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Abstract. Surveillance object detection is a challenging and practi-
cal sub-branch of object detection. Factors such as lighting variations,
smaller objects, and motion blur in video frames affect detection results,
but on the other hand, the temporal information and stable background
of a surveillance video are major advantages that does not exist in generic
object detection. In this paper, we propose an adaptive omni-attention
model for surveillance object detection, which effectively and efficiently
integrates inter-frame contextual information to improve the detection
of low-quality frames and intra-frame attention to suppress false positive
detections in the background regions. In addition, the training of the
proposed network can converge quickly with less epochs because during
multi-frame fusion stage, the pre-trained weights of the single-frame net-
work can be used to update simultaneously in reverse in both single-frame
and multi-frame feature maps. The experimental results on the UA-
DETRAC and the UAVDT datasets have demonstrated the promising
performance of our proposed detector in both accuracy and speed.(Code
is available at https://github.com/Yubzsz/Omni-Attention-VOD.)

1 Introduction

Surveillance object detection, as an important sub-branch of generic object de-
tection, aims at localizing objects with tight bounding boxes in each frame of
a surveillance video. It has been studied for many decades from traditional
background modelling and subtraction algorithms to the recent deep learning-
based models. Although deep learning-based object detection models [1–10] have
made significant progress on both images and videos, detecting objects in the
surveillance scenario still has its own set of challenges and difficulties. First, a
more accurate object detection result is needed for subsequent tracking or re-
identification tasks. For example, in many benchmarks of video object detection,
such as [11], [12], a threshold of 0.7 is set for calculating the average accuracy
rather than a commonly used threshold of 0.5 for most image object detection.
Then, the cases of occlusion, of smaller objects, and of motion blur will appear
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more frequently in the surveillance videos than general images. Finally, consid-
ering the practical application of surveillance scenario, the inference speed of
the detection model is another important issue, which puts high demands on the
efficiency of surveillance object detection.

However, compared to the generic image object detection, surveillance object
detection does have some additional prior information, such as relative stable
background in the same video sequence and same object exists in consecutive
frames, which can be used to improve the performance of object detection. For
instance, for utilizing the intra-frame information, structural information or the
layout of scenes have been used to refine the object detection results [13, 14];
and for utilizing the inter-frame information, some background modeling and
optical flow-based approaches have been proposed to improve the detection of
small objects [15–17]. Considering these reasons, we propose an adaptive omni-
attention model for improving surveillance object detection, which effectively
and efficiently combine the temporal information of the consecutive frames as
inter-frame attention and the spatial context of surveillance scenarios as intra-
frame attention. The experimental results on the UA-DETRAC [11] dataset have
demonstrated the efficacy of our proposed detector when compared with other
state-of-the-art surveillance object detection models.

The main contributions of our approach are summarized as follows.

• An inter-frame attention module, with temporal adaptive convolutions, has
been added into the backbone feature extraction phase to effectively incor-
porate the feature maps of consecutive frames to enhance the small object
detection.

• An intra-frame attention module that weights the current frame feature maps
in channel and spatial dimensions has been introduced to suppress the false
positive detections in the background regions.

• An efficient feature fusion module has been proposed to integrate inter-frame
and intra-frame feature maps at different scales which can achieve a high
detection accuracy with less training cost.

2 Related Work

2.1 Generic Object Detection

Currently deep learning-based object detection networks can be classified into
two-stage and one-stage detection methods according to the detection process.
The classical two-stage methods, such as R-CNN [1], SPP-Net [2], Faster RCNN
[3], etc, have independent region proposal module, which can support a rela-
tive high detection accuracy, but will affect the detection speed. The one-stage
methods discard the process of region proposal and directly regress the detection
boxes on the images, which gains advantages in speed and gradually approaches
the two-stage methods in terms of accuracy. Typical representatives of one-stage
methods include YOLO [4] and its variants, SSD [5], RetinaNet [6], etc. The
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recent rise of anchor-free object detection is an important improvement to one-
stage detection models.

Compared with anchor-based method, anchor-free-based method refers to
the detection by only dense prediction or keypoint estimation without manually
designing anchors with different scale on the image. For example, CornerNet [7]
and CenterNet [8], treat the object detection problem as key point detection,
and respectively predict the corner and center points of the object to complete
the detection. The selection of these points are determined by heatmap, and the
loss function of heatmap is focal loss that proposed in [6]. What’s more, FCOS
[9] performs pixel-by-pixel prediction, RepPoints [10] learns a set of points to
represent the object. Anchor-free-based methods solve the defects brought by
the anchor, such as imbalance of positive and negative samples during training,
high memory occupation, and difficulty in recognizing multi-scale objects.

Attention mechanism is another widely used technique for improving object
detection, which has been developed rapidly as a training module that can signif-
icantly improve the accuracy of a model with only a small increase in model com-
plexity or computational effort. For example, YOLOv4 [18] explores the impact
of Squeeze-and-Excitation (SE) [19] and Spatial Attention Mechanisms (SAM)
[20] methods for training the model, where SE is a channel attention mecha-
nism and SAM is a spatial attention mechanism. EfficientDet [21] in backbone
incorporates an SE attention module in each stage; TPH-YOLOv5 [22] inte-
grates a convolutional attention module [23] (CBAM) to find attention regions
in scenes with dense objects; in addition, attention mechanisms can also be used
for feature aggregation [16].

2.2 Surveillance Object Detection

Compared with generic object detection, the biggest difference of surveillance
object detection is the rich temporal and contextual information that can be
utilized to improve the object detection. Existing surveillance object detection
methods adopt this prior information in different ways, such as multi-frame
feature aggregation, 3D convolution, dynamic foreground extraction, and so on.

Most multi-frame feature aggregation methods compute each frame detection
intensively and then perform weighted average of features. FGFA [17] uses optical
flow estimation to aggregate feature maps of neighboring frames. To reduce
computational cost, THP [24] uses optical flow and sparse recursion to operate on
sparse key frames. Because of the high computational complexity of estimating
the optical flow, some non-optical flow-based feature aggregation methods have
been proposed. For example, MEGA [25] integrates the precomputed features of
the previous frame and stores them as global information in the remote memory
module; FFAVOD [26] fuses feature matrices of the front and back frame of the
current frame extracted by the backbone, and the output of the fusion module
is used as the input of the current frame detection header.

3D-DETNet [27] uses 3D convolution to capture motion or temporal infor-
mation encoded in multiple consecutive video frames, but the large number of
3D convolution parameters and low computational efficiency are rarely applied
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Fig. 1. Overview of our framework. The figure illustrates the detection process of 2n+1
frames video sequence. Figures 2,3 show the details of our inter-frame attention, intra-
frame attention, and feature fusion modules, respectively.

directly in video detection. In the field of video understanding and object track-
ing, most of the temporal modeling methods usually decompose 3D convolution
into the combination of 2D spatial convolution and 1D temporal convolution,
such as P3D [28] and R(2+1)D [29]. In order to reduce the computation com-
plexity of 3D convolution while giving 2D convolution the capability of temporal
modeling, Huang et al. proposed Tada Conv [30], which performs temporal mod-
eling by relaxing the temporal invariance of 2D convolution and superimposing
adaptive temporal weights on it. TCTrack [31] is an example of using Tada Conv
to improve the object tracking.Dynamic foreground extraction is another kind
of approaches to utilize inter-frame information by updating a spatio-temporal
background, which can effectively highlight moving objects, but has barely im-
provement for stationary objects or video jitter.

3 Proposed Method

Based on the consideration of effective and efficient use of attention in temporal,
spatial and channel domain, we propose a multi-frame based omni-attention ob-
ject detection network. Detailed illustration of the proposed network is provided
in the following subsections.

3.1 Omni-attention based surveillance object detection architecture

The overall structure of the proposed omni-attention based surveillance object
detection framework is illustrated in Fig.1, which consists of three main sub-
modules: the inter-frame attention module, the intra-frame attention module and
the feature fusion module. Since detection on each frame independently usually
ignores the connection between the contextual frames, the proposed framework
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utilizes multi-frame sequences instead of single-frame inputs. The input L−frame
(L = 2n + 1) images are denoted as {Ie}e=t−n,...,t−1,t,t+1,...t+n, with the target
frame is Ie. The target frame Ie goes through 6 different convolution layers
in the initial stage to obtain 6 different scales of feature maps. The 6-layer
feature maps of the target frames contain both high-level global information
and detailed information in the lower level. These feature maps are fed into the
intra-frame and inter-frame attention modules, where the intra-frame module
performs training of all 6 layers, while the inter-frame module trains only the
last 4 layers.

For intra-frame attention, we perform operations at the target frame to ex-
ploit the channel and spatial information of the feature map at different scales.
For inter-frame attention, we concatenate the last four layers of feature maps
of the target frame and the involved contextual frames, assigning adaptive tem-
poral weights to them. The reasons for selecting the last four layers of feature
maps to apply temporal convolution here are: (1) the network structure of the
first 2 layers of convolution is relatively simple (with only one convolution and
normalization operation) and extracts low-level details; (2) the higher-level fea-
ture maps have a larger receptive field, which is more suitable for applying to
multi-frame temporal contexts. Therefore, the temporal, channel and spatial in-
formation is aggregated at the same time, and then, the obtained fused feature
maps are fed into 3 head branches: fusion heatmap, offset and size branches.
The fusion heatmap (optimized by the loss LFHM ) represents the center point
heatmap of each category object; offset (optimized by the loss Loffset) is the
offset of the key point relative to the original image generated due to the image
undergoing down-sampling, feature enhancement and other operations; and size
(optimized by the loss Lsize) is the distance between the object center point
and the border. These three branches provide the final information to form the
bounding box of the detection object.

3.2 Inter-frame attention module

Given the input image sequence, the multi-frame tandem feature map can be
obtained at a certain stage of the backbone. Inspired by the temporal adaptive
convolution in [30], for features of target frame enhance by the Tada Convolution
with temporal modeling capability, we can obtain adaptive temporal weights
specifically assigned to each frame.The input X represents the integration of
all feature maps from multiple frames, and Xl represents the l-th of them. The
output feature map X̃l corresponding to Xl obtained by passing through the
Tada convolution is shown below:

X̃l =Wl ∗Xl = (αl ·Wb) ∗Xl (1)

where the ∗ indicates the convolution operation and · indicates the element-
wise multiplication. For which the weight Wl = αl ·Wb, where Wb is the base
weight shared by all frames in the network, and αl is the calibration weight
obtained from the temporal context different for each frame. Over the entire
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Fig. 2. (a) The inter-frame temporal attention architecture of the proposed method.
GAP stands for global average pooling. (b) The channel and spatial attention archi-
tecture of the proposed method. FC stands for fully connected layer and the feature
map dimensions are in the parentheses.

tandem feature map, feature map of each frame Xl is adaptively assigned with a
specific calibration weight. The calibration weight αl of the l−th frame not only
considers the current frame, but also integrates the temporal attention among
the related frame sequence. We show the process of generating the calibration
weight αl in Fig. 2(a).

Firstly, Xl is input to the Tada Convolution through a tandem operation.
For obtaining the local temporal context information, a global average pooling
(GAP) in the spatial dimension is first performed, such that vl = GAPs(Xl),
which is used as the frame descriptor. To obtain the global temporal context in-
formation, we perform a linear mapping of the global descriptors, superimposed
on the frame descriptors, to further merge the global temporal information, i.e.,
g = GAPst(X). Here GAPst represents the global average pooling in the spatial
and temporal dimension. After aggregating global and local information, two
convolutions to the frame descriptors as well as ReLU and normalization opera-
tions have been applied to obtain additional time-adaptive calibration weights.
The whole process of spatial-temporal convolution can be described by the fol-
lowing equation:

Fα

(
X̃l

)
= Conv (ρ (Conv (vl + FC(g)))) (2)

where vl and g stand for frame descriptor and global descriptor respectively, ρ
stands for ReLU and batch normalization, FC stands for linear mapping.

The final weight Wl is the product of the calibration weight αl and the base
weight Wb, where the base weight can be replaced by the pre-trained weight of
the single-frame network. The calibration weight is set to 0 during initialization,
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which has the advantage of the training time reduction and flexibility of the
convolution module embedded into the existing network.

In order to better aggregate spatial-temporal information and compensate
the problem of inadequate spatial information extracted by spatial-temporal
convolution, we add two branches after the adaptive convolution module as:

yl = ψρX̃l + ψvAvgPool
(
X̃l

)
. (3)

Specifically, the output of the adaptive convolution as X̃l is fed into these two
branches, one of which is average pooling. After performing different normaliza-
tion operations on both sides, the outputs of the two branches are aggregated. In
this way, according to the idea of SmallBigNet [32], the pooling branch provides
a larger receptive field than the other branch, which can better integrate core
and contextual semantics.

3.3 Intra-frame attention module

Besides temporal attention, attention in the spatial and channel dimensions also
provides possible enhancement for feature maps of single-frame images. For a
particular layer of feature maps in convolutional neural networks, the attention
mechanism learns an additional weight of corresponding pixels in a particular
dimension, and these weights represent the importance of a certain information
that strengthens the useful features and weakens the useless ones, thus facilitate
the feature screening and enhancement. Since surveillance videos often have
stable background, we can use spatial and channel attention to suppress the
false positive detection in the background region.

CBAM [23] is a widely used hybrid attention mechanisms combining both
spatial and channel dimensions. Inspired by CBAM [23], the proposed intra-
frame channel and spatial attention mechanisms are shown in Fig. 2(b), where
the attention information on channels and special allocation is weighted sequen-
tially on the 6-layer feature map generated in backbone. For channel attention,
both average-pooling and max-pooling are used to compress the information on
the spatial dimension, and then the pooled features are fed into a multilayer
perceptron network with shared weights. For spatial attention, the feature map
weighted by channel attention performs average-pooling and max-pooling on
each channel and concatenates them to generate valid feature descriptors. Then
a 7×7 convolutional layer is applied to obtain the weighted feature map of spa-
tial dimension. To sum up, the proposed intra-frame attention mechanism can
be described as:

Fc =MLP (AvgPool (Xl) +MLP (MaxPool (Xl)) (4)

FS = f7×7 [AvgPool (Fc ∗Xl) ;MaxPool (Fc ∗Xl)] (5)

where Fc and Fs denote attention in the channel and spatial direction and f7×7

denotes the convolution operation with the filter size of 7×7.
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3.4 Feature fusion module

In order to aggregate multi-frame temporal information and single-frame chan-
nel and spatial attention while applying pre-trained weights from single-frame
network training, we propose an additional feature fusion module.

As shown in Fig.1, in the training phase, consecutive video sequential images
are fed into the network, and each image is convolved through a 6-layer network
to obtain 6 feature maps with different scales. In the intra-frame attention mod-
ule, channel and spatial attention are applied to each feature map of the target
frame. In the inter-frame attention module, the feature maps of the last four
layers of target frame and its preceding and following frames are concatenated
and then fed into the temporal adaptive convolution layer to obtain the temporal
attention-weighted feature map of the target frame.

Fig. 3. Feature maps aggregation architecture after temporal adaptive convolution and
intra-frame attention. 3× represents performing the fusion step for 3 times.

The four feature maps obtained after temporal weighting are shown as in-
puts of the feature fusion module in Fig.3. In order to combine the semantic
information of the higher-level feature map and the spatial information of the
lower-level feature map, the proposed feature fusion module aggregates the four
feature maps. First,the feature map of the highest dimension is selected, upsam-
pled to the dimension of the second layer feature map, and then, the upsampled
feature map and the second layer feature map are pixel-wise summed and sent to
the deformable convolution for better adaption of different object shapes, sizes
and other geometric deformations according to the feature maps. The feature
map obtained completing the above operation is used as the updated feature map
of the highest dimension, and then the same operation is performed. Since the
input has a total of four layers of feature maps, the above-mentioned upsampling
and convolution process is performed 3 times to get the final output.

Through the above process we obtain the channel and spatial attention fea-
ture map on a single frame and the temporal attention feature map among
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multiple frames, and then, we add them up to get the merged feature map.
Specifically, we perform the computation of the fusion heatmap on the merged
feature map, while size and offset of the bounding boxes are generated from
the single-frame feature map, since the feature overlay of multi-frame has great
influence on the width and height values of the bounding box.

The total loss function consists of a loss of fusion heatmap trained with focal
loss, and two losses of offset and size regression trained with L1 loss. The loss
function for each head block is as follows:

LFHM = − 1

N

∑
xy

{
(1− Ŷxy)

α log(Ŷxy) if Yxy = 1

(1− Yxy)
β(Ŷxy)

α log(1− Ŷxy) othrewise
(6)

LFHM is the loss of fusion heatmap, where Ŷxy represents the predict heatmap
value for each pixel, and Ŷxy = 1 denotes the pixel is the center point of an object,
α and β are hyper-parameters of the focal loss. Offset and size are calculated by
the loss only on the predicted object centroid.

Loffset =
1

N

∑
p

∣∣∣Ôp̃ −
( p
R

− p̃
)∣∣∣ (7)

Loffset is the loss of heatmap offset to the center point, where Ôp̃ represents the
predict offset, p

R is the position after downsampling the original image, and p̃ is
the true coordinate of center point.

Lsize =

N∑
k=1

∣∣∣Ŝk − Sk

∣∣∣ (8)

Lsize is the loss of the size of bounding box, where Ŝk represents the predicted
size, while Sk is the size of ground truth bounding box. The overall training
objective is:

Linter,intra = LFHM + λsize Lsize + λoffLoffset (9)

The hyper-parameters are set as λsize = 0.1 and λoff = 1 in experiments , which
represent the weights of the loss for regression size and offset of the bounding
box, respectively.

4 Experiments

4.1 Experimental details

Datasets.As the proposed method utilizes the omni-attention including tempo-
ral information to improve surveillance object detection, the UA-DETRAC [11]
dataset, a widely used real-world video object detection benchmark, is adopted to
evaluate the performance. The dataset has over 140,000 frames and 1.21 million
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labeled object bounding boxes, with vehicle objects covering cars, buses, trucks,
etc.We also perform experimental validation on the UAVDT [12] dataset.

For training, we sample one frame out of every 10 frames for the intra-frame
context extraction, and the additional frames involved in inter-frame temporal
information are selected from the intervening frames.
Models. In our experiments, the proposed network architecture is built based on
the CenterNet [8] implementation, with the DLA-34 selected for the backbone
network and all detectors optimized with Adam. The DLA-34 is selected as
backbone because it achieves reasonable balance between efficiency and accuracy
among the three pre-trained backbone networks including Hourglass, DLA-34
and ResNet-101. Table 1 shows the accuracy and efficiency of the three backbone
networks in [8] for object detection on COCO validation.

Table 1. Object detection result comparison on COCO validation using different back-
bones, according to [8], flip and multi-scale represent the use of different data enhance-
ments.

Backbone AP/FPS Flip AP/FPS Multi-scale AP/FPS
Hourglass 40.3/14 42.2/7.8 45.1/1.4
DLA-34 37.4/52 39.2/28 41.7/4
ResNet-101 34.6/45 36.2/25 39.3/4

Training details. The initialization of weights is set by the pre-training on
COCO dataset, following the settings in [8]. The number of epochs is set to
50 and the learning rate is set to 2e-5, decreasing by a factor of 10 at the
30th and 40th epochs sequentially. The data augmentation operations including
random scaling, random cropping, and flipping are used during training. Since
the backbone network is first trained on UA-DETRAC dataset beforehand, the
proposed method starts with decent feature representation capability and the
losses can converge rapidly when training by the proposed method and the overall
training time can be reduced.

4.2 Main results

We compare the PR curve of our method on UA-DETRAC dataset under differ-
ent settings in comparison with other state-of-the-art object detection methods,
and show them in figures 4 and 5, respectively. The AP scores are calculated
based on the literature [33], calculating the average precisions at the fixed 11
recall values from 0 to 1: [0, 0.1, 0.2, . . . , 0.9, 1.0].

The different PR plots represent different settings in the dataset, which are
shown in Fig.4 and Fig.5. The proposed method achieves a 3.33% improvement
over the baseline in the overall setting. It shows that our method has provided
significant average enhancement compared to the baseline in different difficulty
and different lighting conditions, since the omni-attention strategy-based method
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Fig. 4. PR curve comparison on UA-DETRAC dataset for object detection with the
full test set and the breakdown by difficulty level: easy, medium, hard. Different colors
represent different methods.

Fig. 5. PR curve comparison on UA-DETRAC dataset for object detection according to
different light conditions: cloudy, rainy, sunny, night. Different colors represent different
methods.
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can accurately capture temporal and local contextual information to improve
the effectiveness of vehicle detection per frame. The PR curve of the proposed
method shows clear improvement in all settings compared with all methods.

We compare the proposed method with the state-of-the-art object detection
methods and show the results in Table 2. The proposed method achieves quite
competitive performance on all settings. It is worth noting that the proposed
method outperforms 3D-DETnet, a method using temporal 3D convolution, with
a large gap up to 34.22% in average precision. The proposed method surpasses all
methods on all settings except for Medium and Night, and achieves the second-
best performance on these two settings compared with FFAVOD with a slight
decrease of 0.24% and 1.45% in precision. Considering the FFAVOD is a multi-
frame feature fusion method using an hourglass backbone with deeper network
layers, the proposed method with DLA-34 backbone verifies the effectiveness of
itself. As the inference speed shown in Table 2, the proposed method achieves
the optimal tradeoff between accuracy and efficiency.

The results on the UAVDT dataset are reported in Table 3.Our method
achieves 2.87% gain compared with the sophisticated FFAVOD-SpotNet.

Table 2. Comparison with the state-of-the-art methods on UA-DETRAC dataset un-
der different settings. The best result is shown in bold.

Method Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS Environment
CenterNet(dla) 84.19 96.75 89.59 73.16 87.31 85.71 78.17 89.86 24 GPU@A30
FFAVOD(hourglass) 86.85 97.47 92.58 76.51 89.76 89.52 80.8 90.91 6 GPU@A30
FG-BR Net 79.96 93.49 83.6 70.78 87.36 78.42 70.5 89.8 10 GPU@M40
3D-DETnet 53.3 66.66 59.26 43.22 63.3 52.9 44.27 71.26 26 -
Illuminating 80.76 94.56 85.9 69.72 87.19 80.68 71.06 89.74 14 GPU@TitanX
FasterRCNN2 58.45 82.75 63.05 44.25 62.34 66.29 45.16 69.85 11.1 GPU@TitanX
Deformable DETR 68.87 86.84 73.7 56.51 74.28 69.93 58.62 80.79 2.5 GPU@A30
YOLOv5 76.42 92.46 82.99 63.24 83.99 75.84 66.79 84.05 - -
ours 87.52 97.77 92.34 78.34 91.31 88.07 82.1 91.37 11 GPU@A30

Table 3. Comparison of the mAP of our method on the UAVDT dataset with other
state-of-the-art methods.

Method overall
FFAVOD 52.07%
FFAVOD-SpotNet 53.76%
CenterNet 51.18%
ours 56.63%

The proposed method utilizes the temporal information over multiple frames
in surveillance video for better detection of the objects in motion in the mean
while combines the intra-frame channel and spatial attention information for
accurate feature representation. Fig. 6 shows the detection results of the pro-
posed method compared with the baseline method. As we can see, the proposed
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method shows superior performance applied to surveillance video object detec-
tion with the enhancement in missed detection and false detection, especially on
vehicle objects of small size or far distance and in environment with low light
conditions.

Fig. 6. Comparison of detection performance of baseline and our method, yellow arrows
indicate the missed detection, red arrows indicate the false detection.

4.3 Ablation Study

Module contribution. The proposed detector adaptively utilizes omni-attention
within and between frames by the designed components of both inter-frame at-
tention module, intra-frame attention module, and we perform the ablation stud-
ies to evaluate these components. We add the inter-frame temporal attention as
well as intra-frame channel and spatial attention sequentially on top of the base-
line, and show the effect of each component in Table 4. We find that the method
with inter-frame temporal attention or the method with intra-frame attention
both detects better than the baseline method, and the proposed method with
both two modules performs the best. According to the proposed omni-attention
mechanism, the intra-frame channel and spatial attention suppresses the false
positive detection in the background region and improves the accuracy of the de-
tection of the target objects within the single frame, while the temporal context
features compensate for the unclear object caused by insufficient illumination.
Temporal fusion configurations. We also investigate the effect of temporal
fusion configurations on the detection results with different number of frames and
the frame sampling schemes. We evaluate the setting the number of fused frames
n = 3 or 5, and the fused frames are selected as consecutive frames or interval
frames. The detection results for different number of frames and different interval
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Table 4. Ablation study of the proposed method on UA-DETRAC dataset.

Baseline ✓ ✓ ✓ ✓
+ Inter-frame Attention ✓ ✓
+ Intra-frame Attention ✓ ✓

AP(%) 84.19 87.05 86.58 87.52

Table 5. Temporal fusion configuration evaluation on the intra-frame module.

Frame sampling scheme Numbers of frames
N=3 N=5

Consecutive ✓ ✓
Interval ✓ ✓
AP(%) 87.31 87.29 86.99 87.52

frames are shown in Table 5. The best results are obtained when n = 5 and the
fused frames are set as discontinuous, that is, the l−1, l−3, l+1, l+3 frames of
the current frame l are selected as the temporal context. The table shows that
when the number of fused frames is set as 3, there is little difference between
consecutive or interval frames, it might because the information on the adjacent
frames in surveillance video is similar and the weighting is valid for the current
frame. And when the number of fused frames is set as 5, the effect of temporal
weighting on consecutive frames becomes worse, which might be caused by the
redundant information in multiple consecutive frames. while the performance
achieves the best when the sampling scheme is changed into the interval frames,
because the model integrates more temporally global information and has greater
improvement in the object detection of the current frame.

5 Conclusion

In this work, we have proposed an adaptive omni-attention model for surveil-
lance object detection based on anchor-free object detector. Using the proposed
method, we train and evaluate our network on the dataset in the field of traffic
surveillance. Our experiments demonstrate that our method compares favorably
against the widely-used multi-frame and single frame methods. Our method
makes efficient in the 3D temporal dimension, which has positive significance for
subsequent research of video object detection.To improve the detection speed of
our proposed model is another issue that warrants further study.
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