
Weighted Contrastive Hashing

Jiaguo Yu, Huming Qiu, Dubing Chen, and Haofeng Zhang (B)

School of Computer Science and Engineering, Nanjing University of Science and
Technology, Nanjing 210094, China.

{yujiaguo, 120106222682, db.chen, zhanghf}@njust.edu.cn

Abstract. The development of unsupervised hashing is advanced by the
recent popular contrastive learning paradigm. However, previous con-
trastive learning-based works have been hampered by (1) insufficient
data similarity mining based on global-only image representations, and
(2) the hash code semantic loss caused by the data augmentation. In
this paper, we propose a novel method, namely Weighted Contrative
Hashing (WCH), to take a step towards solving these two problems. We
introduce a novel mutual attention module to alleviate the problem of
information asymmetry in network features caused by the missing im-
age structure during contrative augmentation. Furthermore, we explore
the fine-grained semantic relations between images, i.e., we divide the
images into multiple patches and calculate similarities between patches.
The aggregated weighted similarities, which reflect the deep image rela-
tions, are distilled to facilitate the hash codes learning with a distillation
loss, so as to obtain better retrieval performance. Extensive experiments
show that the proposed WCH significantly outperforms existing unsuper-
vised hashing methods on three benchmark datasets. Code is available
at: http://github.com/RosieYuu/WCH.

Keywords: Unsupervised Image Retrieval · Deep Hashing · Contrastive
Learning · Mutual Attention · Weighted Similarities.

1 Introduction

With the advancement of deep neural networks, deep hash has become one of the
most studied approaches for Approximate Nearest Neighbors (ANN) in large-
scale image retrieval. Earlier studies rely heavily on artificial annotations, which
makes it difficult to apply in real-world scenarios due to the high labor cost-
s. As a result, unsupervised deep hashing [27,22,23,36] has gradually become
the major research direction in this field, with the recent boom in unsupervised
learning [3,13,4,26,2,12]. The key difficulty with unsupervised hash is that the
ad-hoc encoding process does not extract the key information for hashing, pre-
cisely because of the lack of supervised information. Hence, numerous methods
have been proposed to learn better discrete representations for hashing in unsu-
pervised setting.

A large family of recent unsupervised hash learning tasks is based on con-
trastive learning [3,13,4]. These methods build upon instance discrimination,
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Fig. 1. An example of the conflict of the traditional similarity calculation approach. A
typical unsupervised method will treat the top image with both the bottom-left and
bottom-right images as similar pairs, because they have a common label. In this case,
the two images in the bottom left and bottom right corners should be considered as a
similar sample pair. However, the fact is that these two images do not have a common
label and they should be considered as a dissimilar pair.

which constructs similar and dissimilar instances and learns the discrete rep-
resentations by prompting the model to pull in the similar instances and push
away the dissimilar instances. With simply the most fundamental concepts for
contrastive learning, existing methods[27,23,36] based on contrastive learning
have achieved significant success.

Despite their success, most of the current methods mainly focus on adjusting
the contrastive loss to fit the hash learning criterion [27,23]. However, directly
combining contrastive loss and unsupervised hashing tasks like this leads to two
problems. On the one hand, an instance discrimination-based approach leads to
the fact that even if the samples are very similar, they still need to be forced
apart, i.e., the sample similarity obtained in this way is unreliable. On the other
hand, calculating the similarity with the feature vector or hash code of a whole
image may lead to the following problem: The top image in Fig. 1 is associated
with the labels of apple and banana; the bottom left image is associated with
the labels of apple and bird; and the bottom right image is associated with the
labels of banana and bowl. In the traditional method, the similarity of both the
bottom left image and the bottom right image according to the top image is
considered full similar. Therefore, we can say that the bottom left and bottom
right images are also very similar. However, the labels of the bottom left and
bottom right images do not overlap, i.e., they are actually dissimilar. Based on
this, we raise a question: how to define or even use the similarity between samples
to learn high-quality hash codes?

Curiously, most existing approaches do not focus on this problem. To the
best of our knowledge, NSH [36] uses Neural Sorting Operators to obtain the
permutation of a vector of similarity scores, and it employs the sorted similarity
results to pick the top m positive samples of the anchor, i.e., it improves the
comparison by increasing the number of positive samples in the learning frame-
work. However, in the experiment, the optimal number of positive samples is
fixed at 3, and all of them are considered fully similar. There are two drawbacks.
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First, the anchor image and the augmented similar image, especially processed
with random crop, are not always similar, e.g., the cropped image only contains
the background, which will prompt the network to learn the background rather
than the object representation in the image. Second, for multi-labeled images,
the positions and sizes of objects vary greatly, and it is difficult to learn a single
depth representation that fits all objects. The quality of the hash codes obtained
in this way is not high, which will have an impact on the final retrieval results.
This can also explain why NSH [36] boosts highly on single-label datasets, but
the boost of MAP on multi-label datasets is not very obvious.

In order to solve the above problem, we propose a novel method called
Weighted Contrastive Hashing (WCH) to re-weight the similarity of the anchor
image and the others. Concretely, we develop a novel metric rule that is more
reasonable and efficient for measuring similar samples, and finally apply this rule
to the learning of hash codes for better retrieval performance. We divide each
image into a number of patches, and exploit the Vision Transformer (ViT) [7] as
the encoder to adapt the patches as the input to the model. To obtain the simi-
lar samples of an anchor, we use the aggregated vector of similarity between the
patches of different samples as weights. Unlike NSH [36], we do not selectively
pick the most relevant samples as the positive samples for contrastive learning,
but assign trainable weights to all candidate samples, which represent the degree
of similarity between samples. That is, we can consider an image pair as less or
more similar, rather than stating them as fully similar or dissimilar in absolute
terms. Notably, we demonstrate in the experimental section that our method
works better than NSH [36]. In addition, to solve the problem of insufficient
similarity between augmented images and anchor images, we propose a Mutual
Attention (MA) module to reset the weights of each patch of them by calculat-
ing their similarity, which can guarantee sufficient similarity of them to make
them the most similar pair, so as to facilitate the hash code learning towards
the correct direction. In a nutshell, our main contributions are summarized as
follows:

– To the best of our knowledge, this is the first time that weighted contrastive
learning has been introduced to image retrieval tasks. It alleviates the prob-
lem that certain anchor images and negative samples, which are similar e-
nough for the hashing task, are treated as dissimilar pairs.

– We propose a Mutual Attention module to achieve information complemen-
tation between the augmented anchor image and the positive sample, avoid-
ing the lack of key information for hashing.

– The excellent performance of our WCHmodel is extensively demonstrated by
comparing it to 18 state-of-the-art hashing frameworks on three benchmark
datasets, i.e., CIFAR-10, NUS-Wide, and MS COCO.

2 Related Works

In this section, we will briefly introduce some unsupervised hashing methods
here.
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Unsupervised Hashing. Early unsupervised hashing methods mainly focus
on projecting images to compact representations by constraining the learned
hash codes to fit several principles, e.g., quantization [11], balancing [18]. Several
recent works using deep learning pay attention to how to generate high quality
hash codes [17,32,23,10]. Some others try to preserve the semantic similarity
in hash codes [28,35,30], while the majority of methods adopt image pseudo
labels with pre-trained networks to convert the unsupervised hashing to fully a
supervised learning [37]. Their performance is usually evaluated against ranked
candidates. However, they did not try to sort them during training to mine their
similarity.
Hashing with Contrastive learning. Contrastive learning has been a very
successful approach for unsupervised hashing tasks. Typical examples include
CIMON [23], CIB [27], NSH [36]. All of these methods utilize the contrastive
learning framework. As we mentioned before, these methods do not well combine
the contrastive learning framework with the hash retrieval task. For example,
both CIMON and CIB define the data-enhanced version of an image as a positive
sample, and a negative sample is formed by sampling the views of different
images. It leads to the possibility that images considered as negative samples
may contain positive samples, which will have an impact on the retrieval results.
On the other hand, although NSH considers this problem, they simply rank the
similarity between anchor samples and select quantitative positive candidates,
which does not take into account the similarity degree between the anchor images
and augmented images.
Mining Similarity for Unsupervised Hashing. Some methods based on
mining similarity aim at solving unsupervised hashing tasks using pairwise meth-
ods, e.g., SSDH [34] is a representative method studied in this area. It sets two
thresholds at pairwise distances and constructs a similarity structure, and then
image features are extracted and hash code learning is performed. However,
using two rough thresholds to determine whether they are similar or not is usu-
ally unreliable. DistillHash [35] extracts similarity signals using similarity signals
from local structures, and further constructs an efficient and adaptive semantic
graph, which is updated by decoding it in the context of an autoencoder for hash
code learning. MLS3RDUH [33] reconstructs a local semantic similarity struc-
ture by exploiting the intrinsic flow structure and cosine similarity in the feature
space. DATE [22] improves the commonly used cosine distance by proposing a
distribution-based metric. In contrast to these methods, WCH guides the learn-
ing of hash codes based on the weighted similarity between patches assigned to
each anchor and the rest of the samples.

3 Weighted Contrastive Learning

3.1 Preliminaries

To better explain our method in the next section, we first introduce some con-
cepts and preliminary knowledge here.
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Fig. 2. Overall architecture of the proposed weighted contrastive hashing.

Patch Generation. Following ViT [7], we divide an image X ∈ Rs×s×c into
non-overlapping patches xi ∈ Rp×p×c, where i = 1, 2, · · · , n. It is obvious that
s2 = n× p2 and c is the number of image channels.
WCH encoder. Recent work proposes the use of the ViT model as a universal
feature extractor [8]. Inspired by these works, we also use ViT as an encoder for
our model. We first flatten the patches xi into a vector pi ∈ R1×d, where d is the
dimension of the vector, and then use a trainable linear projector LP to map
the vector to embedding. The output of this projection is referred to the patch
embedding as follows:

Ei = LP(pi), (1)

where Ei is the patch embedding associated with the i-th patch. Unlike the
standard ViT, our model does not use the class token. We add the position
embedding into the patch embeddings, and the final embedding for ViT Input
is:

PEi = Ei +PoE, (2)

where, PoE stands for the position embedding, and PE is the final projecting
embedding, which will be fed into the transformer encoder fθ(·).
Binarization. In WCH, we revisit the problem of how to evaluate whether a
candidate sample is comparable to an anchor in the contrastive learning frame-
work and obtain higher quality hash codes in the image retrieval task. As for
an image retrieval task, the goal is to learn a binary vector bi ∈ {−1, 1}l by
mapping the data xi into the encoder, where l is the length of the hash code. In
general, the hash code is obtained by the sign function:

bi = sign(h(xi)) ∈ {−1, 1}l, (3)

where h(·) is the encoding function, which mainly consists of the WCH en-
coder and a one-layer projector. Since the sign(·) function is non-differentiable,
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we adopt a straight-through estimator (STE) [1] that allows back-propagation
through bi.

3.2 Overall Architecture

WCH employs contrastive learning as an unsupervised framework, which typ-
ically defines positive pairs as different augmented parts of the same image
and negative pairs as samples of different images. Given a batch of N sam-
ples

{
X1, · · · ,Xi, · · · ,XN

}
, it first goes through two different data augmenters

to get two different views X̃i and X̂i. Then, we divide each image into n non-
overlapping patches, X̃i =

[
x̃i1; · · · ; x̃ik; · · · ; x̃in

]
, X̂i =

[
x̂i1; · · · ; x̂ik; · · · ; x̂in

]
. As

we described in Sec. 3.1, we employ ViT as the encoder, and feed the patches
into it to generate the corresponding encoded features fθ(x̃ik) and fθ(x̂

i
k).

During traditional augmentation, the augmented two images are usually tak-
en as a similar pair to guide the training direction. However, some cropped im-
ages containing background only are totally different from others, which might
damage the training process. Therefore, we employ the Mutual Attention (MA)
module to re-weight the image patches to guarantee similarity between them.
After that, the weighted image similarity is calculated by computing the patch
similarity between different images, and it is subsequently used to construct the
final weighted contrastive loss function. The overall architecture is illustrated in
Fig. 2.

3.3 Mutual Attention

Given any two encoded patches fθ(x̃ik) and fθ(x̂
i
t) in the corresponding aug-

mented pair, the similarity of them can be calculated as

sk,t = fθ(x̃
i
k)
T fθ(x̂

i
t). (4)

Therefore, we can construct a similarity matrix S ∈ Rn×n, which measures the
similarity between each patch of the augmented pair. Then, we normalize the
row vectors and column vectors respectively with softmax function:{

S1 = softmax(s1∗, · · · , si∗, · · · , sn∗)
S2 = softmax(s∗1, · · · , s∗j , · · · , s∗n)

, (5)

where si∗ stands for the i-th row of S, and s∗j means the j-th column of S.
Then, the refined patch vector is reconstructed with the following calculation:{

f̃ ik =
∑n
j=1 s

2
j,kfθ(x̃

i
j)

f̂ ik =
∑n
j=1 s

1
k,jfθ(x̂

i
j)
, (6)

where s1j,k is the j-th row and k-column element of S1, and s2k,j is analogously
defined. After this operation, the refined augmented pair can be guaranteed to
be similar, and thence be undoubtedly treated as a positive pair.
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3.4 Weighted Similarities Calculation

Previous works often use embedding vectors to explore the relationship between
different images. Specifically, most existing unsupervised hashing methods as-
sume binary similarity between two images, i.e., two images can be similar (pos-
itive sample) or dissimilar (negative sample). For example, NSH [36] uses hash
codes to calculate the degree of similarity between images, and then ranks them
according to the magnitude of similarity, and selects the top m positive samples
according to the result of the ranking, i.e., determines that these m samples
and anchor are similar. However, selecting positive samples based on similari-
ty like this will cause two problems. First, there may be noise in the positive
samples. Since the number of positive samples is set to a fixed value, forcing a
fixed number of positive samples based on the ranking results will slow down the
convergence of the model. Second, the results of the first m closest samples may
not be equivalent. For an anchor image Xi, Xj is one of the selected m positive
samples that are similar to Xi in one iteration. However, it is possible that in
another iteration, Xj is not one of the m closest samples since there are more
similar images in this training batch. In this situation, Xj will be treated as a
negative sample of Xi, which results in inconsistency with the former one, and
this conflict will damage the training process and cause the training to fail to
converge.
Weighted Labels Processing. To tackle these problems, instead of adopting a
strategy such as selecting positive samples, we reformulate the rules for comput-
ing the similarity between images and use the obtained similarity to re-weight
the contrastive loss to capture the semantic information that may overlap be-
tween the anchor and negative samples. In WCH, we exploit the fine-grained
interaction results between patches to explore the relationship between different
images.

Specifically, suppose there are two patch features f ik and f jt extracted from
two different images Xi and Xj , respectively. The similarity between them can
be defined as

gijkt = (f ik)
Tf jt . (7)

Therefore, the similarity matrix of Xi and Xj can be constructed as Gij ∈
Rn×n. For each row in Gij , the max value represents the most similar batches
in Xi and all patches in Xj , and the mean of the max values of each row is the
similarity of Xi and Xj :

wij = mean(max
row

(Gij)), (8)

where max
row

(·) means to take the maximum value according to the row direction,
and mean(·) stands for calculating the mean value of the vector. For a mini-
batch containing bs images, including one augmented image and bs − 1 other
images, the similarity matrix W ∈ Rbs×bs can be constructed with Eq. 8. To
fit the value of W within a proper range, we conduct a temperature weighted
row softmax as Wi∗ = softmax(Wi∗/τw), where τw [14] is the temperature
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coefficient. Furthermore, to guarantee that the augmented images are equivalent
to the anchor images, we divide each row with the element wii:

W = diag(diag(W))−1W, (9)

where diag(·)means extracting the diagonal vector from a matrix or constructing
a diagonal matrix with a vector.

3.5 Training and Inference

For training, we use the maximum similarity between patches to guide the con-
trastive objective [25]:

LWCE = −
bs∑
i=1

bs∑
j=1

wij log
exp

(
b̃ib̂

ᵀ
j /l/τ

)
∑bs
k=1 exp

(
b̃ib̂

ᵀ
k/l/τ

) , (10)

where τ is the temperature scale. Finally, the loss function is formulated as

LWCH = LWCE + LR, (11)

where LR refers to the quantization loss and bit balancing loss [9]. The whole
learning procedure is shown in Alg. 1.
Inference process. In the inference process, WCH abandons the MA and
weighted labeling modules dedicated to training and keeps only the encoder
and hash head for generating hash codes characterizing the semantic informa-
tion of the images. The Hamming distance between the hash codes of the images
is then computed to accomplish the retrieval task.

4 Discussion

Remark 1: Why Do We Choose the ViT Encoder? In WCH, our key
idea is to use the patch-level semantic information captured by ViT [7] as a
benchmark to measure the degree of similarity between arbitrary images and
assign corresponding weights to each pair of images by aggregating the simi-
larity between patches to measure the degree of similarity. Unlike the recent
self-supervised visual representation learning-based approaches [27,36], they on-
ly determine similar samples by the global feature similarity of the whole image.
Instead, we introduce a novel inter-patch-based fine-grained interaction module
using the ViT model, enabling fine-grained interactions between patches and
each pair of images to mine more detailed semantic alignment.

Furthermore, we use the ViT model to address the problems posed by con-
trastive learning methods that rely on instance discrimination tasks. As men-
tioned before, positive native pairs are defined as different views of the same
image, while negative pairs are formed by sampling views of different images.
This common approach ignores their semantic content. Our approach, on the
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Algorithm 1: The Training Procedure of WCH.
Input: Dataset D = {xi}Ni=1 and batch size n.
Output: Network parameters θ.
for batch in D.repeat() do

batch1, batch2 = aug(batch), aug(batch)
f1, f2 = Mθ(batch1), Mθ(batch2)
# mutual attention
sim = einsum(′nid, njd→ nij′, f1, f2)
f1 = einsum(′nid, ndj→ nij′, softmax(sim.T), f1)
f2 = einsum(′nid, ndj→ nij′, softmax(sim), f2)
# weighted similarities calculation
sim = einsum(′nid, mjd→ nmij′, f1, f2)
sim = softmax(sim.max(−1).mean(−1)/τw)
weighted = matmul(diag(diag(sim))−1, sim)
# hashing
b1, b2 = hash(f1.mean(1)), hash(f2.mean(1))
logits = softmax(matmul(b1, b2.T)/l/τ)
# weighted corss entropy
loss= cross_entropy(logits, weighted)
loss.backward()

end

other hand, fully exploits the semantic content of the images and makes reason-
able use of fine-grained interaction results as a measure of similarity between
images, as detailed in Sec. 3.4.
Remark 2: Why Mutual Attention Helps? First, note the phenomenon
that most models construct positive and negative samples by treating the same
images produced by different augmenters as positive pairs, while the rest of
the samples are considered as negative pairs. However, this manually designed
approach involves many manual choices, and inappropriate data augmentation
schemes may severely alter the image structure, resulting in data-enhanced im-
ages that do not possess label-preserving properties, i.e., images undergo trans-
formations that may lose high-level semantic information. For example, a com-
mon data augmentation scheme is random cropping, which may randomly crop
out the sample information that contains label-related information for single-
labeled images. Similarly, for multi-labeled images, where the position and size
of objects vary greatly, the random cropping method will most likely crop out
some objects in multi-labeled images, making the sample information contained
in multi-labeled images reduced. This operation will lead to asymmetric semantic
information between the anchor and the positive samples.

The mutual attention module in Fig. 2 reconstructs the feature vectors asso-
ciated with the pictures based on the similarity between positive sample pairs of
patches. Therefore, it can be seen as a specific attention mechanism. Intuitively,
it focuses our attention on the degree of similarity of patch pairs. The attention
fraction is used so that the feature vectors of each patch carry information about
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Table 1. Performance comparison (mAP) of WCH and the state-of-the-art unsuper-
vised hashing methods. *Note that we use a more common setting on NUS-WIDE
with the 21 most frequent classes, while some papers report results on 10 classes.

Method Reference CIFAR-10 NUS-WIDE MS COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

AGH [21] ICML11 0.333 0.357 0.358 0.592 0.615 0.616 0.596 0.625 0.631
ITQ [11] PAMI13 0.305 0.325 0.349 0.627 0.645 0.664 0.598 0.624 0.648
DGH [20] NeurIPS14 0.335 0.353 0.361 0.572 0.607 0.627 0.613 0.631 0.638
SGH [6] ICML17 0.435 0.437 0.433 0.593 0.590 0.607 0.594 0.610 0.618
BGAN [31] AAAI18 0.525 0.531 0.562 0.684 0.714 0.730 0.645 0.682 0.707
BinGAN [38] NeurIPS18 0.476 0.512 0.520 0.654 0.709 0.713 0.651 0.673 0.696
GreedyHash [32] NeurIPS18 0.448 0.473 0.501 0.633 0.691 0.731 0.582 0.668 0.710
HashGAN [10] CVPR18 0.447 0.463 0.481 - - - - - -
DVB [29] IJCV19 0.403 0.422 0.446 0.604 0.632 0.665 0.570 0.629 0.623
DistillHash [35] CVPR19 0.284 0.285 0.288 0.667 0.675 0.677 - - -
TBH [30] CVPR20 0.532 0.573 0.578 0.717 0.725 0.735 0.706 0.735 0.722
MLS3RDUH [33] IJCAI20 0.369 0.394 0.412 0.713 0.727 0.750 0.607 0.622 0.641
DATE [22] MM21 0.577 0.629 0.647 0.793 0.809 0.815 - - -
MBE [17] AAAI21 0.561 0.576 0.595 0.651 0.663 0.673 - - -
CIMON [23]* IJCAI21 0.451 0.472 0.494 - - - - - -
CIBHash [27] IJCAI21 0.590 0.622 0.641 0.790 0.807 0.815 0.737 0.760 0.775
SPQ [15] ICCV21 0.768 0.793 0.812 0.766 0.774 0.785 - - -
NSH [36] IJCAI22 0.706 0.733 0.756 0.758 0.811 0.824 0.746 0.774 0.783
WCH Proposed 0.897 0.910 0.932 0.799 0.823 0.838 0.776 0.808 0.834

other patches to different degrees. More specifically, this attention mechanism
is very useful for multiple patches, especially when there are many classes of
objects and the positions are highly variable.
Remark 3: Why DoWe Gather W in This Way? The purpose of Weighted
Labels is to use the maximum similarity between patches to guide the contrastive
objective. Using the maximum similarity between patches in Eq. 8, we can get
the most similar patch pair among all patches in the two images. Then the sum of
the maximum similarity is averaged. The model learns the fine-grained semantic
alignment between patches by applying the weighted label to the contrastive
loss.

5 Experiments

In this section, we conduct experiments on three datasets, including one single-
labeled dataset and two multi-labeled datasets, to evaluate our method.

5.1 Datasets and Evaluation Metrics

Three benchmark datasets are used in our experiments. CIFAR-10 [16] consists
of 60,000 images from 10 classes. We follow the common setting [10] and select
10,000 images (1000 per class) as the query set. The remaining 50,000 images
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are regarded as the database. NUS-WIDE [5] has of 81 categories of images.
We adopt the 21-class subset following [36]. 100 images of each class are utilized
as a query set, with the remaining being the gallery. MS COCO [19] is a bench-
mark for multiple tasks. We use the conventional set with 12,2218 images. We
randomly select 5,000 images as queries with the remaining ones the database.

Evaluation Metric. To compare the proposed method with the baselines,
we adopt several widely-used evaluation metrics, including the mean average
precision (mAP), top-K precision (P@K), precision-recall (PR) curves [37].

5.2 Implementation Details

For all three datasets, the images were resized to 224 × 224 × 3 and we adopt
the image augmentation strategies of [3]. The standard ViT-Base [7] was used
as the backbone, with patches of size and number 16 and 196, respectively. As
in previous work [23,27], we loaded a pre-trained model trained on ImageNet
to accelerate the convergence. We used the cosine decay method and trained 50
epochs for all models, with the initial learning rate set to 1× 10−5.

5.3 Comparison with the SotA

Baselines. We compare WCH against 18 state-of-the-art baselines, including
3 traditional unsupervised hashing methods and 15 recent unsupervised hash-
ing methods. For fair comparisons, all the methods are reported with identical
training and test sets. Additionally, the shallow methods are evaluated with the
same deep features as the ones we are using.
Results. Tab. 1 shows the retrieval performance in mAP and Tab. 2 demon-
strates the precision of the first 1000 returned images. It can be clearly observed
that WCH obtains the best results on all three datasets for the two metrics.
Another interesting observation is that WCH significantly outperforms the pre-
vious works CIBHash and NSH on different hash bits and datasets. Note that
all three methods use contrastive learning. In addition, the P-R curves of WCH
and several baselines on CIFAR-10 and MS COCO are reported in Fig. 3, from
which it can also be discovered that the curves of our method are highly above
those of other methods for all three different code lengths.

5.4 Ablation Studies

In this subsection, we considered the following ablation experiments to verify
the effectiveness and contribution of each component of WCH, and the specific
results are shown in Tab. 3.

(i) ViT Baseline.We first investigate the enhancements that the ViT backbone
brings to the unsupervised hashing domain. In this baseline, the class token
covering global features is applied directly to the hash head to generate a hash
code characterizing the image. Subsequent contrastive loss is used to update
the network parameters, which form a design close to the CIB [27] except that
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Fig. 3. P-R curves comparison with other methods on CIFAR-10 and MS COCO.

Table 2. P@1000 results on CIFAR-10 and MS COCO.

Method CIFAR-10 MS COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

AGH 0.306 0.321 0.317 0.602 0.635 0.644
DGH 0.315 0.323 0.324 0.623 0.642 0.650
HashGAN 0.418 0.436 0.455 - - -
GreedyHash 0.322 0.403 0.444 0.603 0.624 0.675
TBH 0.497 0.524 0.529 0.646 0.698 0.701
CIBHash 0.526 0.570 0.583 0.734 0.767 0.785
NSH 0.691 0.716 0.744 0.733 0.770 0.805
WCH 0.889 0.902 0.923 0.795 0.830 0.855

the network backbone differs. Regrettably, the application of the ViT backbone
alone is not sufficient to improve the performance of the unsupervised hashing.
(ii) Without LR.We also reveal the impact of traditional quantization loss and
bit balance loss [9] on WCH. It can be seen that these conventional regularizers
have no significant improvement in the encoding quality. As a result, we can
attribute the good performance entirely to our design.
(iii) MA → mean. We use this baseline to demonstrate the validity of our MA
module. Here we remove the mutual attention mechanism of anchor and positive
samples in Eq. 6 and replace it with the averaging operation. Although it also
achieves trivially good results, there is still a noticeable margin of difference
with the performance of WCH, which indicates that the motivation of mutual
attention can play a positive role.
(iv) Weighted → hard. This baseline does not use weighted labels, but rather
the most fundamental hard labels, which means that the weighted contrastive
learning degrades to the standard contrastive learning. The non-negligible per-
formance degradation in Tab. 3 precisely illustrates the shortcoming of standard
contrastive learning, which cannot close the distance between the anchor and
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Table 3. Ablation study results of mAP@1000 on MS COCO. The baselines are con-
structed by replacing some key modules of WCH.

Baseline 16 bits 32 bits 64 bits
(i) ViT Baseline 0.573 0.595 0.622
(ii) Without LR 0.773 0.810 0.828
(iii) MA → mean 0.742 0.782 0.805
(iv) weighted → hard 0.738 0.777 0.799
(v) Without scale 0.461 0.479 0.491

WCH 0.776 0.808 0.834

Query Top-10 Retrieved Images

Fig. 4. Examples of top-10 retrieved results of 32-bit on CIFAR-10.
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Fig. 5. 32-bit and 64-bit t-SNE visualization results on CIFAR-10.

similar negative samples in the feature space. This also highlights the crucial
role played by our core motivation from the side.
(v) Without scale. In this baseline, we remove the operation defined in Eq. 9
and simply use the similarity matrix W in Eq. 8 as a weighted label during the
calculation of the loss. We can strikingly see an unexpectedly dramatic perfor-
mance slippage. Hence, affine mapping based on positive sample similarity is a
key factor to guarantee the effectiveness of weighted comparison learning.
Results. Baseline (i) contradicts our intuition that directly replacing the back-
bone network with ViT can not bring meaningful performance improvement.
Baseline (iii) shows that MA is an effective solution to deal with the information
asymmetry problem for positive samples. We use baseline (iv) to validate our
core motivation that weighted contrast learning can substantially alleviate the
class collision problem of negative samples and thus further improve the retrieval
performance.
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Fig. 6. (a) mAP@1000 results with extremely short code lengths on CIFAR-10.
(b)&(c)Effects of different temperatures τ and τw on MS COCO.

5.5 Visualization and Hyper-parameters

Visualization. To more intuitively demonstrate the performance of our method,
we show the retrieved top-10 images on CIFAR-10 in Fig. 4, where a high seman-
tic accuracy can be observed from the results. In addition, to show whether the
embedded hash codes are discriminative enough for retrieval, the t-SNE plots
[24] of hash codes for both 32-bit and 64-bit on CIFAR-10 are also illustrated
in Fig. 5, where the plotted dots of different classes show obvious boundaries
between them, which means that the generated codes are separable and shows
the consistency with other results.
Hyper-parameters. In Fig. 6(a), we show the results for very short hash code
lengths on CIFAR10. Although the performance varies slightly depending on
the hyperparameter settings, it is generally stable and state-of-the-art. We also
evaluated the impact of the temperature coefficient τ of the WCE loss and
the temperature coefficient τw of computing the weighted labels on the final
performance of MSCOCO, and we depict these trends in Fig. 6(b) and (c).

6 Conclusion

In this paper, we propose a weighted contrastive hashing model to explore seman-
tic information based on fine-grained information interactions between patches
for image retrieval. The proposed mutual attention module can well solve the
inconsistency of the anchor image and the augmented images. A weighted coef-
ficient is calculated to weigh the similarities of the images in a training batch,
and it can better improve the hash code learning. Extensive experiments show
that the proposed method improves the state-of-the-art unsupervised hashing
scheme in image retrieval.
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