when there is a lack of training data or
limited computational resources and memory of the devices.
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Table 1. The first row: model with channels removed from low-level layers. The second
row: model with channels removed from high-level layers.

Methods MSE SAD Grad Conn #Param

Low-level pruned 0.012 45.22 24.85 39.77 22.63M
High-level pruned 0.011 40.33 20.34 35.48 8.83M

Mathematically, feature maps of the teacher and student networks in i-th
layer are denoted as F ti ∈ RCt

i×H
t
i×W

t
i and F si ∈ RCs

i×H
s
i×W

s
i , respectively. Note

that {Cti , Csi } are the number of channels, {Ht
i , H

s
i } and {W t

i ,W
s
i } represent

the spatial size. Generally, the distillation loss for each layer is formulated as

LKD(F ti , F
s
i ) = LF (Φt(F

t
i ), Φs(F

s
i )), (2)

where, LF (·) is a similarity function, Φt(·) and Φs(·) are feature transform func-
tions for the teacher and student networks. According to the purpose of distil-
lation, appropriate LF (·), Φt(·) and Φs(·) should be designed.

3.2 Motivation

Over the recent years, various KD methods have been introduced [23, 51, 47, 22,
17], but most of them arbitrarily set the architecture of the student network.
Therefore, they do not ensure whether the student network is optimal for both
distillation and the given tasks. For example, the importance of each channel in
the layers of a deep CNN model may be different, therefore, reducing the number
of channels uniformly for all the layers is sub-optimal obviously. We believe that
it is also important for the alpha matting task to find the optimal student model.

To confirm this, we perform a preliminary experiment using GCA [30] as
a baseline matting model. First, we divide the encoder of GCA model into
two groups: low-level layers (conv1-conv3) and high-level layers (conv4-conv5).
Then, we apply uniform 50% channel pruning to low-level and high-level layers
separately, and then obtain two different pruned networks. The ratios of the
removed channel parameters to the whole encoder are 12.75% in low-level and
37.25% in high-level layers, respectively. In other words, more parameters are
eliminated from the high-level layers rather than the low-level ones. Using these
two uniformly pruned GCA models, we verified the alpha matting performance
on the Adobe-1k dataset [50]. As reported in Table 1, the model removing chan-
nels of high-level layers (the second row) prunes more channels than the model
removing channels of low-level layers (the first row) but achieves better per-
formance. The number of network parameters is also much less. As a result,
it can be seen that the channels of low-level layers have more influence on the
alpha matting performance. Regarding that the high-level pruned network has
achieved better performance, this result implies that the channel distributions
of the original and optimal pruned models might be different significantly and
the low-level layers are highly important in the alpha matting problem.
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Therefore, in this paper, we propose a method to find a student network
model that can well receive low-level knowledge from a large-capacity teacher
network. To this end, we introduce a distillation-aware pruning loss in the prun-
ing stage to create an optimal lightweight network for alpha matting.

3.3 Pruning with KD

Inspired by [31], we adopt a channel pruning method based on the sparsification
of scaling factors in batch normalization (BN) layers. BN layer is used in most
deep CNN models for better generalization and fast convergence. Formally, the
BN layer is defined as follows:

y = γ
x− µ√
σ2 + ε

+ β, (3)

where x and y are input and output of BN layer, and µ and σ are mean and
standard deviation of the input mini-batch features, and ε is a small constant. γ
and β are the learnable scaling and shifting factors. In [31], the scaling factor γ
in the BN layer is considered as the measure for the importance of each channel.
In other words, a channel with a very small γ is regarded as the layer which
does not contribute significantly to the final prediction. Therefore, enforcing
sparsification on the scaling factors eases the identification of prunable layers.

Similarly, our pruning method trains a target student network with sparsifi-
cation loss and distillation loss, then remove channels with small scaling factors
in BN layers. We adopt the same alpha matting model for both teacher and stu-
dent networks. For the network pruning, only parameters of the student network
are updated while those of the teacher network are fixed. The final loss includes
alpha prediction, channel sparsification, and distillation losses as follows:

LP = λ1Lα(αs, αgt) + λ2Lα(αs, αt) + λ3
∑
γ∈ζ

|γ|+ λ4
∑
i∈η
LKD(F ti , F

s
i ), (4)

where Lα(·) is the vanilla alpha prediction loss introduced in [50], and αs, αt,
αgt are alpha matte prediction results from the student network and the teacher
network, and ground truth, respectively. ζ is the set of scaling factors over all
the BN layers and η is the index set of layers utilized for distillation loss. λ1, λ2,
λ3, and λ4 are balancing factors for each term. Note that the distillation loss is
used only for the encoder part.

In (4), the gamma value γ corresponding to the importance score can be
estimated significantly differently depending on the distillation loss, which means
that different pruned networks can be created. Therefore, we adopt several recent
KD methods to be utilized in the proposed channel pruning method as follows:

– Neuron Selectivity Transfer (NST): Huang and Wang proposed NST [24]
that aligns the distribution of spatial neuron activations between teacher and
student networks. To this end, NST minimizes maximum mean discrepancy
(MMD) distance between activations of teacher and student networks. Thus,
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Φ(·) in (2) is a certain function for kernel trick which projects samples into a
higher dimensional feature space. Also, LF (·) is distance (i.e., L2 distance)
between means of projected features of teacher and student networks.

– Overhaul of Feature Distillation (OFD): Heo et al. [22] investigated
various aspects of the existing feature distillation methods and suggested
OFD that is a simple but effective distillation method. In particular, Φt(·)
in (2) is a margin ReLU function while Φs(·) is a regressor consisting of a
1×1 convolution layer. Also, LF (·) in (2) is a partial L2 distance.

– Similarity-Preserving Knowledge Distillation (SPKD): The SPKD-
based distillation method makes the pairwise similarity of the student net-
work similar to that of the teacher network. In [47], batch similarity for the
classification task is used while spatial and channel similarity for the regres-
sion task is utilized in [52, 26]. Thus, Φ(·) in (2) is a function of making
pairwise similarities and LF (·) is the L2 distance.

After training with distillation loss as in (4), we prune the target student network
based on scaling factors of BN layers. The smaller the scaling factor is, the less
impact it has on the output of the layer, thus we remove the channels with a
lower scaling factor than a threshold. To eliminate M channels, we adopt the
M -th smallest scaling factor as the threshold. At this point, thresholds of the
encoder and decoder are obtained separately since distillation loss is only used
in the encoder. After pruning, we can get the compact lightweight alpha matting
network, which is suitable to get fine details by KD.

3.4 Training with KD

By the aforementioned our distillation-based channel pruning, the architecture
of a lightweight student network can be obtained. In [32], the network structure
itself is considered more important than the remaining parameters after pruning.
In other words, the fine-tuned model and the trained from scratch model achieve
similar result, or even the trained from scratch model performs better. Thus, we
train the pruned network from scratch again by applying KD using the teacher
network based on the loss function defined as follows:

LT = w1Lα(αps, αgt) + w2Lα(αps, αt) + w3

∑
i∈η
LKD(F ti , F

ps
i ), (5)

where αps is a prediction of the pruned student network and F psi is feature maps
in the i-th layer of the pruned student network. w1, w2, and w3 are balancing
factors for each term in (5). Unlike (4), sparsification loss is not included, and
the pruned student network is used. We use the same distillation loss as the
pruning step, but other distillation losses can be used.

4 Experimental Results

In this section, we evaluate the proposed distillation-based channel pruning
method both quantitatively and qualitatively. We validate our method on vari-
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Table 2. Quantitative evaluation by GCA-50% model on the benchmark.

Dataset
Methods

MSE SAD Grad Conn #Param FLOPs
KD Prune

A
d
o
b

e-
1
k

Unpruned(teacher) 0.009 35.28 16.92 35.53 25.27M 11.19G

- UNI 0.017 52.61 34.27 46.24 6.35M 2.90G
- NS 0.017 51.57 28.70 45.66 4.30M 6.84G
- FBS 0.013 45.09 22.87 39.39 7.11M 2.90G
- CAP 0.014 48.55 26.01 42.76 5.13M 6.50G

NST NS 0.020 58.10 36.78 51.80 4.30M 6.84G
NST Ours 0.017 53.47 30.59 47.37 5.80M 7.02G

OFD NS 0.014 46.96 24.16 41.93 4.30M 6.84G
OFD Ours 0.012 43.15 21.79 37.66 5.13M 6.48G

SPKD NS 0.012 42.69 21.88 37.54 4.30M 6.84G
SPKD Ours 0.011 41.26 21.42 35.87 4.66M 6.74G

D
is

ti
cn

ti
o
n
s-

6
4
6

Unpruned(teacher) 0.025 27.60 15.82 22.03 25.27M 11.19G

- UNI 0.037 37.83 26.35 28.36 6.35M 2.90G
- NS 0.028 31.45 20.47 25.69 3.99M 6.41G
- FBS 0.024 28.61 17.36 23.52 7.11M 2.90G
- CAP 0.026 29.23 18.59 23.85 5.30M 6.36G

NST NS 0.038 36.13 24.33 28.20 3.99M 6.41G
NST Ours 0.035 36.58 23.69 27.42 4.93M 6.16G

OFD NS 0.026 28.45 19.86 23.22 3.99M 6.41G
OFD Ours 0.024 27.12 17.36 22.03 5.03M 6.22G

SPKD NS 0.024 27.88 18.33 22.46 3.99M 6.41G
SPKD Ours 0.024 27.31 17.81 21.90 4.24M 6.72G

ous teacher models including GCA [30], DIM [50], and IndexNet [34], and also
provide various ablation studies. Finally, we show that the proposed algorithm
can be utilized for the other task such as semantic segmentation.

4.1 Implementation Details

In most experiments, we adopt GCA matting as a baseline alpha matting net-
work. In order to evaluate our distillation-based channel pruning method, we use
two public benchmark datasets: Adobe-1k [50] and Distinctions-646 [37]. Since
Distinctions-646 test set does not provide official trimaps, we generate trimaps
from ground truth alpha matte using dilation with kernel size 10. The evaluation
metrics for all quantitative experiments are mean squared error (MSE), sum of
absolute difference (SAD), gradient error (Grad), connectivity (Conn), the num-
ber of network parameters (#Param) and floating-point-opertions (FLOPs). We
use activations of the last four layers in the encoder for computing distillation
loss as in [52] for a fair comparison.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Qualitative image matting results by GCA. (a) Input images. (b) Ground
truths. (c) UNI. (d) NS [31]. (e) CAP [21]. (f) NS-SPKD. (g) Ours-SPKD.

Table 3. Quantitative results by DIM-50% model on the Adobe-1k.

Methods
MSE SAD Grad Conn #Param FLOPs

KD Prune

Unpruned(teacher) 0.021 65.37 33.20 67.58 25.58M 24.51G

- UNI 0.049 114.02 78.89 122.00 6.40M 6.19G
- NS 0.052 120.82 83.10 129.70 6.32M 7.65G
- FBS 0.052 110.22 83.14 118.60 6.92M 6.19G
- CAP 0.040 101.77 63.93 108.61 4.08M 4.26G

NST NS 0.033 94.31 55.48 100.67 6.32M 7.65G
NST Ours 0.032 89.83 49.04 95.20 5.98M 11.23G

OFD NS 0.029 76.74 42.45 79.86 6.32M 7.65G
OFD Ours 0.032 76.71 43.86 80.61 7.97M 17.61G

SPKD NS 0.029 76.73 42.70 80.77 6.32M 7.65G
SPKD Ours 0.027 73.67 40.78 76.58 7.81M 12.53G

4.2 Quantitative Comparisons

We quantitatively verify our distillation-based channel pruning and training
methods on Adobe-1k and Distinctions-646 datasets. We adopt the aforemen-
tioned NST [24], OFD [22], and SPKD [52] as KD methods for both pruning
and training stages. For comparison, uniform channel pruning (UNI), network
slimming (NS) [31], feature boosting and suppression (FBS) [15], and context-
aware pruning (CAP) [21] are chosen. As reported in Table 2, the number of
parameters in all student networks and FLOPs are much smaller than that of
a teacher network (about 16-25% parameters and 60% FLOPs). Although our
pruned model sometimes has more parameters or more FLOPs than other pruned
models (UNI, NS, FBS and CAP), the alpha matting performance is far supe-
rior to their performances. Also, our distillation-based channel pruning method
achieves better performance than NS regardless of distillation types. Note that
we utilize the same KD method in the training step for both our pruning method
and NS. Usually, performance is slightly higher when SPKD is used than OFD.
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Table 4. Quantitative results by IndexNet-25% model on the Adobe-1k.

Methods
MSE SAD Grad Conn #Param FLOPs

KD Prune

Unpruned(teacher) 0.013 45.61 27.06 43.79 8.15M 5.64G

- UNI 0.027 65.21 42.56 66.83 3.49M 3.22G
- NS 0.026 65.45 40.79 67.11 4.21M 5.34G
- FBS 0.020 56.43 34.41 56.78 4.05M 3.22G
- CAP 0.018 53.32 35.17 53.41 4.07M 5.38G

NST NS 0.020 57.04 33.99 57.49 4.21M 5.34G
NST Ours 0.019 54.21 28.14 53.57 4.02M 4.95G

OFD NS 0.017 52.13 29.99 51.76 4.21M 5.34G
OFD Ours 0.015 47.24 24.42 46.26 4.41M 5.13G

SPKD NS 0.016 50.35 27.21 49.86 4.21M 5.34G
SPKD Ours 0.014 47.06 25.98 45.77 5.09M 5.21G

However, when NST is used, the performance is lower than the existing prun-
ing that does not include KD in the training step. It indicates that the type of
distillation loss is also an important factor for both the pruning and training.

To verify the generality of our method, the same experiments are performed
using DIM and IndexNet as backbone models instead of GCA matting. Similar
to the case of GCA matting, the best performance is achieved with SPKD as
reported in Table 3 and Table 4. A different point from the case of GCA mat-
ting is that comparable performance was achieved even when using NST. Note
that the original IndexNet is already a lightweight model because it is based on
MobileNetv2 [39], but it can be even lighter by applying our channel pruning.

4.3 Qualitative Comparisons

Figure 3 shows the qualitative performance of our method. We compare our
results obtained using SPKD with results from existing pruning algorithms. Ex-
amples contain various object structures: short hair, overlapped color distribu-
tion (squirrel) and transparency (glass). As expected, the results of the existing
pruning methods are over-smoothed as shown in the (glass) example of Figure 3-
(d,e). In this example, UNI produces a better result than NS and CAP. Overall,
results using distillation loss in the pruning step (Figure 3-(f)) show stable and
visually pleasing predictions. Moreover, our final results using the SPKD in both
pruning and training step (Figure 3-(g)) provide the best predictions with fine
details preserved.

4.4 Ablation Studies

Different Distillation for Pruning and Training. Since it is possible to
utilize different distillation losses for pruning and training stages, it is meaningful
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Table 5. Ablation study on various combinations of methods for distillation and prun-
ing method. All evaluations are conducted by GCA-50% model on the Adobe-1k.

Methods
MSE SAD Grad Conn

KD Prune

NST
+NST 0.017 53.47 30.59 47.37
+OFD 0.018 53.70 30.85 46.78

+SPKD 0.019 56.85 35.94 49.30

OFD
+NST 0.012 44.09 21.91 39.24
+OFD 0.012 43.15 21.79 37.66

+SPKD 0.013 44.14 23.51 39.82

SPKD
+NST 0.013 43.98 23.65 38.82
+OFD 0.011 42.07 21.51 36.58

+SPKD 0.011 41.26 21.42 35.87

Table 6. Results according to various pruning ratios. All evaluations are conducted
by GCA-model with SPKD on the Adobe-1k.

Methods MSE SAD Grad Conn #Param

UNI-30% 0.012 43.46 23.78 38.61 12.00M
UNI-50% 0.015 48.06 30.28 42.81 6.35M
UNI-70% 0.019 58.26 33.53 50.77 2.50M

Ours-30% 0.010 39.38 19.45 34.80 10.37M
Ours-50% 0.011 41.26 21.42 35.87 4.66M
Ours-70% 0.014 47.36 25.87 42.02 1.80M

to explore whether it is better to use different distillation losses in pruning and
training steps or to use the same distillation loss. To this end, we performed
experiments on all combinations of NST, OFD, and SPKD in the pruning and
training phases. As reported in Table 5, we can achieve better performance when
the same distillation loss is used in the pruning and training phases. Even more,
in the student model pruned with NST, it is better to use NST in the training
stage than OFD and SPKD, which are more advanced distillation techniques.
These results are reasonable because the student network architecture obtained
by a specific KD method will have a high chance to be more effective for the
same distillation method than the other ones.

Pruning Ratio. We analyze our distillation-based pruning according to pruning
ratios. We compare the results of the model in which the number of channels is
reduced by 30%, 50%, and 70% using the our method, and the model uniformly
reduced in the same proportion. For all cases, we use the same SPKD as distil-
lation loss for training step. As in Table 6, the pruned models whose channels
are reduced by 70% and 50% using our method achieve better performance and
fewer network parameters than the model uniformly pruned by 50%.
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Table 7. Results of training our pruned model from scratch without distillation.

Prune MSE SAD Grad Conn

+NST 0.017 54.02 31.50 47.45
+OFD 0.017 56.44 33.10 49.39

+SPKD 0.017 56.88 32.62 50.09

Table 8. Comparisons of Running Time (RT) per image on DIM model.

Method MSE SAD #Param FLOPs RT(ms)

Unpruned 0.021 65.37 25.58M 24.51G 11.33

UNI 0.049 114.02 6.40M 6.19G 3.80
NS 0.052 110.22 6.32M 7.65G 3.87

CAP 0.040 101.77 4.08M 4.26G 3.50

Ours(NST) 0.032 89.83 5.98M 11.23G 5.53
Ours(OFD) 0.032 76.71 7.97M 17.61G 5.67

Ours(SPKD) 0.027 73.67 7.81M 12.53G 5.64

Training from Scratch without KD. To analyze the effect of paired dis-
tillation loss for both the pruning and training stages, we train our pruned
model from scratch without KD. As reported in Table 7, our pruned model
achieves slightly worse performance than models pruned by UNI, NS, and CAP
when trained without KD in the training phase. Therefore, we conclude that our
distillation-based channel pruning is more beneficial when it is combined with
the proper distillation method during the training.
Running Time We measure the running time of the each pruned model using
Adobe-1k dataset. As reported in Table 8, the performance (MSE, SAD) of our
method with SPKD is quite close to those of unpruned teacher model while it
runs twice faster than the teacher model. The existing methods (UNI, NS, CAP)
are faster than our method, but the performance (MSE, SAD) is very poor.
Application on Semantic Segmentation. Our distillation-based channel
pruning technique is applicable not only to alpha matting but also to other
tasks. Therefore, in this subsection, we verify whether the proposed method is
effective for semantic segmentation. For experiments, we adopt PSPNet-50 [54]
as a baseline model and test our method on Pascal VOC 2012 validation set [13].
We utilize the mean Intersection over Union (mIoU), and pixel accuracy (Acc.)
as evaluation metrics.

As reported in Table 9, the proposed distillation-based channel pruning
method achieves superior performance compared to the other existing chan-
nel pruning methods. Note that the performance of the pruned model by the
NS is similar to our method when KD is applied, but the pruned model by our
method has much fewer parameters. Also, as shown in Figure 4, our channel
pruning method produces a visually more pleasing result compared to the other
channel pruning techniques.
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(a) (b) (c) (d) (e) (f)

Fig. 4. Example of semantic segmentation results on PASCAL VOC2012 validation set.
(a) Input images. (b) Ground truths. (c) NS. (d) CAP. (e) NS-OFD. (f) Ours-OFD.

Table 9. Semantic segmentation results by 50% pruned PSPNet-50.

Methods
mIoU Acc. #Param

Methods
mIoU Acc. #Param

KD Prune KD Prune

Unpruned

(teacher)
78.02 95.13 49.1M

NST NS 60.67 90.80 26.5M
NST Ours 60.81 90.69 22.0M

- UNI 51.40 88.05 12.3M OFD NS 62.45 90.69 26.5M
- NS 41.78 85.24 26.5M OFD Ours 63.48 90.85 21.7M
- FBS 53.62 88.75 19.7M SPKD NS 58.26 89.55 26.5M
- CAP 53.61 88.58 22.2M SPKD Ours 58.20 89.18 21.9M

5 Conclusion

We have proposed a distillation-based channel pruning method for lightening a
deep image matting network. In the pruning step, we train a student network
that has the same architecture with a teacher network using the distillation-based
sparsification loss. Then, we remove channels that have low scaling factor of BN
layer. Finally, we train the pruned student network using the same distillation
loss utilized in the pruning step. Experimental results demonstrate that our
distillation-based channel pruning method successfully reduces the number of
parameters. The lightweight network obtained by the proposed method achieves
significantly better performance than other lightweight networks with similar
capacity. We analyze the proposed channel pruning technique through extensive
ablation studies.
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