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Abstract. Although gaze estimation methods have been developed with
deep learning techniques, there has been no such approach as aim to
attain accurate performance in low-resolution face images with a pixel
width of 50 pixels or less. To solve a limitation under the challenging
low-resolution conditions, we propose a high-frequency attentive super-
resolved gaze estimation network, i.e., HAZE-Net. Our network improves
the resolution of the input image and enhances the eye features and
those boundaries via a proposed super-resolution module based on a
high-frequency attention block. In addition, our gaze estimation mod-
ule utilizes high-frequency components of the eye as well as the global
appearance map. We also utilize the structural location information of
faces to approximate head pose. The experimental results indicate that
the proposed method exhibits robust gaze estimation performance even
in low-resolution face images with 28×28 pixels. The source code of this
work is available at https://github.com/dbseorms16/HAZE_Net/.

1 Introduction

Human gaze information provides principal guidance on a person’s attention and
is significant in the prediction of human behaviors and speculative intentions.
Accordingly, it has been widely used in various applications, such as human-
computer interaction [1, 2], autonomous driving [3], gaze target detection [4],
and virtual reality [5]. Most of the existing methods for estimating the human
gaze by utilizing particular equipment (e.g., eye-tracking glasses and virtual real-
ity/augmented reality devices) are not suitable for real-world applications [6–8].
Recently, to solve this problem, face image’s appearance-based gaze estimation
methods that learn a direct mapping function from facial appearance or eyes to
human gaze are considered. To accurately estimate the human gaze, an image
with well-preserved eye features (e.g., the shape of the pupil) and well-separated
boundaries (e.g., the boundary between the iris and the eyelids) is crucial.
Recent studies [9, 10] show reliable performance for the gaze estimation with
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high-resolution (HR) face images from 448 × 448 to 6000 × 4000 pixels in-
cluding abundant eye-related features. However, in the real world, even the face
region detected from the HR image may have a low-resolution (LR) depending
on the distance between the camera and the subject, as shown in the upper-left
of Fig. 1. Most of the existing gaze estimation methods use fixed-size images.
Thus, when the distance between the camera and the subject is large, it leads
to the severe degradation of gaze estimation due to the lack of resolution of the
eye patches, as shown in the first row of Fig. 1.

Fig. 1. Examples of gaze estimation approaches in the real world. HAZE-Net intro-
duced a high-frequency attentive super-resolved gaze estimation that outperforms con-
ventional methods by a large margin.

To deal with the problem, the conventional image interpolation approach can
be adopted so that the image resolution for eye regions can be enhanced as
shown in the second row of Fig. 1. However, since it only works based on the
limited relationship between the surrounding pixels, this method cannot resolve
the degradation of gaze estimation performance. As an alternative, image super-
resolution (SR) methods [11–18] have been considered. These methods are per-
formed to restore HR images from the LR images. Accordingly, the SR module
learns how to reconstruct the LR images to HR images. However, this is an ill-
posed problem with various possible answers. This indicates that conventional
SR modules do not stably enhance eye features and boundaries, which are es-
sential for gaze estimation. In other words, although the SR approach may help
improve the quality of the image, it does not guarantee an ideal mapping for
the optimal performance of the gaze estimation. The results of each image up-
scaling method for an LR face image with 28×28 pixels are shown in Fig. 2. A
severe degradation problem occurs in the up-sampled image when bicubic inter-
polation is applied to the LR image, as shown in bicubic results. On the other
hand, the conventional SR module shows higher quality, as shown in DRN [12]
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results. Nevertheless, it can be seen that the boundary between the iris and the
pupil is not distinctly differentiated. This demonstrates that the conventional
SR method does not provide an optimal mapping guideline for gaze estimation.

Fig. 2. Visual comparison of different 4× up-sampling methods for LR face images
with 28 × 28 pixels. The first row for each LR image shows the enlarged eye images
using different methods. The second row for each LR image represents the ground truth
(blue arrow) and predicted gaze (red arrow), respectively.

In this paper, we propose a high-frequency attentive super-resolved gaze estima-
tion network, so-called HAZE-Net, which is mainly comprised of two modules:
1) SR module based on a high-frequency attention block (HFAB) and 2) global-
local gaze estimation module. To deal with the limitations in the conventional
SR methods, we reinforce the high-frequency information inspired by the ob-
servation that the contour of eye features and their boundaries correspond to
high-frequency in the frequency domain. Through the proposed SR module, we
observe that it preserves the shape of the pupil well and distinctly differentiates
the boundary between the iris and the pupil. In addition to the SR module, we
devise a global-local gaze estimation module. Based on the super-resolved face
images and corresponding global-local (face-eye) appearance maps are used to
improve the gaze estimation performance. In addition, we use the coordinates
of five landmarks (e.g., eyes, nose, both corners of the mouth) containing the
structural location information of the face to provide an appropriate guide to the
head pose. Moreover, the devised two modules are collaboratively trained via the
proposed alternative learning strategy. In this process, we add a constraint on
the SR module to produce a face image that is favorable to gaze estimation. It
contributes to improving gaze estimation performance, as shown in HAZE-Net
results in Fig. 2. We test gaze estimation performance under LR conditions using
MPIIFaceGaze [19] and EyeDiap [20] datasets. The proposed method effectively
estimates the gaze under challenging LR conditions (e.g., 28 × 28 pixels face
image). The major contributions of the paper are as follows:

– The HFAB proposed in our SR module strengthens the high-frequency in-
formation including eye regions, which is crucial for gaze estimation. With
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the contribution of HFAB, the LR face image can be enhanced to be suitable
for gaze estimation.

– Our gaze estimation module utilizes the global-local appearance map ob-
tained via high-frequency extraction. It improves the performance to be ro-
bust to person-specific appearance and illumination changes.

– HAZE-Net performs favorably against typical gaze estimation models under
challenging LR conditions.

2 Related Work
Appearance-based Gaze Estimation. Gaze estimation can be divided into
two methods: model-based methods [21–23] and appearance-based methods [24–
32]. Model-based methods estimate human gazes from the shape of the pupil and
boundaries between the iris and the pupil by handcrafted features. However, re-
cently, appearance-based methods have been in the spotlight owing to large
datasets and the advancement of deep learning techniques. These methods learn
how to extract embedded features for gaze estimation. As one of the early-stage
methods, GazeNet [24] takes a grayscale eye patch as input and estimates the
gaze vector. It shows a better gaze estimation performance by additionally using
a head pose vector. As an extended version, the performance was further im-
proved by using the VGG network. Spatial-Weights CNN [19] utilizes not only
the eye region but also full-face images. Spatial weights are used to encode im-
portant positions in the face image. This method weights regions of the face that
are useful for gaze estimation. Through this, more weight is assigned to a specific
area in the face image. Furthermore, iTracker [26] receives two eyes, face, and face
positions as input and predicts the gaze vector. Dilated-Net [27] utilizes dilated-
convolutions to extract high-level features without reducing spatial resolution. It
is to capture such small changes in eye appearance. Kang Wang et al. [28] point
out the difficulty of generalizing gaze estimation because of appearance varia-
tions, head pose variations, and over-fitting issues with point estimation. To deal
with these issues, they introduced adversarial learning and Bayesian framework
in their network so that it can be practically used in real-world applications.
Focusing on the fact that over-parameterized neural networks can be quickly
over-fitted, disentangling transforming encoder-decoder (DT-ED) [29] performs
few-shot adaptive gaze estimation for learning person-specific gaze networks with
very few calibration samples. Coarse-to-fine adaptive network (CA-Net) [25] ex-
tracts coarse-grained features from face images to estimate basic gaze direction
and fine-grained features from eye images to estimate gaze. In addition, accord-
ing to the above strategy, they design a bigram model that connects two gaze
directions and a framework that introducing attention components to adaptively
acquire appropriate subdivided functions. Additionally, there is an attempt to
support gaze estimation by utilizing semantic segmentation which identifies dif-
ferent regions of the eyes such as the pupils and iris pupils. RITnet [31] exploits
boundary-aware loss functions with a loss scheduling strategy to distinguish co-
herent regions with crisp region boundaries. PureGaze [32] purifies unnecessary
features for gaze estimation (e.g., illumination, personal appearance, and facial
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expression) through adversarial training with a gaze estimation network and a
reconstruction network. Nevertheless, the appearance-based gaze estimation can
have a high variance in performance depending on the person-specific appear-
ance (e.g., colors of pupil and skin). In this paper, we devise the global-local
appearance map for the gaze estimation to be robust to person-specific appear-
ance. Also, our gaze estimation module effectively learns high-frequency features
to be robust to illumination and resolution changes.
Unconstrained Gaze Estimation. Despite the emergence of appearance-
based methods for gaze estimation, there are limitations on estimating gaze from
real-world images owing to various head poses, occlusion, illumination changes,
and challenging LR conditions. According to the wide range of head pose, ob-
taining both eyes in the occluded or illuminated image is difficult. Park et al. [10]
proposed a model specifically designed for the task of gaze estimation from single
eye input. FARE-Net [9] is inspired by a condition where the two eyes of the
same person appear asymmetric because of illumination. It optimizes the gaze
estimation results by considering the difference between the left and right eyes.
The model consists of FAR-Net and E-net. FAR-Net predicts 3D gaze directions
for both eyes and is trained with an asymmetric mechanism. The asymmet-
ric mechanism is to sum the loss generated by the asymmetric weight and the
gaze direction of both eyes. E-Net learns the reliability of both eyes to balance
symmetrical and asymmetrical mechanisms. To solve this problem in a differ-
ent approach, region selection network (RSN) [33] learns to select regions for
effective gaze estimation. RSN utilizes GAZE-Net as an evaluator to train the
selection network. To effectively train and evaluate the above methods, uncon-
strained datasets which are collected in real-world settings have been emerged
[34–38]. Recently, some studies have introduced self-supervised or unsupervised
learning to solve the problem of the lack of quantitative real-world datasets [39–
41]. In addition, GAN-aided methods [42, 43] can be applied to solve the lack
of datasets problem. The above studies have been conducted to solve various
constraints, but studies in unconstrained resolutions are insufficient. When the
recently proposed gaze estimation [24, 27, 32, 44] modules are applied to the LR
environment, it is experimentally shown that the performance of these modules
is not satisfactory. To deal with this, we propose HAZE-Net which shows an
acceptable gaze accuracy under challenging LR conditions.

3 Method
This section describes the architecture of the proposed high-frequency attentive
super-resolved gaze estimation, that so-called HAZE-Net. The first module for
the proposed method is the SR module based on HFABs that is a key component
to strengthen the high-frequency component of LR face images. The second
module is the global-local gaze estimation module, where discriminative eye
features are learned. Note that two modules are collaboratively learned. The
overall architecture of HAZE-Net is shown in Fig. 3.
3.1 Super-Resolution Module
Our SR module is mainly composed of HFABs to exaggerate the high-frequency
components that are highly related to gaze estimation performance. Fig. 4 shows
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Fig. 3. HAZE-Net architecture. In the first module (yellow panel), given the face image
of an LR image, we employ our SR module based on the HFAB. The input image goes
through one or two down samples according to the scale factor. In the second module
(violet panel), our gaze estimation module utilizes eye patches and the global-local
appearance map. We feed four features to the final fully connected layer to obtain the
estimated gaze angle (θprd,ϕprd).

the high-frequency extractor (HF extractor) for extracting high-frequency com-
ponents from the input. We use the DCT principle that indicates that the more
directed from the top-left to the bottom-right in the zigzag direction, the higher
is the frequency component. 2D-DCT denoted by F transforms input I into the
DCT spectral domain D for each channel:

D(i) = F(I (i)), i = 1, 2, ...n, (1)

where i is a channel index, and n is the number of channels. We create a binary
mask m by using a hyper-parameter λ which decides the masking point as
follows:

m =
{

0, y < −x + 2λh

1, otherwise
, (2)

where h denotes the height of I , and x, y denote the horizontal and vertical
coordinates of m, respectively. The size of m equals I . The hyper-parameter
λ ranges from 0 to 1. If the λ is too small, overfitting occurs because finer
features with low-frequency are emphasized and used for learning. On the other
hand, if the λ is too large, most of the useful information for gaze estimation
such as the shape of the pupil and the boundaries between the iris and the
eyelids is lost, preventing performance improvement. The high-frequency can be
separated by element-wise product of D and m. The high-frequency features
in the DCT spectral domain are transformed into the spatial domain through
2D-IDCT denoted by F−1:

Eh(I ) = F−1(D ⊗ m), (3)

where ⊗ denotes the element-wise product and Eh denotes a HF extractor.
The HFAB utilizes the residual channel attention block (RCAB) [14] structure,
as shown in Fig. 5. RCAB extracts informative feature components to learn the
channel statistic. The high-frequency feature map extracted by the HF extractor
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Fig. 4. Architecture of HF extractor. Given the spatial domain image or feature map,
we map the spatial domain into DCT spectral domain. λ is a hyper-parameter that
indexes the high-frequency component to be extracted from the top-left to the bottom-
right in the zigzag direction. The mask determined by λ is multiplied by the feature
of the DCT spectral domain. We finally get the high-frequency spatial domain image
through 2D-IDCT.

and the original feature map are assigned to the HFAB as input, as shown in Fig.
5. The original feature map is reinforced by a residual group stacked RCABs for
image restoration. To exaggerate the insufficient high-frequency in the original
process, the high-frequency feature map is input through a module consisting
of two RCABs. Two enhanced results are added to obtain a high-frequency ex-
aggerated feature map. This result becomes a feature in which the outline of
the face and the boundary between the elements of the eyes are emphasized.
Our SR module is composed of the HFABs, H, and the HF extractors, Eh. The
architecture of our SR module is given on the left side of Fig. 3. The module
takes an LR image as input and magnifies it to a target size through bicubic
interpolation.

Fig. 5. Architecture of HFAB. Given a feature map, we separate the image into the
high-frequency feature map and the original feature map. Both features are fed through
independent RCABs. We empirically employ two RCABs for the high-frequency feature
map and five RCABs for the original feature map. CA layer allows RCAB to learn useful
channel-wise features and enhance discriminative learning ability.
After the head layer extracts the features from the magnified input, the feature
size is reduced through the down block consisting of two convolution layers and
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a LeakyReLU activation layer. The original features and high-frequency features
extracted by Eh are passed through the group of HFABs. The high-frequency
enhanced feature through the HFAB is upscaled to the target size through up-
block, U , consisting of a pixel shuffle layer and two convolution layers. Finally,
this extended feature is concatenated with the feature extracted from the head
layer and converted into the super-resolved RGB image ISR through the tail
layer as follows:

ISR = U(H(Eh(fd), fd)) ⊕ fb), (4)

where fb is the feature extracted from a bicubic-upsampled image, fd is the
feature reduced in size by the downblock and ⊕ is the concatenation operation.
3.2 Gaze Estimation Module
The performance of the appearance-based gaze estimation module depends on
the resolution of the image received as an input. In general, the proportion of a
face in the image is usually small and variable. Thus, resizing the LR face image
to a larger size causes severe loss of information that is important to gaze esti-
mation. Therefore, in this paper, we propose the super-resolved gaze estimation
module that is robust under LR conditions. As our gaze estimation module adap-
tively learns through super-resolved images with exaggerated high-frequency, it
preserves information that helps estimate gaze under the LR environment. Our
module secures stable input by adding additional high-frequency components
that are insensitive to this environment. The gaze estimation module has a
high variance in performance depending on the appearance of a person. This
is because face images contain redundant low-frequency information. Thus, un-
necessary information should be excluded while high-frequencies that help gaze
estimation remain. We improve our generalization ability by obtaining a high-
frequency appearance map through an HF extractor and using it as an input
of the feature extractor. Additionally, we utilize five landmark coordinates such
as eyes, nose, and corners of the mouth in the input image during the training
process, with the facial landmark detector [45]. The above five coordinates are
the structural location information of the face that can be used as a proper
guidance of head pose. Our gaze estimation module is designed to receive a
super-resolved image and generates five inputs consisting of a high-frequency
global appearance map, two high-frequency local maps for each eye, and two eye
images. The global appearance map refers to the features that only leave high-
frequency features extracted from the face and facial landmarks. Meanwhile, the
local appearance map is only extracted from eye patches by the same procedure.
It utilizes Resnet-18 as the backbone to extract features from each input. The
five features extracted from each input are concatenated into a vector and put
into a fully connected layer of size 512. A two-dimensional head-pose vector is
used to train our gaze estimation module that predicts a gaze angle (θprd, ϕprd).

3.3 Loss Function
HAZE-Net employs two loss functions for the SR and gaze estimation modules.
The two loss functions are appropriately combined according to the proposed
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alternative learning strategy.
SR Loss. Our module uses L1 Loss, which is commonly used in SR tasks. The
loss function minimizes the difference in pixel values between the original image
and the SR result image as follows:

LSR = 1
N

∥FSR(ILR) − IHR∥1, (5)

where N is the image batch size, ILR is the LR image taken as the input, and
IHR is the original HR image. In addition, FSR is our high-frequency attention
SR module.
Gaze Estimation Loss. The proposed gaze estimation module predicts (θ, ϕ)
which represents pitch and yaw, respectively. The predicted (θprd, ϕprd) are com-
pared with the ground truth (θgt, ϕgt) and the mean squared error as the loss
function. This is the loss function of our gaze estimation module:

LGE = 1
N

N∑
i=1

((θprd
i − θgt

i)2 + (ϕprd
i − ϕgt

i)2). (6)

Total Loss. The total loss function is a combination of the SR loss and the gaze
estimation loss. Therefore, the total loss is defined as follows:

LT otal = LSR + αLGE , (7)

where α is a hyper-parameter that scales gaze estimation loss. If the loss scale is
focused on one side, it tends to diverge. Thus, it should be appropriately tuned
according to the purpose of each phase. The detailed hyper-parameters according
to the phase are introduced in section 3.4.

3.4 Alternative End-to-End Learning

Fig. 6. Flowchart of HAZE-Net’s alternative end-to-end learning architecture. (a)
Phase 1: SR module training while freezing gaze estimation module. (b) Phase 2: Gaze
estimation module training while freezing SR module.

This section describes the learning strategies for the proposed HAZE-Net. It is
not simply a structural combination of the SR module and the gaze estimation
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module but a complementary combination through the proposed alternative end-
to-end learning. We initialize each module with pre-trained parameters for each
task. To train the end-to-end model stably, we combine two modules and apply
different losses at each phase, as shown in Fig. 6. We found that using training on
our module is more efficient and effective than training from scratch. In phase 1,
the SR module is trained while the gaze estimation module is frozen. We use the
weighted sum of the SR loss and gaze estimation loss, LT otal, as shown in Fig.
6(a). We combine two loss functions for our modules to learn complementarily.
α is used to perform training by scaling the magnitude of SR loss and gaze
estimation loss. Given the scale difference between the two losses, we found that
setting the α to 0.1 is the best empirical choice. In phase 2, the gaze estimation
module is trained while the SR module is frozen, as shown in Fig. 6(b). We use
only gaze loss LGE in phase 2. Although training both modules without freezing
is a possible option, we found that the performance was poor compared with
our strategy. The SR images produced by our end-to-end trained SR module
generally show clear boundaries between the components of the eyes and the
clear shape of the pupil. Although our module may not guarantee a better peak
signal-to-noise ratio (PSNR) score, it performs better in the gaze estimation task
than simply combining the two separated state-of-the-art (SOTA) modules.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. Based on the datasets used in recent studies [9, 29, 44], we accordingly
evaluate our module on the MPIIFaceGaze [19] and EyeDiap [20] datasets. To
simulate LR conditions, we set the HR size to 112 × 112 and set LR size according
to the scale factor (e.g., 56 × 56, 37 × 37, 28 × 28). For example, if the scale
factor is 2×, the resolution of the LR image is 56×56. If the scale factor is 4×,
the resolution of the LR image is 28×28. The MPIIFaceGaze contains a total
of 45,000 images from 15 subjects. We split 9,000 images of three subjects (p00,
p02, p14) for validation, and others are used for the training set. The EyeDiap
contains a total of 94 video clips from 16 subjects. We prepare 16,665 images as
in [25]. We split 2,384 images consisting of two subjects (p15, p16) and others are
utilized for the training set. When generating LR images, we utilize the built-in
resize function of MATLAB.
Environment. Our module is implemented in PyTorch 1.8.0, and experiments
for comparison with other modules are conducted in the same environment. We
train each module for 100 epochs with a batch size of 80 and use the Adam
optimizer. In addition, we empirically set the hyper-parameter λ to 0.2
Evaluation Metric. We compare the proposed SR module with SOTA SR
methods. For qualitative comparison, we compared the PSNR and structural
similarity index measure (SSIM) [46] values of the different methods for scale
factors (2×, 3×, and 4×). Also, we compare the proposed gaze estimation module
with other modules. We compute the angular error between the predicted gaze
vector and the ground-truth gaze vector, and represent the performance of the
module as an angular error to numerically show the performance.
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4.2 Performance Comparison by Module

Comparison of SR Modules. We compare our SR module with SOTA SR
modules [11–13] in terms of both quantitative results and visual results. All SR
modules are trained according to their losses and training methods on MPI-
IFaceGaze and Eyediap datasets from scratch. Note that gaze datasets are
rescaled to simulate low-resolution constraint settings. Therefore, the SR losses
are calculated between the SR result and HR image. We present a comparison
in terms of high-frequency restoration. As shown in Fig 7, the proposed module
enhances the lines, which are high-frequency components, better than DBPN
[11] and DRN [12]. SwinIR [13] is comparable to our SR module. As shown in
Table 1, the HAZE-Net shows a lower tendency in terms of PSNR and SSIM
than the SOTA SR modules. However, as shown in Fig. 7, the proposed HAZE-
Net can adequately enhance high-frequency components to be suitable for gaze
estimation task that requires clear boundaries. To prove the superiority of our
SR module, we measure angular errors on each SR result with the baseline gaze
estimation module consisting of ResNet-18 and fully connected layers. As shown
in Table 1, our SR module provides the lowest angular error compared with
other SOTA SR modules. The HFAB proposed in our SR module strengthens
the high-frequency information such as eye features (e.g., the shape of the pupil)
and boundaries (e.g., the boundary between the iris and the eyelids). It leads
improvement of gaze estimation performance. Moreover, our SR module can re-
store clean HR image robust to noise of the input image even while maintaining
the high-frequency information.

Table 1. Performance comparison with SOTA SR modules for 2×, 3×, and 4×. The
best and the second-best results are highlighted in red and blue colors, respectively.

SR module Scale MPIIFaceGaze EyeDiap
PSNR/SSIM Angular error PSNR/SSIM Angular error

Bicubic

2

30.83/0.8367 7.23 35.62/0.9436 5.96
DBPN [11] 34.35/0.8882 6.64 39.61/0.9716 5.64
DRN [12] 33.73/0.8128 6.46 38.70/0.9228 5.44

SwinIR [13] 34.40/0.8911 6.51 40.36/0.9735 6.47
Our SR module 34.28/0.8263 6.23 39.65/0.9041 4.68

Bicubic

3

26.23/0.6939 7.73 31.46/0.8722 5.64
DBPN [11] 31.43/0.8257 6.69 37.02/0.9447 5.18
DRN [12] 31.59/0.8279 8.52 36.19/0.9165 6.55

SwinIR [13] 31.67/0.9086 6.62 36.93/0.9657 5.32
Our SR module 31.33/0.8219 6.49 36.82/0.9392 4.96

Bicubic

4

25.84/0.6429 9.32 29.58/0.8066 6.22
DBPN [11] 29.69/0.7704 7.06 34.96/0.9128 5.83
DRN [12] 29.77/0.7735 6.85 33.42/0.8516 5.82

SwinIR [13] 30.26/0.8723 7.54 34.02/0.9452 5.79
Our SR module 29.59/0.7769 6.60 32.73/0.8934 5.54

Fig. 7. Qualitative comparison of our SR module with SOTA modules on 4× SR.
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Comparison of Gaze Estimation Module. In this section, we compare the
results of our gaze estimation module with other gaze estimation modules. We
select a gaze estimation module to compare with our module. Among the recent
gaze estimation modules, we exclude modules that use few data [39], unlabeled
[40, 41]. All gaze estimation module is trained using an image of size 112 × 112
from scratch. For a fair comparison, we commonly use ResNet-18 as a backbone
of all gaze estimation modules. As presented in Table 2, our method shows the
best gaze angular error on the MPIIFaceGaze dataset and the second-best gaze
angular error on the EyeDiap dataset. It indicates the superiorty of our gaze
estimation module due to the global-local appearance map. As shown in Fig. 8,
our module shows robust performance under challenging illumination conditions.

Table 2. Performance comparison with gaze estimation modules for 112 × 112 HR
images. The best and the second-best results are highlighted in red and blue colors,
respectively.

Gaze estimation module MPIIFaceGaze angular error EyeDiap angular error
GazeNet [24] 5.88 4.25

RT-GENE [44] 5.52 4.65
DilatedNet [27] 5.03 4.53
PureGaze [32] 5.71 3.88

Our gaze estimation module 4.95 4.12

Fig. 8. Visualization of gaze estimation results under challenging illumination condi-
tions. Blue and red arrows represent ground truth and predicted gaze, respectively.

4.3 Comparison under LR Conditions

To verify performance under the LR conditions, we compare HAZE-Net, and the
combination of SR module and gaze estimation module. Each module is trained
with gaze datasets accordingly Tables 1 and 2. For fair comparison under the LR
conditions, each gaze estimation modules are fine-tuned with the results of SR
modules. Moreover, we set the gaze estimation baselines that are trained with LR
image. In section 4.2, the results show that our module presents lower PSNR and
SSIM than those of SwinIR. In contrast, HAZE-Net exhibits the lowest angular
error, as presented in Table 3. This is because HAZE-Net successfully enhances
high-frequency components, which are critical for gaze estimation performance,
compared to other SR modules.
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Table 3. Performance comparison with SOTA SR modules combined with gaze estima-
tion modules under LR conditions. The best and the second-best results are highlighted
in red and blue colors, respectively.

SR module
Gaze MPII EyeDiap

SR module
Gaze MPII EyeDiap

estimation FaceGaze angular estimation FaceGaze angular
module angular error error module angular error errorr

LR (56×56)
GazeNet 9.42 9.17

LR (37×37)
GazeNet 9.82 9.87

RT-GENE 10.13 10.33 RT-GENE 10.54 11.41
DilatedNet 15.47 17.21 DilatedNet 16.59 18.23

GazeNet 6.89 4.46 GazeNet 8.00 5.02
Bicubic 2× RT-GENE 6.23 4.96 Bicubic 3× RT-GENE 7.33 5.64
(112×112) DilatedNet 5.59 4.55 (111×111) DilatedNet 6.85 5.93

PureGaze 6.71 4.25 PureGaze 7.92 4.91
GazeNet 6.07 4.05 GazeNet 6.55 4.15

DBPN 2× RT-GENE 6.59 4.82 DBPN 3× RT-GENE 5.65 4.79
(112×112) DilatedNet 5.21 4.58 (111×111) DilatedNet 5.60 5.22

PureGaze 5.94 3.98 PureGaze 6.38 3.92
GazeNet 6.17 4.36 GazeNet 6.59 4.52

DRN 2× RT-GENE 5.76 4.69 DRN 3× RT-GENE 6.52 5.38
(112×112) DilatedNet 5.14 5.04 (111×111) DilatedNet 5.73 5.18

PureGaze 6.01 5.51 PureGaze 6.21 5.72
GazeNet 6.47 4.21 GazeNet 7.25 4.51

SwinIR 2× RT-GENE 5.54 4.76 SwinIR 3× RT-GENE 6.46 5.02
(112×112) DilatedNet 5.03 4.39 (111×111) DilatedNet 5.56 4.47

PureGaze 5.77 4.33 PureGaze 7.09 4.39
HAZE-Net 2× (112×112) 4.93 3.90 HAZE-Net 3× (111×111) 5.14 3.74

SR module Gaze estimation module MPIIFaceGaze angular error EyeDiap angular error

LR (28×28)
GazeNet 10.45 11.53

RT-GENE 10.76 12.69
DilatedNet 17.89 19.23

GazeNet 9.23 5.57
Bicubic 4× RT-GENE 9.32 6.22
(112×112) DilatedNet 7.52 6.14

PureGaze 9.17 4.96
GazeNet 7.10 4.81

DBPN 4× RT-GENE 7.03 5.70
(112×112) DilatedNet 5.89 4.51

PureGaze 6.94 4.45
GazeNet 7.04 4.90

DRN 4× RT-GENE 7.05 5.65
(112×112) DilatedNet 5.82 5.39

PureGaze 6.88 4.30
GazeNet 8.14 5.21

SwinIR 4× RT-GENE 7.44 5.50
(112×112) DilatedNet 6.38 4.67

PureGaze 7.97 4.56
HAZE-Net 4×(112×112) 5.56 4.02

Table 4. Quantitative results for evaluating the effects of the HF extractor on the
MPIIFaceGaze dataset. The experiment is conducted for 4×.

HF extractor PSNR SSIM Angular error
× 30.80 0.8397 7.27
O 29.59 0.7769 6.60

Table 5. Quantitative results for evaluating the effects of global and local appearance
maps. The experiments are conducted under HR (112×112) conditions.

Global map Local map RGB eye patch MPIIFaceGaze angular error
× × O 5.56
× O O 5.27
O × O 5.23
O O O 4.95

Table 6. Gaze estimation performance of different levels of α and λ . The best results
are highlighted in red.

MPIIFaceGaze angular error
α 0 0.1 1

HAZE-Net 4× 5.47 4.95 5.13
λ 0.2 0.4 0.5

HAZE-Net 4× 4.95 5.19 5.71
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4.4 Ablation Study

Effect of HF Extractor. We investigate the impact of the HF extractor in
order to verify the element performance of our first contribution introduced in
section 1. We measure the angular error by using our gaze estimation module
trained with HR images. As presented in Table 4, although the HF extractor
shows a lower PSNR and SSIM, it exhibits better gaze estimation performance.
This indicates that the proposed module enhanced high-frequency components
that are suitable for gaze estimation tasks.
Global-Local Appearance Map. In this section, we demonstrate the effective-
ness of the global-local appearance map introduced as our second contribution.
Table 5 shows that both global and local appearance maps help to improve gaze
estimation performance. In particular, using the global-local appearance map
provides 0.61◦ lower angular error than using only RGB eye images.
Hyper-parameters. We clarify and specify how we decided the value of the
hyper-parameters α, and λ . As present in Table 6, when α is 0.1, λ is 0.2, it
provides the best performance in terms of gaze estimation. α = 0.1 means ef-
fectiveness of end-to-end learning. λ = 0.2 is used to improve the generalization
performance of HAZE-Net. If the λ is too large (e.g., 0.4,0.5), most of the use-
ful information for gaze estimation is lost. We determined the hyper-parameters
according to these results.
Limitations. Our module may still be somewhat limited in two aspects in its
practical application. In the first aspect, the inference time of our module in
112×112 HR resolution that is measured in 2× is 46ms, 3× is 41ms, and 4× is
103ms with NVIDIA RTX 3080 GPU. Therefore, it is slightly difficult to apply in
an environment that requires real-time. Second, as our experiment assumes only
the bicubic kernel, there is a possibility that the performance will deteriorate in
a real environment where the blur kernel is blinded.

5 Conclusion

In this paper, we propose a high-frequency attentive super-resolved gaze estima-
tion network. In the SR module, we introduce the HFAB to effectively exaggerate
high-frequency components for gaze estimation. In the gaze estimation module,
we introduce the global-local high-frequency appearance map. Furthermore, al-
ternative end-to-end learning is performed to effectively train our module. With
the contribution of techniques described above, HAZE-Net significantly improves
the performance of the gaze estimation module under LR conditions. Exten-
sive experiments including ablation studies demonstrate the superiority of our
method over the existing methods.
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