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Abstract. An accurate 3D ventricular model is essential for diagnosing
and analyzing cardiovascular disease. It is challenging to obtain accu-
rate patient-specific models on scarce data via widely accepted deep-
learning methods. To fully use the characteristics of medical volume-
based images, we present a slice-mask representation to better regress
the parameters of the 3D model. A data synthesis strategy is proposed
to alleviate the lack of training data by sampling in the constructed
statistical shape model space and obtaining the corresponding slice-
masks. We train the end-to-end structure by combining the segmentation
and parametric regression modules. Furthermore, we establish a larger
left ventricular CT dataset than before, which fills the gap in relevant
data of the healthy population. Our method is evaluated on both syn-
thetic data and real cardiac scans. Experiments demonstrate that our
method can achieve advanced results in shape reconstruction and seg-
mentation tasks. Code is publicly available at https://github.com/yuan-
xiaohan/Slice-mask-based-3D-Cardiac-Shape-Reconstruction.
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1 Introduction

The heart is one of the vital organs of our body, and cardiovascular disease is
the leading cause of death and morbidity worldwide [23]. The left ventricle (LV)
is the most important chamber of the heart and main source of blood flow. How-
ever, current disease diagnosis and assessment are always guided by slice-based
2D images, making it difficult for clinicians to obtain intuitive patient-specific
visualizations and resulting in inaccurate estimates of clinical metrics such as
volume and ejection fraction. Therefore, boosting the limited 2D images with
the prior of 3D heart shapes, and using it to instantiate cardiac models has
important applications for surgical planning, morphological assessment, and ed-
ucational purposes. Although recent years have witnessed the rapid progress of
? Corresponding author: Yangang Wang. E-mail: yangangwang@seu.edu.cn. All the
authors from Southeast University are affiliated with the Key Laboratory of Mea-
surement and Control of Complex Systems of Engineering, Ministry of Education,
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Fig. 1. The overall pipeline of the proposed framework. (a) Shape modeling. We first
generate a cardiac atlas from the real meshes and construct a statistical shape model
by PCA, resulting in low-dimensional parameter space. (b) In the pre-training stage,
the parametric regression module is trained by generating massive synthetic data, con-
sisting of reasonable model parameters and their corresponding slice masks. (c) Joint-
training stage includes a segmentation module and a pre-trained parametric regression
module. The input to the segmentation module is the set of view-planned slices, and
the output is their masks, which are used as the input to the parametric regression
module, finally obtaining the shapes.

deep learning in the field of medical image analysis, especially for the segmen-
tation and reconstruction tasks, the lack of scale of annotated datasets impedes
the generalization of trained models for 3D heart reconstruction. In this paper,
we focus on the problem of accurate 3D reconstruction of the left ventricle in
response to the data-poor dilemma.

Generally, existing 3D medical reconstruction methods often require fine-
scale segmentation masks, mainly focusing on the precursor task of medical
image segmentation [12]. The methods of directly generating a mesh from masks
depend highly on the segmentation quality and often produce surfaces with
stair-step artifacts that are affected by the low resolution of medical images.
To avoid the lack of mesh integrity, a model-driven strategy, as a parametric
method, is often addressed. The segmented contour is fitted by the constructed
statistical shape model (SSM) to complete the shape prediction [8,10,13], but the
separated multi-stage iterative strategy will greatly increase the computational
cost. Recently, a few pioneers have devoted the organ geometry reconstruction
of point clouds or meshes directly from images or volume with the deep neural
network [6, 30, 32]. These works are often derived from the field of computer
vision and lack consideration of the characteristics of medical image data.
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In this paper, to fully exploit the volume characteristics of medical images,
our key idea is to slice the three-dimensional SSM model from different views into
a set of two-dimensional mask images via the technique of computer graphics,
where the masks are named as slice-masks. It is noted that the view we obtain
is not a projection but a typical angle of slices in the volume, which is different
from traditional multi-view reconstruction in the area of computer vision. In
order to conveniently describe the anatomical cardiac model, the views of slices
are predefined and chosen similar to the clinical strategy.

However, the scarcity of public datasets for cardiac CT images brings great
difficulties to network training. To improve the variance of cardiac SSM param-
eters, we first construct the SSM space of the cardiac model and then sample
the SSM parameters to synthesize massive 3D cardiac models that conform to
the real anatomy, enlarging the size of the training set. The slice positions and
3D model landmarks can be easily defined in the SSM template model to obtain
view-consistent slice-masks for all synthetic models. In such a manner, we can
augment more slice-masks corresponding to the model without relying on the
raw CT data.

With the obtained synthetic training data, the SSM parameter regression
network is concatenated with a segmentation network to predict the SSM param-
eters. It is noted that these two modules might mismatch due to the imbalance
of real and synthetic training data. To alleviate this circumstance, we propose
a refining step to improve the accuracy of the segmentation module due to the
anatomical constraints of the reconstruction task.

To further tackle the obstacle of data scarcity and fill the gap with normal
human cardiac data, we increase the amount of real data by collecting a larger-
scale healthy left ventricular CT dataset than most existing ones [14, 31, 35]. A
more accurate low-dimensional parametric model is generated to facilitate the
cardiac parameters regression and network training.

In summary, the main contributions of this work are as follows.

– Combining the characteristics of medical volume data with the anatomical
knowledge of the heart, we use the proposed slice-mask representation to bet-
ter regress the parameters of the 3D model. We synthesize massive models by
sampling in a statistical shape model space and obtaining the corresponding
slice-masks to alleviate the lack of training data.

– We design a training strategy for improving the accuracy of shape recon-
struction and segmentation, where the end-to-end network consists of a seg-
mentation module and a parameter regression module.

– We build a larger-scale CT atlas of the left ventricle than previous work,
making up for the current scarcity of data, especially in healthy individuals.

2 Related work

Parametric Shape Reconstruction. Traditional 3D medical reconstruction
methods often require fine-scale segmentation masks, mainly focusing on the
precursor task of medical image segmentation. Marching Cube algorithm [19] is
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then typically utilized to generate a mesh of segmented regions from the contours
delineated from each layer of the image volume. Operations such as smooth-
ing [3, 15] are often performed at the last step. Such methods cannot ensure
the integrity of the mesh. Therefore, a model-driven strategy is often addressed,
which usually completes the shape prediction by constructing a statistical shape
model (SSM) to fit the initial contour of the segmentation [8,10,13]. Some meth-
ods for shape prediction based on segmentation graphs introduce shape priors
into the segmentation tasks in the previous stage to ensure better results in
the downstream reconstruction [5, 7, 18, 36]. For example, in the case of image
artifacts, the constructed 3D cardiac shape can be ensured to have anatomical
significance. [26] enforced robustness of shape prediction by simultaneously per-
forming semantic segmentation, which is performed by regression of signed dis-
tance maps, trained using a loss function incorporating both distance and overlap
measures. Other methods improve the reconstruction performance by directly in-
troducing shape prior knowledge into the reconstruction task [1, 4, 27, 33]. Most
recently, with the development of deep learning, methods combining SSM with
a convolutional neural network(CNN) can achieve better results. Zhou et al. [33]
borrowed the PointOutNet [9] to learn the relationship between a 2D image and
a 3D SSM in a single stage for 3D shape prediction. Regression of shape coef-
ficients using a CNN was performed by Bhalodia et al. [4] and Adams et al. [1]
extended this work to a probabilistic approach to determine the credibility of
the model output by quantifying uncertainty. Probabilistic surface prediction
with a PCA shape prior was also performed by Tóthová et al. [27], the input of
the network is three orthogonal standard MR views. Attar et al. [2] proposed a
deep neural network using both CMR images and patient meta-data to directly
predict 3D cardiac shape parameters instead of a pixel-wise classification across
each 2D slice. This method uses the promising ability of SSM to simplify shape
complexity. However, it needs over 3000 CMR image volumes with manual delin-
eations to construct reference 3D shapes for training, and the patient metadata
is often challenging to obtain.

Nonparametric Shape Reconstruction. Shape reconstruction methods in
the form of a nonparametric model are generally based on deep learning. They
can directly predict the surface mesh of cardiac structures from image or volume
data. A series of works on recovering 3D shapes from 2D images have emerged
in computer vision, usually consisting of an encoder that extracts image features
and an encoder-decoder that generates grids [20, 29, 32]. PointOutNet [9] can
generate unordered 3D points from a single RGB image cloud and 3D-LMNet [20]
can utilize an image encoder to map a 2D image into a 3D point cloud latent
space learned by an auto-encoder. Ye et al. [32] proposed a network that directly
reconstructs LV from the volume of 2D CT slices and generates its segmentation
masks from the predicted 3D point cloud. Wang et al. [29] used information
extracted from single-view 2D medical images to predict the displacement of
control points to learn the spatial deformation of lung organs. In recent years,
graph convolutional neural networks have also shown promise for surface mesh
reconstruction [16,30]. According to the volumetric properties of medical images,
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Fig. 2. Visual representation of the relative relationship between slice positions and
ventricular model. Shapes with different color planes represent different views. On the
left are the slices directly imaged by CT, and on the right are the slices we selected
according to the view planning.

Wickramasinghe et al. [30] extended the Pixel2Mesh [28] from 2D images to 3D
surface meshes, taking 3D volumes as input to solve the reconstruction problem
of CT liver. Kong et al. [17] proposed a network that learns to deform a template
grid into a volume of input image data by predicting the displacement of a multi-
resolution control point grid.

3 Method

Figure 1 provides an overview of the proposed framework. First, we build a
3D model atlas of the left ventricle by manually segmenting and generating
the meshes, then construct a low-dimensional parameter space using principal
component analysis (PCA) (see Section 3.1). By sampling in the latent space,
we make corresponding slice-masks for numerous reasonable samples generated,
which are used to train the parametric regression network (see Section 3.2). After
obtaining the pre-training weights of the parameter regression network, we add
it to the joint architecture and optimize it with the segmentation network (see
Section 3.3).

The joint architecture consists of two modules: the input CT volume is sliced
into planes after view planning and used as the input to the segmentation mod-
ule. The segmentation output will be used as the input to the parameter regres-
sion module, which directly estimates the model parameters.

3.1 Shape Modeling

Building an atlas is the first step in modeling the shape and constructing the
parameter space. Benefiting from the high-resolution features of CT, we man-
ually delineate each layer of the CT volume, so that the generated 3D model
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has sufficiently high fidelity. Suppose that the heart model training set D =
{D1,D2, · · · ,DM} has M models, and different models have different vertices.
The parametric model is mainly determined by the shape parameter α ∈ RK .
Since there is a large difference in the size of the heart at end-diastole and end-
systole, to decouple it from shape, we add a size parameter β ∈ R1. As long
as the overall parameter θ = [α, β] ∈ RK+1 is obtained, a heart model can be
reconstructed.

We first use the Iterative Closest Point (ICP) algorithm to align each model
with the template, and use the method proposed in [25] to deform the tem-
plate onto each model to obtain a set of heart models with the same topology
S = {S1,S2, · · · ,SM}, and Si ∈ R3×N , i ∈ 1 · · ·M , where N is the number
of vertices of the template. After the atlas is constructed, its parameter latent
space can be obtained through statistical analysis. We use Principal Compo-
nent Analysis (PCA) to construct the shape parameters of the model on the
set S which is just gained by the registration. Map the shape Si to vector si =
[x1, y1, z1, · · · , xN , yN , zN ]T ∈ R3N , then let Smap = [s1, s2, · · · , sM ]T ∈ RM×3N

and the mean shape s̄ = 1
M

∑M
i=1 si. Through the singular value decomposition

(SVD) of Smap :
Smap = U

∑
VT , (1)

we get V ∈ R3N×K that fully defines the linear function below:

B(θ) = β · M(̄s + Vα), (2)

where θ = [α, β] ∈ RK+1 denotes the shape coefficients, and the operator M(s) :
R3N 7→ R3×N maps the vector to the shape. The function B(θ) produces the
shapes of different hearts.

3.2 Data Synthesis Strategy

Based on the parametric models that have been proposed, we analyze the pa-
rameter distribution of real data and generate multivariate Gaussian distribution
centered on real samples for sampling. The resampled parameters can obtain
different hearts from the original training set while maintaining anatomical con-
sistency and fidelity. We will introduce the parametric regression network and
how to obtain the slice-masks for each generated model.

Parametric Regression Network. In this work, we regard the CT heart
modeling problem as a multi-view reconstruction problem and hope to regress
the parameters directly from the slice-masks.

Typically, raw CT images are scanned in standard planes of the body (trans-
verse, sagittal, and coronal). However, due to the unique shape and location of
the heart, it cannot be simply expressed by the standard axis of the human body
(as shown in Figure 2(a)). Most existing methods do not consider the view prob-
lem but directly use the entire volume or images with the original view as input.
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The former will bring the challenge of memory computing, and the latter can-
not effectively contain the critical information for reconstructing the structure.
Therefore, we propose to extract as much information as possible from a few
slices from different perspectives. The process of obtaining these slices from the
raw CT volume is called view planning, and the masks obtained from this series
of slices are named slice-masks. The selection of slice locations is based on the
anatomical structure of the heart: long-axis views (two-chamber (2CH), three-
chamber (3CH), and four-chamber (4CH) heart) and short-axis views (SAX). We
use the above-mentioned unique perspectives for the heart, equivalent to setting
the "camera" in a place that can represent heart information more abundantly.
The parameter regression network seeks the mapping relationship between slice-
masks and parameter space, which significantly reduces the information redun-
dancy caused by useless background. Figure 2(b) shows the relative position
relationship between the position of each slice and the ventricular model. It can
be seen visually that these perspective views cover the whole heart, and the
segmented slices obtained in this way can comprehensively describe the shape of
the ventricle.

For the parametric regression network, the input is 13 concatenated slice-
masks (3 long-axis views and 10 short-axis views). Considering that the model
parameters are generated by PCA operation, the coefficient corresponding to
the eigenvector with a larger variance contribution is more important and can
better reflect the topology of the model. Therefore, we use the weighted two-
norm function to analyze the model parameters output by the network, which
is,

Lreg = λ1 ·
K∑
i=1

(αi − α̂i)
2 · wi + λ2 · (β − β̂)2 (3)

For supervision, where the weight wi is positively related to the variance ratio of
the feature vector, αi and α̂i is the true value and predicted value of the shape
parameter in the ith dimension, respectively. β and β̂ is the true value and
predicted value of the model size, respectively. λ1 and λ2 represent the influence
of the shape term and the size term, respectively.

Acquisition of Slice-masks. According to the structural characteristics of the
proposed regression network, the training data it needs is the pair of the slice-
masks and the ground-truth parameters, so we propose a method to acquire the
slice-masks of any generated model.

We will design the slices according to the given rules for each model to
obtain the masks (See Supplementary Material for details). To plan the views
directly, it is necessary to find the positional relationship between these slice-
masks and the model. It is worth noting that the equations of slice planes are
determined by several landmarks on the model, such as the apex (AP), the
center of the mitral valve (MV), and the center of the aortic valve (AV). These
anatomical landmarks are related to the vertices of the shape, and there is a
one-to-one correspondence between the vertices of each parametric model. So
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as long as there are three landmark indexes, one slice of the model can be
directly determined. We ask professional doctors to manually determine a series
of landmarks on the template model and then propagate it to any other generated
shapes. Thus, we can obtain the slice-masks of the synthetic models and train
the parameter regression network from these.

3.3 Training Strategy

Considering the scarcity of CT data and its annotations, direct training in the
architecture of a joint network will cause specific difficulties. So we design a
strategy for staged training. We first train the parameter regression network
separately using the synthetic data to enhance its generalization performance.
We place the pre-trained parametric regression network after the segmentation
network and estimate the parameters directly from the former segmentation re-
sults. However, the pre-trained subnetwork uses perfect masks sliced from the
ground-truth model during its training phase. The masks estimated from the
segmentation network often contain artifacts that interfere with the parameter
estimation. Therefore, combining the two networks and fine-tuning the parame-
ter estimation network to adapt to this situation is necessary.

Here, the process of view planning for CT volume is similar to that of MR
standard [24] (See Supplementary Material for details) to obtain the input of
the segmentation network. We choose 2D UNet as the architecture, using cross-
entropy loss Lseg. When two networks are coupled, exploiting their respective
tasks to promote each other: adding segmentation guidance to reconstruction
and adding reconstructed anatomical constraints to segmentation can lead to
improved performance on both tasks. The network is optimized by a joint loss
as follows:

Ljoint = λ · Lseg + µ · Lreg (4)

where Lseg is the segmentation loss and Lreg is the parametric regression loss.
Their details will be further introduced in later sections, and λ and µ are the
weights of them.

4 Experiments

4.1 Data

Table 1. A brief review of previous literature on CT cardiac atlases.

Methods Size Subjects
Ecabert et al. [8] 13 patients
Ordas et al. [22] 100 healthy/patients
Hoogendoorn et al. [13] 138 patients
Ours 225 healthy
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Table 1 compares different studies built on CT cardiac atlases. The scale
of the existing atlases is so small to directly build a parametric model and the
statistical shape modeling method usually relies on the database of a healthy
population. In order to fill the gap in relevant data and lay the foundation for
in-depth research on the function of healthy hearts, we recruited more than 50
volunteers for cardiac CT scans.

Our raw cardiac CT images were collected in Jiangsu Province Hospital, and
the whole volume of data covered the entire heart structure, ranging from the
upper abdomen to the aortic arch. Five professional doctors were organized to
label and review and finally obtained more than 200 left ventricular models of
different phases. Different time phases reflect different states of heart movement,
which increases the diversity of data.

4.2 Implementation Details and Evaluation Metrics

The segmentation module adopts the UNet structure [24], the input is 13 slices,
and the size of each slice is scaled to 192 × 192. The parameter regression module
adds fully connected layers to the encoder architecture of UNet, and finally
outputs (50+1) parameters. To facilitate network regression, we normalize each
dimension of the parameters. We use 3090Ti GPU for training, Adam optimizer
with batch size 4, and initial learning rate set to 1e-4. In the joint loss, the weight
of the segmentation loss λ is 1, and the weight of the parameter regression loss
µ is 10.

For the segmentation task, we use the Dice Similarity Coefficient (DSC),
intersection over union (IOU), and Hausdorff Distance (HD) for evaluation. For
the reconstruction task, we use Mean Surface Distance (MSD) and Chamfer
Distance (CD) for evaluation.

4.3 Ablation Study

We divided the data into a "real training set" (149 objects, which serves as a
prior for building a parametric model, whose parameters are treated as ground-
truth), and a "real test set" (76 objects, ground-truth without parameters). The
synthetic data was also divided into a "synthetic training set" (3000 objects)
and a "synthetic test set" (500 objects).

Data Synthesis Strategy Effectiveness. To demonstrate the data synthesis
strategy, we trained the parameter regression network using only real data as the
training set and adding synthetic data as the training set, respectively. As shown
in Figure 2, both can achieve overfitting on the real training set, which shows that
the idea of the network regressing parameters from a few segmentation masks
is feasible. After adding the generated data to the training set, the performance
on the synthetic test set is very obvious: the network after data augmentation
shows better generalization performance.
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Table 2. Results of the parameters MSE loss (Lreg) and mean surface distance (MSD)
with or without synthetic data training, respectively. R-Train is to train on the real
dataset, and R+S-Train is on both the real dataset and synthetic dataset; R-Test is
the real test set, and S-Test is the synthetic test set.

Training set Lreg MSD
R-Test S-Test R-Test S-Test

R-Train 0.001 0.015 0.927 1.557
R+S-Train 0.0003 0.002 0.669 0.625

Table 3. Results of different inputs to the regression network. Tran represents the
raw transverse slices, SAX and LAX are the short-axis and long-axis slices after view
planning, respectively. The number in parentheses indicates the number of slices of the
input network.

Input Tran(13) SAX(10) LAX(3) SAX+LAX(13)
MSD 2.292±1.393 1.793±0.887 1.012±0.460 0.926±0.354
CD 4.693±2.92 3.585±1.669 2.083±0.775 1.960±0.606

Slice-masks Selection. We compared the effects of different slice-masks as
inputs on the reconstruction results, as shown in Table 3. Using the raw trans-
verse images obtained directly from CT is the choice of most existing work, but
a small number of these views can not achieve ideal results. The selection of
slice position is crucial, and LAX contains the most information because it is
obtained according to the characteristics of heart structure. Taking both SAX
and LAX perspectives as the input of the network can enhance the information
obtained by the network.

Joint Optimization Effectiveness. We verified the effectiveness of the joint
optimization of the segmentation module and the parametric regression module.
As shown in Figure 3, whether the pre-training model is added or not affects
the segmentation loss and parameter regression loss, respectively. In general, the
loss of the joint network decreases with or without the addition of a pre-trained
model. Adding one pre-training module will make the loss of another module
drop more smoothly and speed up the training. Comparing the two loss images,
it can be found that the regression loss is more volatile than the segmentation
loss because our training of the parametric regression module alone is more
"ideal", assuming that the inputs are all accurate segmentations. In practice,
the segmentation estimated from the segmentation network is often not that
imperfect. Therefore, it can be seen from Figure 4 (a) that if the segmentation
module and the parameter regression module are entirely separated and opti-
mized separately, the accuracy of the parameter regression will be significantly
affected by the segmentation results, which reflects the advantages of the joint
network. By optimizing simultaneously, this incongruity can be neatly balanced.
The supervision of the parameter regression module will promote the improve-
ment of segmentation accuracy, and the addition of the segmentation module
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Fig. 3. Jointly optimized training. (a) and (b) are the curves of segmentation loss and
parametric regression loss during training, respectively. Each figure shows the results
of four training modes, where seg is the segmentation pre-training model, and reg is
the parameter regression pre-training model.

Fig. 4. The effectiveness of joint optimization. (a) and (b) are the performance results
of different models on segmentation and reconstruction tasks, respectively. Among
them, SEG is the segmentation model, SEG(GT)+REG represents that the input of
the parameter regression module are the ground-truth masks, SEG+REG represents
that the two modules are trained separately, and JOINT is the joint model.

can force the parameter regression module to learn parameters from imperfect
segmentation, as shown in Figure 4 (b).

4.4 Comparison Experiments

– Raw images as input(R-FCN): We refer to the method from [2] and directly
use the raw images as input to obtain shape parameters.

– Template fitting approach(TF): We use a two-stage method like [21] by
minimizing the point-to-point distance between the obtained surface contour
and the template mesh.

– Template fitting approach(Voxel2Mesh): A surface reconstruction method
[30] based on GCN for 3D medical volumes.

– UNet and its variant versions: The classical medical image segmentation
network (UNet) proposed by [24]. An encoder-decoder network (UNet++)
with deep supervision and dense skip pathways [34]. A Context Encoder
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Table 4. Results on the reconstruction task.

Methods MSD(mm) CD(mm) Runtime(s)
R-FCN 2.004±0.920 4.014±1.693 0.040
TF 0.867±0.353 1.874±0.673 20.056
Voxel2Mesh 2.127±0.664 4.321±1.215 4.868
Ours-UNet++ 1.021±0.577 2.135±1.192 0.113
Ours-CE-Net 0.937±0.328 1.936±0.564 0.085
Ours-UNet 0.862±0.341 1.806±0.590 0.106

Table 5. Results of the segmentation task on the specific views.

Methods DSC(%) IOU(%) HD(mm)
R-FCN 0.876±0.063 0.787±0.097 2.687±0.237
TF 0.938±0.023 0.907±0.042 2.324±0.341
UNet++ 0.917±0.114 0.864±0.129 2.416±0.482
Ours-UNet++ 0.920±0.144 0.867±0.153 2.413±0.608
CE-Net 0.945±0.022 0.900±0.037 2.368±0.207
Ours-CE-Net 0.946±0.022 0.900±0.039 2.359±0.233
UNet 0.948±0.025 0.886±0.037 2.397±0.194
Ours-UNet 0.952±0.025 0.907±0.041 2.321±0.347

Network (CE-Net) to capture more high-level information and preserve
spatial information for 2D medical image segmentation [11].

– Ours: Based on the above proposed UNet and its variants, our proposed
parametric regression network is subsequently connected. To speed up the
convergence, we train the parametric regression network with real and syn-
thetic data and the segmentation network with real images and masks, re-
spectively. The two networks are then concatenated to optimize the overall
structure.

Results on the Reconstruction Task. Table 4 are the quantitative results
of various methods on the reconstruction task, and our method is comparable to
the TF method in accuracy. Combined with Table 5, it can be seen that the per-
formance of the upstream segmentation task inevitably affects the results of the
downstream reconstruction task. The segmentation network in our framework
can be replaced with any SOTA structure; if the segmentation result is accurate
enough, a better reconstruction effect can be obtained. The purpose of our joint
optimization strategy is to minimize this effect.

Visualizations and error distributions reconstructed by several methods are
presented in Figure 5. For the R-FCN and Voxel2Mesh, a large amount of train-
ing data must be used to achieve good results, and the lack of raw CT data
greatly restricts it. Since, in the training phase, we use synthetic data that does
not depend on the raw images, avoiding this dilemma and achieving better re-
sults under the same conditions. In addition, taking the overall volume as the
input of the network requires down sampling to meet the memory needs, which
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Fig. 5. Reconstruction results. Each alphabetical number represents an example, the
first column of each example is the visualization, and the column row is the error
distribution.

will lose detailed information. Although the error of the classical TF method is
also tiny, it depends highly on the first step segmentation. The iterative pro-
cess will take more time, reflecting the end-to-end efficiency of deep learning. In
comparison, our inference speed is several times faster than iterative methods.

Results on the Segmentation Task. As shown in the table 5, the combina-
tion of Unet and regression module (Ours-UNet) achieves the best performance
among all methods. Compared with the results of various optimization meth-
ods and their jointly optimized versions, the latter has a specific improvement
in the segmentation effect. It shows that the supervision of the downstream
parameter regression module can improve the performance of the upstream seg-
mentation task. Figure 6 shows the visualization results of different methods.
Our method can fit the contour of the ground-truth (due to the superposition
of the two colors, it will appear almost white in the figure), while R-FCN and
TF are pretty different from the ground-truth as a whole, sacrificing many de-
tails. Although the pixel classification-based method of UNet can also achieve
high accuracy in numerical results, it is prone to some evident and non-physical
flaws from the details shown in the orange box. Because a pure segmentation
network only predicts from a few slices, it cannot incorporate the overall shape
prior. In contrast, our method eliminates these flaws, balances the integrity of
the model-based method with the fineness of classification-based segmentation,
optimizes the overall contour, and performs numerically the best.
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Fig. 6. Segmentation results on the specific views. Each row shows an example, and
each column represents a different view from left to right: 2CH, 3CH, and 4CH slices
on LAX; basal, middle, and apex slices on the SAX. The different colored outlines in
the figure denote the results of different methods. The last column shows an enlarged
version of the orange box in the figure.

5 Conclusion

Obtaining an accurate ventricular model from medical images is of great clinical
value. Given the challenge that the network cannot be well-trained due to the
lack of publicly labeled cardiac images, according to the characteristics of medical
volume data, we propose a slice-mask representation. We alleviate the shortage
of training data by sampling in the constructed parameter latent space and
increasing the network’s generalization performance. The segmentations network
is connected with the pre-trained parameter regression network for end-to-end
joint optimization to reduce the impact of the imperfection of the upstream task
on the downstream task. We evaluate our proposed method on synthetic data
and real cardiac scans. The results show that our method can achieve advanced
shape reconstruction and segmentation tasks. We hope our dataset can support
related fields, and we will expand our method to more organs in the future.
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