
Meta-Det3D: Learn to Learn Few-Shot 3D Object
Detection

Shuaihang Yuan⋆, Xiang Li⋆, Hao Huang, and Yi Fang

NYU Multimedia and Visual Computing Lab, USA
NYUAD Center for Artificial Intelligence and Robotics (CAIR), Abu Dhabi, UAE

NYU Tandon School of Engineering, New York University, USA
New York University Abu Dhabi, UAE

{sy2366,xl1845,hh1811,yfang}@nyu.edu

Abstract. This paper addresses the problem of few-shot indoor 3D object de-
tection by proposing a meta-learning-based framework that only relies on a few
labeled samples from novel classes for training. Our model has two major com-
ponents: a 3D meta-detector and a 3D object detector. Given a query 3D point
cloud and a few support samples, the 3D meta-detector is trained over different
3D detection tasks to learn task distributions for different object classes and dy-
namically adapt the 3D object detector to complete a specific detection task. The
3D object detector takes task-specific information as input and produces 3D ob-
ject detection results for the query point cloud. Specifically, the 3D object detector
first extracts object candidates and their features from the query point cloud us-
ing a point feature learning network. Then, a class-specific re-weighting module
generates class-specific re-weighting vectors from the support samples to charac-
terize the task information, one for each distinct object class. Each re-weighting
vector performs channel-wise attention to the candidate features to re-calibrate
the query object features, adapting them to detect objects of the same classes.
Finally, the adapted features are fed into a detection head to predict classification
scores and bounding boxes for novel objects in the query point cloud. Several
experiments on two 3D object detection benchmark datasets demonstrate that our
proposed method acquired the ability to detect 3D objects in the few-shot setting.

Keywords: 3D object detection · indoor scene · few-shot learning · meta-learning
· channel-wise attention.

1 Introduction

In door 3D object detection is one of the key components in various real-world vision
applications, such as indoor navigation [1] and visual SLAM [2], and has been attracting
numerous research attention in the last decades [3, 4]. Recent progress in deep-learning-
based methods has greatly advanced the performance of 3D object detection. However,
existing deep-learning-based 3D object detection methods require ground truth supervi-
sion. When only a limited number of training data is provided, existing deep-learning-
based methods suffer from severe performance degradation. In contrast, humans can
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Fig. 1. Given abundant annotated samples of base classes and a few annotated samples of novel
classes, our proposed model aims to learn from limited novel class samples to detect unseen 3D
objects from the novel classes. (Top) Annotated chairs and sofas in base classes. (Bottom) Beds
in the novel classes. Note that the objects are incomplete in the scanned 3D point cloud scenes.

easily learn new concepts and identify new objects with only a few given examples.
This observation motivates us to design a novel few-shot 3D object detection frame-
work that leverages the abundant annotated base classes to quickly learn new patterns
or concepts from only a few given samples from unseen or novel classes.

Here, we focus on the problem of indoor 3D object detection under the few-shot
setting. Specifically, given a sufficient labeled training sample from the base classes
and a few labeled samples from the novel classes, our model learns to detect an object
from the novel classes. To achieve this goal, we design our detection model based on
meta-learning [5, 6]. 3D object detection requires predicting both object category and
localization. However, 3D point clouds are unordered and unstructured in nature, which
makes it hard to adopt a neural network to learn robust and representative point features.
Therefore, 3D object detection under a few-shot scenario is even more challenging.
Despite that there are a few previous literatures focusing on meta-learning for 3D point
cloud classification [7–9] and segmentation [10, 11], meta-learning for few-shot 3D
point cloud detection has seldom been explored, and this work paves a path for few-
shot 3D point cloud detection using the meta-learning scheme.

Specifically, our proposed method adopts a meta-learning-based paradigm for few-
shot 3D object detection based on 3D object detectors, e.g., VoteNet [4]. In VoteNet,
a task-specific 3D object detector is designed for object detection with massive train-
ing data and thus is inapplicable in few-shot scenarios. To address the problem of 3D
object detection in the few-shot scenario, we design a 3D meta-detector to guide a 3D
object detector to perform few-shot 3D object detection. Specifically, we introduce a
class-specific re-weighting module as the 3D meta-detector to guide the 3D object de-
tector to detect objects from a specific class. Given a query 3D point cloud scene and a
few support objects from novel classes, the backbone network of the 3D object detector
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is first adopted to extract candidates and their features from the input scene. Then, the
class-specific re-weighting module receives few-shot objects from novel classes with
bounding box annotations and produces re-weighting vectors, one for each novel class.
Each vector takes channel-wise attention to all features to re-weight and re-calibrate the
query object features. In this manner, the candidate features fuse with support informa-
tion from novel classes and are adapted to detect objects of the same classes. Finally, the
adapted features are fed into a detection head to predict classification scores and bound-
ing boxes for novel objects in the query point cloud scene. We validate our method on
two public indoor 3D object detection datasets. Experimental results demonstrate that
our proposed meta-learning-based 3D few-shot detection method outperforms several
baselines. The contributions of our paper are summarized as follows.

– To the best of our knowledge, we are the first to tackle the problem of few-shot
3D object detection using meta-learning, which is of great importance in real-
world applications and has seldom been explored in previous literature. Our method
learns meta-knowledge through the training process on base classes and transfers
the learned meta-knowledge to unseen classes with only a few labeled samples.

– We design a novel few-shot 3D detection framework that consists of a meta-detector
to guide a 3D object detector for object detection. To effectively guide the 3D de-
tector to complete a specific task, we propose a class-specific re-weighting module
as the 3D meta-detector that receives a few support samples from novel classes and
produces class-attentive re-weighting vectors. These re-weighting vectors are used
to re-calibrate the cluster features of the same class and strengthen those informa-
tive features for detecting novel objects in the query point cloud scene.

– We demonstrate the effectiveness of our proposed model on two 3D object detection
benchmark datasets, and our model achieves superior performance than the well-
established baseline methods by a large margin.

2 Related Work

2.1 3D Object Detection

Many existing works have been proposed to tackle the task of object detection from
3D point clouds. In this section, we focus on reviewing indoor 3D object detection. A
3D scene can be represented by three-dimensional point clouds. One intuitive way to
detect 3D objects from a 3D scene is to employ a 3D deep learning network for object
detection. However, this approach requires exhaustive computation, which slows the in-
ference speed when handling large indoor scenes. Moreover, in 3D indoor datasets [12,
13], the complex configuration of the layout of indoor 3D objects also introduces chal-
lenges. Various learning-based methods have been proposed to address the challenges
above. Those learning-based indoor 3D object detection methods can be generally cat-
egorized into three classes. The first class is the sliding-window-based method, which
divides the whole 3D scene into multiple patches and further adopts a classifier to de-
tect 3D objects. The second type of indoor 3D object detection method extracts the
per-point feature in a latent space and clusters corresponding points to produce the de-
tection results. Qi et al. [4] propose a method that generates seed points from the input
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3D point cloud and then predicts votes from the generated seed points. Then, Qi et al.
cluster the votes by gathering the corresponding features and predicting 3D bounding
boxes. The third type of 3D indoor detection method is proposal-based. Vote3D [14]
uses a grid and predicts bounding boxes to detect 3D indoor objects. In addition, [15]
uses MLP to directly predict the 3D bounding boxes from extracted point cloud fea-
tures. Although the aforementioned methods achieve promising results in various 3D
object detection benchmarks, they require the ground truth label as supervision during
the training to ensure the model’s generalization ability. However, this is not practical
in real-world applications. To maintain the model’s generalization ability for unseen
object categories with only a limited amount of training data, a.k.a., few-shot scenario,
we design a meta-learning-based method for 3D object detection for point clouds.

2.2 Meta-learning

Meta-learning aims to handle the scenario where only a few labeled training data are
available. Meta-learning can also be categorized into three classes as follows.
Metric-based methods. Directly training deep neural networks with a few training data
leads the networks to over-fit on the training data. To avoid this issue, metric-learning
methods adopt a non-parametric distance measurement as a classifier to directly com-
pare the features of input data and predict labels. In addition, a parametric network
is often adopted to extract representative and discriminative features that have large
inter-class variations and small intra-class variations. Typical metric-based frameworks
include Siamese Networks [16], Matching Networks [17], Prototypical Networks [18],
and Relation Networks [19].
Model-based methods. Distinct from metric-based methods, model-based methods
[20, 21] adopt two different parametric networks (often termed as learners) where the
first one serves as a meta-learner and the second one works as a classifier. The clas-
sifier only needs a single feed-forward pass to predict data labels, and its parameters
are directly estimated by the meta-learner. Model-based methods only require to calcu-
late gradients of the meta-learner for back-propagation, yielding efficient learning for
few-shot problems. However, the generalization ability of the model-based methods on
out-of-distribution data is not satisfactory.
Gradient-based methods. The key idea of gradient-based methods is to train a meta-
learner to learn meta-knowledge from a dataset, thus to help a classifier to achieve
a quick convergence on a few labeled data from unseen classes. In the pioneer work
MAML [22], a meta-learner is used to learn a proper parameter initialization of a clas-
sifier from training data such that after a small number of back-propagation steps on
the classifier, it can achieve good performance on few-shot tasks with limited labeled
data. In addition to learning network parameter initialization, this method can also be
utilized to update network hyper-parameters [23].

3 Review of VoteNet

We give a brief review of VoteNet [4] that is incorporated as the building block of
our proposed method. VoteNet is a 3D object detection model that takes raw 3D point
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clouds as input and produces 3D bounding boxes without using 2D detectors. The object
detection process in VoteNet can be divided into three steps. The first step is to generate
seed points from the input 3D point cloud; the second step is to predict votes from the
generated seed points, and the final step is to cluster votes by gathering their features
and predicting 3D box proposals for each object.

To generate accurate votes for 3D object detection, VoteNet leverage PointNet++
[24], a hierarchical point signature learning model, as the backbone network to learn
representative point features for geometric reasoning. The backbone network takes raw
point clouds as input and produces a subset of the input point clouds with the coordi-
nates of each point and the corresponding feature vector. Each output point is called
a seed point and will produce one vote. Inspired by the generalized Hough voting for
object detection [25], VoteNet leverages the power of a deep neural network to gener-
ate votes from seed points. Given the seed set {seedi}Pi=1, consisting P seed points,
where each seedi is represented by the 3D coordinate xi and feature vector fi, a shared
voting module is used to generate votes from each seed point independently. The vot-
ing module is simply a multi-layer perceptron (MLP). The MLP takes [xi, fi] as input
and outputs the displacement of each seed point in Euclidean space as well as the fea-
ture offset in feature space represented as [∆xi, ∆fi]. The final vote is then represented
as vi = [yi = xi + ∆xi, gi = fi + ∆fi]. This voting process is supervised by the
ℓ2 distance that penalizes the offsets between the predicted and ground-truth distances
from the seed points on the object surface to the object centers. During training, the
MLP learns to drive the seed points to move towards the associating object centers and
making it easier for the following vote clustering process.

Then, VoteNet adopts farthest point sampling (FPS) [24] to select Q votes based on
the vote coordinates in Euclidean space and group votes by finding the nearest votes
to the cluster centers. A cluster {Cq}Qq=1 is represented by [yqi, gqi] where yqi is the
3D coordinate of the ith vote in this cluster and gqi is the corresponding feature vector.
After that, each cluster is transformed into a local coordinate by subtracting each vote’s
coordinate from its associating cluster center. Finally, a detection head based on Point-
Net [26] is introduced to generate 3D bounding boxes from each of the vote clusters.
The head network takes the normalized vote clusters as input and predicts the bounding
boxes and classification scores. However, directly applying VoteNet in few-shot scenar-
ios yields inferior performance as VoteNet requires a large amount of labeled data for
training. In the next section, we describe our model utilizing VoteNet to overcome the
challenges of few-shot 3D object detection with limited training labels.

4 Method

4.1 Few-shot 3D Object Detection

In this section, we introduce the basic setting of the meta-learning-based few-shot 3D
object detection. Different from conventional 3D object detection, in the few-shot sce-
nario, the whole dataset D is separated into two parts, i.e., base classes Dbase and novel
classes Dnovel where Dbase ∩ Dnovel = ∅. For each of the object categories from the
base classes, abundant labeled data is available and Dbase is divided into training and
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Fig. 2. Our MetaDet3D contains two components. The first component (bottom) is the 3D meta-
detector which provides task/class-specific object detection guidance through a group of class-
specific re-weighting vectors. The second component (top) is the 3D object detector that takes
class-specific re-weighting vectors as input and predicts object bounding boxes and labels using
three sub-components. A detailed description of each component and the three sub-components
are depicted in section 4.3.

testing set Dtrain
base and Dtest

base. Similarly, Dnovel is also divided into training and testing
sets Dtrain

novel or Dtest
novel. However, in the few-shot setting, only a few labeled samples

from the novel class can be used for training. Few-shot 3D object detection aims to
predict 3D bounding boxes and class labels for each object from the novel classes with
a few labeled data during training.

To facilitate the training and evaluation of a few-shot 3D object detection model, we
construct several episodes from the training and testing set for Dbase and Dnovel follow-
ing the settings proposed in [27]. Each episode E is constructed from a set of support
point clouds S with annotations and a set of query point clouds Q. In a N -way-K-shot
setting, the support set S has K instances with bounding box annotations for each of
the N classes, i.e., S = {(Sn,k, rn,k)}, where c = 1, 2, ..., N and k = 1, 2, ...,K, Sn,k
denotes the input point cloud, and rn,k denotes the bounding box annotation of the sup-
port set instances. We denote the query set as Q, which contains Nq instances from
the object classes that are the same as the support set. Our few-shot detection model
aims to perform 3D object detection over the query point clouds with the support set as
guidance.

Such a few-shot 3D object detection setting is practical in real-world scenarios.
One may need to develop an object detection model, but collecting a large-scale well-
annotated dataset for the target classes is time-consuming. An alternative would be
deploying a detection model pre-trained on some existing large-scale object detection
datasets (e.g., Microsoft COCO [28] and SUN RGB-D [13]). However, one may only
hope to detect several specific object categories of which these datasets only cover a
very limited number of samples. These real-world applications pose a challenge and
demand for few-shot object detection models.
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In the following sections, we introduce our novel design of a few-shot 3D object de-
tection framework, MetaDet3D, short for Meta-Detection-3D. The illustration of our
model is shown in Figure 2. Our detection process is divided into two components: 1)
a 3D meta-detector, and 2) a 3D object detector. We treat the object detection prob-
lem for each class as a learning task. 3D meta-detector is designed to learn the class-
specific task distribution over different tasks and dynamically adapt the 3D object de-
tector to complete a specific detection task. The 3D meta-detector learns class-specific
re-weighting vectors that are used to guide the 3D object detector. The 3D object detec-
tor aims to complete a specific 3D object detection task by leveraging the class-specific
information from the 3D meta-detector to detect objects from the same classes. The de-
tails of the proposed 3D meta-detector and 3D object detector are described as follows.

4.2 3D Meta-Detector

In this section, we introduce a novel 3D meta-detector, which is designed to learn the
class-specific task distribution from different 3D object detection tasks.

We propose a class-specific re-weighting module M to produce the guidance for
the 3D object detector. The 3D meta-detector takes 3D point cloud objects of different
classes as input and learns a group of compact and robust re-weighting vectors in the
embedding space. Formally, we first crop support object instances from support set
S by using the ground-truth bounding box rn,k to construct supporting instance set
I = {In,k}, where In,k denotes the kth cropped instance from the nth class.

As deep neural networks have been proved effective and efficient in 3D feature
learning, we adopt PointNet++ [24] to produce a set of compact re-weighting vectors,
one for each class. Specifically, given N ×K support instances, our re-weighting mod-
ule M generates generates N re-weighting vectors {zn}Nn=1 where zn ∈ RW , one for
each class. This step is formulated as:

zn =
1

K

∑
Mθ(In,k), n = 1, 2, ..., N . (1)

The output zn represents the re-weighting vector for the nth class. We use θ to represent
the network parameters of our re-weighting module M. The generated zn is responsible
for tuning object features in the 3D object detector for an accurate object candidate
generation for the corresponding nth class, which is detailed in the following section.

4.3 3D Object Detector

In this section, we introduce a 3D object detector that is used to complete a 3D object
detection task for the given query set Q with the guidance provided by the 3D meta-
detector. Inspired by the previous 3D object detection works [4, 3, 29], the 3D object
detector can be divided into three steps. The first step is to extract point features from
the input 3D point cloud. The second step is to generate object candidates. The final
step is to predict 3D box proposals for each object.
Point Feature Extraction. To extract point features from a point cloud, we leverage
PointNet++ [24], a hierarchical point feature learning model, as the backbone network
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to learn representative point features for geometric reasoning. The backbone network
takes raw point clouds as input and produces a subset of the input point clouds with
the coordinates of each point and the corresponding feature vectors. Each output point
is called a seed and will produce one vote to generate a candidate. Specifically, for a
given query scan Qi from Q, the network (denotes as F) outputs seeds represented by
a combination of seeds’ coordinates and point features, i.e., [x, f ] where x ∈ R3 and
f ∈ RW :

[x, f ] = Fδ(qi) , (2)

where δ denotes the network parameters.
Guided Voting & Clustering. Inspired by the voting-based 3D object detection works
[4, 3, 29], we leverage the power of a deep neural network to generate candidates from
seeds. Given a group of seeds, we apply channel-wise multiplication ⊗ between seeds’
feature f and the learned class-specific re-weighting vectors zn to generate re-weighted
featuref

′
where f

′
= zn ⊗ f .

A shared voting module is then utilized to generate candidates from the seeds. The
module is implemented as a multi-layer perceptron (MLP) network with ϕ to denote
the network parameters. The MLP takes [x, f

′
] as input and outputs the displacement

of the seeds in Euclidean space as well as the feature offset in feature space. The guided
voting for object candidates generation is formulated as:

[∆x,∆f
′
] =MLPϕ(f

′
). (3)

[y, g] = [x+∆x, f
′
+∆f

′
]. (4)

The final candidates are then represented by [y, g]. This voting process is supervised by
the Euclidean distance from the seeds on the object surface to the object centers. We
denote this voting module as V:

Vϕ([x, f ], zn) = [x, f ⊗ zn] +MLPϕ(f ⊗ zn)

= [y, g].
(5)

After object candidates generation, we adopt farthest point sampling [24] to select T
candidates as center points in Euclidean space and generate clusters {Ct}Tt=1 by search-
ing the nearest neighboring points for each center candidates, i.e., Ct = {[yi, gi]|∥yi −
yt∥ ≤ d}, where yt is the center coordinates of cluster t, yi and gi denote the coordi-
nates and features of the ith candidates, and d is the searching radius for each cluster.
We denote the farthest point sampling and grouping process as G(·).
Guided Object Proposal. We apply a 3D point feature learning network to extract
cluster features and generate 3D object proposals. Specifically, for each cluster Ct rep-
resented by {[yi, gi]}, we normalize candidate locations to a local normalized coordi-
nate system by y′i = (yi − yt)/d. A shared PointNet [26], represented by H, is adopted
to produce cluster features. To generate object proposals with the guidance of 3D meta-
detectors, we perform a channel-wise multiplication between cluster features and zn to
generate the re-calibrated cluster features. The guided object proposal module for the
nth class is defined as:

Pψ(C) =MLP (H([y′i, gi])⊗ zc) , (6)
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whereMLP is a multi-layer perceptron network serving as a prediction head to predict
parameters of 3D bounding boxes and class labels. The whole detection head network
is denoted by P with network parameters ψ.

4.4 Few-shot Learning Strategy

In this section, we introduce our learning strategy for N -way-K-shot detection. Our
model takes support instances S = {Sn,k} and query scan qi as input. We denote the
ground-truth bounding boxes of query scan qi as Rqi . The learning of this task can
be reorganized as jointly optimizing network parameters θ, δ, ϕ, and ψ using back-
propagation by minimizing the following loss:

min
θ,δ,ϕ,ψ

L =
∑
i

L(Pψ(Vϕ(Fδ(qi),Mθ(Sn,k))),Rqi) , (7)

It is of importance to employ an appropriate learning strategy such that the 3D meta-
detector M can produce representative re-weighting vectors to guide the 3D object
detector {F , V , P} to generate the correct object proposals.

To achieve this goal, we adopt a two-phase learning strategy to train our proposed
model. We refer to the first phase as base-training. During base-training, only episode
data from the base classes are used, and we jointly train F , V , P and M using ground-
truth annotations. This phase guarantees the learner, composed of F , V , and P , to learn
to detect class-specific objects by referring to re-weighting vectors. We denote the sec-
ond phase as fine-tuning. In this step, we train our model using episode data from both
base classes and novel classes. Similar to the first base-training phase, we jointly opti-
mize θ,δ,ϕ and ψ by minimizing Eq. 7.
Loss function. Our model simultaneously estimates category labels of the bounding
boxes, objectiveness scores, and bounding box parameters. We adopt a similar loss
function as in VoteNet [4]. Specifically, We use the cross-entropy loss Lsem and Lobj
to supervise the bounding box’s label prediction as well as the objective score for can-
didates. Proposals generated from positive candidates that are close to the object center
are further regressed to bounding parameters which include box center, heading an-
gle, and box size. We adopt Huber loss Lbox to supervise the bounding box prediction.
Hence, the overall detection loss function is L = Lsem + Lobj + Lbox.

5 Experiments and Results

In this section, we conduct experiments on two 3D object detection benchmarks to
validate the object detection ability in the few-shot setting. In section 5.1, we first give
a description of the benchmarks used in our experiments and how we adapt them to few-
shot settings. In section 5.2, we describe the detailed implementation and the network
architecture of our proposed model. In section 5.3, we compare our model with several
baselines approaches for few-shot 3D object detection in an indoor environment. In
section 5.4, we further analyze the performance of our model. In section 5.5, we validate
the effectiveness of our proposed modules by comparing different designs.
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5.1 Datasets

SUN RGB-D. We conduct our experiments on SUN RGB-D [13] dataset. It is a widely
used benchmark dataset for object detection. The dataset consists of around 10k RGB-
D images captured from indoor scenes. Half of them are used for training, and the rest
are used for testing. Each sample in the dataset is annotated with amodal-oriented 3D
bounding boxes and category labels. The dataset includes a total of 37 object categories.
In the common 3D object detection setting, the training and evaluation process is based
on the ten most common categories, including nightstand, sofa, and table. In our few-
shot experiment setting, we divide the whole dataset into Dnovel and Dbase according
to the categories, where Dbase ∩ Dnovel = ∅. More specifically, we select N out of the
ten categories as novel categories, and we refer to the other 10 −N categories as base
categories. We further split each category into support/training and query/test sets.
ScanNet (v2). In addition to the SUN RGB-D dataset, we also conduct our experi-
ment on the ScanNet (v2) [12] benchmark, which is a richly-annotated 3D indoor scene
dataset that consists of 1,513 real-world scans. The whole dataset is divided into 1,201
training scenes, 312 validation scenes, and 100 test scenes. In contrast to the SUN RGB-
D dataset, neither amodal bounding boxes nor their orientations are available in Scan-
Net (v2). Moreover, different from the SUN RGB-D dataset, ScanNet (v2) contains 18
object categories and provides complete reconstructed meshes of indoor scenes. We se-
lect N out of the 18 categories as novel categories and others as base categories. We
also split each category into support/training and query/test sets for the SUN RGB-D
dataset.

5.2 Implementation Details

Few-shot input and data augmentation. Our model takes point clouds from depth
images (SUN RGB-D) or 3D indoor scans (ScanNet (v2)) as input. We uniformly sam-
ple 20k points from the source data, and each point is represented by 3D coordinates
and the 1D height feature, which is the distance from the point to the floor. Following
the VoteNet [4], we set the 1% percentile of all heights as the floor to calculate the
height features. After the sampling, we apply random scaling from 0.8 to 1.2 on the
data, followed by the random rotation for −3◦ to 3◦ and random flipping.

Novel Set 1 Novel Set 2 Novel Set 3
Method bathtub bed chair mAP dresser sofa table mAP chair desk table mAP

VoteNet-JT 0.0 5.1 6.7 3.9 0.0 1.0 5.6 2.2 12.4 0.8 0.8 4.7
VoteNet-FT 0.0 16.1 4.8 7.0 0.1 4.2 6.9 3.7 13.7 2.5 2.2 6.1
VoteNet-2 0.0 16.6 5.5 7.4 0.1 4.8 7.5 4.1 16.5 2.0 2.1 6.9

Ours 3.5 21.8 10.3 11.9 10.4 9.9 11.0 10.4 10.2 12.7 12.1 11.6
Table 1. Quantitative results for few-shot 3D object detection on SUN RGB-D. Experiments are
conducted on three different novel classes with N = 3, K = 10.
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Novel Set 1 Novel Set 2 Novel Set 3
Method curtain shower cur. desk mAP garb. bin bed sink mAP sofa table chair mAP

VoteNet-JT 1.9 2.2 1.0 1.7 2.4 1.0 2.0 1.8 0.3 0.5 0.0 0.3
VoteNet-FT 3.4 4.9 2.2 3.5 6.1 1.7 4.4 4.1 1.6 1.8 0.5 1.3
VoteNet-2 4.8 5.2 2.9 4.3 7.5 2.1 5.1 4.9 2.2 2.6 1.1 1.9

Ours 26.5 11.0 3.0 13.5 19.4 10.8 1.1 10.4 9.2 8.0 8.4 8.5
Table 2. Quantitative results for few-shot 3D object detection on ScanNet (v2). Experiments are
conducted on three different novel classes with N = 3, K = 10. “shower cur.” is the abbreviation
for “shower curtain”, and “garb. bin” is the abbreviation for “garbage bin”.

Network architecture. We use PointNet++ [24] as backbone for the class-specific re-
weighting module. The feature extractor network contains three set abstraction (SA)
layers followed by a max-pooling layer. The radius of three SA layers are [0.3, 0.5, 1]
with the output channel sizes of [1024, 512, 256]. The 256-dimensional feature vector
is fed into the weight learning network which is an MLP with two hidden layers of size
[512, 256]. We fuse the class-specific re-weighting module with VoteNet [4] as our 3D
object detector.
Network training. We follow the two-phase learning strategy to train our model from
scratch with an Adam optimizer. In the base-training phase, we set the initial learning
rate to 0.001 on Dtrain

base . We decrease the learning rate by ten times after 50 epochs
and 100 epochs. In the fine-tuning phase, we reset the initial learning rate to 0.001,
and we decrease the learning rate every 30 epochs on Dtrain

base and Dtrain
novel. Our model is

implemented using PyTorch [30] and runs on NVIDIA GTX 2080 GPUs.

Novel Set 1 Novel Set 2 Novel Set 3
Method 30 50 30 50 30 50

VoteNet-JT 5.8 6.8 3.4 4.8 5.3 5.9
VoteNet-FT 8.1 9.8 4.6 5.6 7.3 8.1
VoteNet-2 9.0 11.3 5.1 6.1 8.0 8.9

Ours 12.1 14.0 11.7 13.6 13.2 13.8
Table 3. Results on SUN RGB-D. The table shows the evaluation results for different methods
on three novel classes with different numbers of shots K = 30, 50. The evaluation metric is mAP
with IoU threshold 0.25.

5.3 Comparison with the Baselines

Experiment settings. To the best of our knowledge, this is the first work focusing on
the few-shot 3D object detection task. In order to explore the generalization ability of
our proposed model on few-shot 3D object detection settings, we conduct experiments
on SUN RGB-D, and ScanNet (v2) benchmarks to compare our model against various
baseline models built on VoteNet [4]. Specifically, we adopt three baseline models for
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Novel Set 1 Novel Set 2 Novel Set 3
Method 30 50 30 50 30 50

VoteNet-JT 2.2 4.1 2.4 3.1 0.6 0.8
VoteNet-FT 4.8 6.0 5.9 7.0 1.9 2.7
VoteNet-2 6.0 6.9 7.3 8.8 2.5 4.0

Ours 14.7 16.1 11.4 12.7 9.9 10.8
Table 4. Results on ScanNet (v2). The table shows the evaluation results for different methods
on three novel classes with different numbers of shots K = 30, 50. The evaluation metric is mAP
with IoU threshold 0.25.

the comparison: 1) VoteNet-JT. In this baseline method, VoteNet is alternately trained
on the base classes and novel classes without base-training and fine-tuning phases. 2)
VoteNet-FT. In this baseline method, VoteNet first uses a base-training phase to train
on the data from base classes, and then it only uses data from novel classes to fine-tune
the model. 3) VoteNet-2. In this method, we train the VoteNet following the two-phase
learning strategy until full convergence. Both our model and the three baseline models
are trained in the few-shot setting where N = 3, K = {10, 30, 50}. During inference,
we use the class-specific re-weighting vectors learned from the whole supporting set to
guide 3D object detection on the query set.

Fig. 3. The t-SNE visualization of
class-specific re-weighting vectors
from SUN-RGB D.

Result analysis. The quantitative results on SUN
RGB-D and ScanNet (v2) benchmarks are pre-
sented in Table 1 and Table 2 respectively. In both
tables, the average precision values with the IoU
threshold 0.25 are reported. Results presented in
Table 1 and Table 2 show that our model outper-
forms the baseline models. The comparison re-
sults for different numbers of shots on two bench-
marks are presented in Table 3 and Table 4. As
shown in the tables, our model improves the mAP
by at least 3.1% on SUN RGB-D benchmark
when K = 30, and 2.7% when K = 50. More-
over, our method improves the mAP by at least
4.1% on ScanNet (v2) benchmark when K = 30,
and 3.9% whenK = 50. Refer to the supplementary material for the per-instance mAP.
The results also demonstrate that directly adopting conventional object detectors leads
to limited generalization abilities for novel classes. In Figure 4 and Figure 5, we show
several qualitative examples of the 3D detection results on SUN RGB-D and ScanNet
(v2) benchmarks respectively.

5.4 Performance Analysis

Class-specific re-weighting vector. The re-weighting vectors learned from the 3D
meta-detector serve as important task-specific information to guide the detection pro-
cess of the 3D object detector. In this section, we project the re-weighting vectors for
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Fig. 4. Qualitative results on SUN RGB-D.

different object categories onto a 2D plane to verify that the re-weighting vectors are
learned to contain class-specific information. We conduct experiments on the SUN
RGB-D dataset. Figure 3 shows the projections of re-weight vectors by using t-SNE
[31]. It is obvious that the vectors that belong to the same class tend to cluster with
each other. Moreover, we also observe that classes sharing similar visual features are
projected close to each other. Specifically, the desk, table, and chair classes are pro-
jected to the bottom-left in the figure, while the sofa and bed classes are projected to
the bottom-right.

Fig. 5. Qualitative results on ScanNet (v2).

Method Model size SUN RGB-D ScanNet (v2)
VoteNet 11.2MB 0.10s 0.14s

Ours 11.6MB 0.11s 0.16s
Table 5. The comparison for the model size and the inference time for the object detection in one
query scan.
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Speed and size. We also analyze the inference speed and model size on different bench-
mark datasets. In Table 5, the comparison of our model and two baseline models is
presented. Our model takes around 0.16s to detect objects in one query scan in Scan-
Net (v2) dataset, which is almost the same as the VoteNet. In addition, our proposed
model has a size of 11.7MB, which is only 0.5MB larger than VoteNet. This observa-
tion demonstrates that our model can effectively detect novel objects with almost the
same memory cost as VoteNet.

5.5 Where to Re-weight

V.R. O.R. Ours
Base classes 52.1 52.5 59.0
Novel classes 10.9 11.1 11.3

Table 6. The object detection results on
SUN RGB-D with different model de-
signs.

We analyze the effect of different re-weighting
locations on the final 3D object detection perfor-
mance. In this experiment, we compare the object
detection performance on ScanNet (v2) using
three different designs of our proposed model. In
the first design, we only use re-weighting in the
“Guided Voting” module, and we denote this de-
sign as V.R.. In the second design, we only em-
ploy re-weighting in the object proposal module,
which is referred as O.R., and the last design cor-
responds to our proposed method that applies re-weighting in both object proposal mod-
ules. Table 6 shows the mAP of the three different designs. We notice that our proposed
model that applies re-weighting in both object proposal modules achieves the best per-
formance.

6 Conclusion

To the best of our knowledge, this is the first work to tackle the few-shot 3D object
detection problem. Our proposed method generalizes its ability from the meta-training
process to infer 3D object proposals and predict 3D bounding boxes for unseen 3D
objects in novel classes. A novel class-specific re-weighting vector is introduced with
the goal of facilitating the meta-detector to learn task distributions for different object
classes and then dynamically adapt the 3D object detector to complete a specific de-
tection task. Our method can be easily adapted to other two-stage detection methods
that contain the object proposal stage. Experiments on two public 3D object detection
benchmarks demonstrate that our model can effectively detect 3D objects from novel
classes with superior performance over the well-established baseline models. In-depth
analyses of our model further indicate the effectiveness and efficiency of each proposed
component.
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