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Abstract. Group activity recognition aims to infer group activity in
multi-person scenes. Previous methods usually model inter-person rela-
tions and integrate individuals’ features into group representations. How-
ever, they neglect intra-person relations contained in the human skeleton.
Individual representations can also be inferred by analyzing the evolu-
tion of human skeletons. In this paper, we utilize RGB images and human
skeletons as the inputs which contain complementary information. Con-
sidering different semantic attributes of the two inputs, we design two
diverse branches, respectively. For RGB images, we propose Scene En-
coded Transformer, Spatial Transformer, and Temporal Transformer to
explore inter-person spatial and temporal relations. For skeleton inputs,
we capture the intra-person spatial and temporal dynamics by designing
Spatial and Temporal GCN. Our main contributions are: i) we propose a
spatial-temporal network with two branches for group activity recogni-
tion utilizing RGB images and human skeletons. Experiments show that
our model achieves 97.1% MCA and 96.1% MPCA on the Collective
Activity dataset and 94.0% MCA and 94.4% MPCA on the Volleyball
dataset. ii) we extend the two datasets by introducing human skele-
ton annotations, namely human joint coordinates and confidence, which
can also be used in the action recognition task. The code is available
at https://github.com/zxll0106/Image_and_Skeleton_Based_Group_
Activity_Recognition.

Keywords: Group activity recognition · Video analysis · Scene under-
standing.

1 Introduction

Group activity recognition [6] is widely used in social behavior understanding,
service robots, and autonomous driving cars, therefore playing a vital role in
⋆ This work is supported in part by National Key Research and Development Project

under Grant 2019YFB1310604, in part by National Natural Science Foundation of
China under Grant 62173189.
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Fig. 1. Intuitive examples of a talking video clip in the Collective Activity dataset. On
the inter-person level, we capture the spatial relation in the group at the same frame,
and temporal dynamics of interaction between consecutive frames. On the intra-person
level, the human skeleton reveals the more detailed evolution of the individual action,
so we model the complex and diverse spatial-temporal individual features.

video analysis and scene understanding. The goal of group activity recognition
is to understand what they are doing in the multi-person scene. In the previous
methods, great efforts have been made to verify the effectiveness of modeling
inter-person relations. However, intra-person relations in the human skeleton
convey fine-grained actions information, but receive less attention in the group
activity recognition task.

To model the relationship between individuals, graph neural networks are ap-
plied to represent inter-person social relations. Nodes in the graph are individuals
and the edges are formed by the relationship between them. Recent attention in
group activity recognition has also focused on Transformer [28] which was pro-
posed in the field of natural language processing. Transformer in group activity
recognition [37,11,19] is utilized to model the inter-person relation and com-
bine individuals’ features. In addition, some methods [11,2,19] utilized optical
flow frames which contain different motion features from RGB images. Previous
works show impressive improvement, which suggests the effectiveness of model-
ing inter-person relations. However, they neglect that intra-person information
of the human skeleton contains fine-grained motion dynamics.

Human skeletons convey information complementary to RGB images and
optical flow frames. Human bodies can be viewed as a whole composed of a
trunk and limbs, while human actions can be regarded as motions of joints and
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Image and Skeleton Based Group Activity Recognition 3

bones. And skeletons can be represented by 2D position sequences of human
joints. With the development of pose estimation networks, we can obtain more
accurate human joint coordinates. From reliable skeleton data, we can model
intra-person spatial-temporal dynamics and extract an effective representation.

Accordingly, we propose a spatial-temporal network with two branches to
capture the intra-person and inter-person relations. For RGB image inputs, we
propose Scene Encoded Transformer to model the interaction between individu-
als and the surrounding scene, and extract informative scene features. As shown
in Fig. 1, individuals also take consideration into the reaction of others to de-
termine their behaviors, besides interacting with the scene. We adopt Spatial
and Temporal Transformer to infer spatial and temporal inter-person relations,
respectively. Moreover, for skeleton inputs, Spatial and Temporal GCN are de-
signed to model intra-person spatial and temporal relations in the human skele-
ton. In Spatial GCN, spatial information is propagated from one node to another
along intra-person connections. Temporal GCN passes temporal dynamics be-
tween consecutive frames of the same node. As shown in Fig. 1, exploiting intra-
person spatial-temporal relations is important to modeling individuals’ features.

The contributions of this work can be summarized as:
(1)We propose a spatial-temporal network with two branches for group ac-

tivity recognition utilizing RGB images and human skeletons. For RGB image
inputs, we propose Scene Encoded Transformer, Spatial Transformer, and Tem-
poral Transformer to model the inter-person relation. For skeleton inputs, we
propose Spatial and Temporal GCN to capture intra-person spatial and tem-
poral relations which lack further exploration in the group activity recognition
task. Experiment results show that our proposed model achieves 97.1% MCA
and 96.1% MPCA on the Collective Activity dataset and 94.0% MCA and 94.4%
MPCA on the Volleyball dataset.

(2)We extend the two datasets by introducing human skeleton annotations,
namely human joint coordinates and confidences. Extended datasets can be not
only used in group activity recognition but also used in skeleton-based action
recognition.

2 Related Work

2.1 Group Activity Recognition

Machine learning plays an important role in addressing the issue of group activ-
ity recognition. Initially, many approaches designed hand-crafted features and
applied probabilistic graphical models [1,4,5,7,12,17]. With the development of
deep neural networks, many approaches [16,3,15,24,8] used CNNs to extract the
feature map of the video clip. RNNs were also used to infer temporal dynamics
of individual actions and group activity [16,8,3,15,24]. [16] utilized the person
LSTM layer and the group LSTM layer to extract individual and group fea-
tures, respectively. [3] designed a unified framework where RNN can reason the
probability of individual actions. The semantic graph extracted from text labels
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4 X. Zhai et al.

and images was applied in stagNet [24] and structural-RNN was used to capture
temporal dynamics.

Recent development in graph neural networks has improved the ability of
modeling relation between individuals [30,9,23,33,14,38]. ARG[30] constructed
actor relation graphs to capture appearance and position relations between ac-
tors. [9] utilized I3D as the backbone network to extract spatial-temporal features
of a video clip, used self-attention to integrate individuals’ features, and used
graph attention to model relations between individuals. [23] used the mean-field
conditional random fields to infer temporal relations and spatial relations. The
social adaptive module designed in [33] has the same structure in the spatial and
temporal domain and can infer key instances under the weakly supervised set-
ting. In PRL[14], individuals’ relation was represented on the semantic relation
graph. Dynamic Inference Network was proposed in [38] to construct person-
specific spatial and temporal graphs by designing Dynamic Relation(DR) module
and Dynamic Walk(DW) module.

Meanwhile, researchers in group activity recognition [11,19,37,27,40] have
shown an increased interest in Transformer [28] which was proposed in the field
of natural language processing. Actor-Transformer [11] used RGB frames, op-
tical flow frames, and pose features as input and used Transformer to model
group representation. GroupFormer [19] designed a Transformer encoder to cap-
ture spatial and temporal features and adopted a Transformer decoder in a cross
manner to capture spatial-temporal interactive features. [37] enhanced individ-
uals’ representations with the global contextual information and aggregated the
relation between individuals using Spatial-Temporal Bi-linear Pooling module.

Previous works paid more attention to exploring the inter-person relation and
confirmed its effectiveness in inferring group features. However, they neglected
that the human skeleton which contains intra-person relations also conveys dif-
ferent fine-grained information. Different from them, we capture spatial and
temporal relations both on intra-person and inter-person levels in parallel by
designing two branches.

2.2 Modeling of Interaction

Modeling interaction relationships is an important component in the multi-
instance problem, such as action recognition [21,18,34], pedestrian intent estima-
tion [35,36], and trajectory prediction [10,39]. To model the interaction between
joint nodes, [21] proposed the MS-G3D network which can disentangle the node
representations in different spatial-temporal neighborhoods. Actional links were
utilized in [18] to propagate actional information between different joint nodes
and structural links were used to expand the respective fields. To exploit the
interaction between the target individual and other traffic users, [35] proposed
Attentive Relation Network which adopted soft attention to assign the weight
of multiple traffic users. AgentFormer [39] utilized individual-aware attention
to capture individual-to-itself and individual-to-others relations. Previous works
have considered only one of the intra-person and inter-person relations. Differ-
ent from them, we capture the interaction on the intra-person and inter-peron
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Fig. 2. Overview of the proposed network, which contains the Image Branch and the
Skeleton Branch. The Image Branch is proposed to model the inter-person interaction
and the Skeleton Branch is designed to extract the intra-person relation.

levels. Considering different semantic attributes of the two levels, we propose the
two-branch model to refine different-grained spatial-temporal dynamics.

3 Method

In this section, we outline the pipeline of our method. The overall framework
of our method is illustrated in Fig. 2. Our method consists of two branches,
namely the Image Branch and the Skeleton Branch. The Image Branch takes
RGB frames as input, captures the inter-person interaction, and obtains the
spatial-temporal contextual individual and group features. The Skeleton branch
takes human skeletons as input, adopts Spatial and Temporal GCN which are
suitable for modeling intra-person relations, and obtains complementary indi-
vidual and group representations. We concatenate the outputs of two branches
and pass them to classifiers getting individuals’ actions and group activity.

3.1 Image Branch

First, we take T -frame images as the input and obtain individual features from
Image Feature Extractor. Then, Scene Encoded Transformer incorporates con-
textual information in the scene to enhance the individual feature. Considering
the continuity and the interactivity of the individual action and group activity,
Spatial and Temporal Transformer mine spatial and temporal relations of en-
hanced individual features. Finally, we concatenate the outputs of Spatial and
Temporal Transformer and then apply a pooling layer to get the group feature
of the Image Branch.

Image Feature Extractor The input of the Image Branch is T -frame images
that are centered on the labeled frame. We utilize the backbone network to
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extract feature maps X ∈ RT×D×H×W of the input frames. Given bounding
boxes of N individuals, we apply RoIAlign [13] to extract individuals’ features
from feature maps. Then a fully-connected layer is adopted to get d-dimensional
individuals’ features XI ∈ RT×N×d.

Scene Encoded Transformer Individual actions are influenced by multiple
social and environmental elements, in particular the interaction with the scene.
Exploring the impact of the scene from a global view lacks further exploration
in previous works [30,11,15,38]. To extract relational features of the surrounding
scene, we propose Scene Encoded Transformer which captures useful informa-
tion from the surrounding scene to enhance the individual features. Inspired by
Transformer, we note that the attention mechanism plays a critical role in encod-
ing the relative important elements effectively. Taking account into the unique
importance of each scene element, we utilize the attention mechanism in Scene
Encoded Transformer to calculate the weight based on relations between individ-
uals and the scene. We consider that the scene feature X is composed of H ×W
scene elements, and each element contains the visual feature and the position
feature. Different scene elements contribute to the target individual unequally,
so the attention mechanism is adopted to assign an adaptive weight to each el-
ement. To align individuals’ features XI and feature maps X, we project them
to dE dimensional subspaces, obtaining X ′

I ∈ RT×N×dE and X ′ ∈ RT×HW×dE .
We view X ′

I as the query Q, and view X ′ as the key K the value V . Then we
utilize the similarity between the query Q and the key K to assign the adaptive
weight of the value V and compute the weighted sum of value V .

It is difficult to capture order information of inputs because there is no re-
currence and no convolution in Transformer [28]. As a result, we encode their
position features as follows:

PE(pos,2k) = sin(
pos

100002k/L
)

PE(pos,2k+1) = cos(
pos

10002k/L
)

(1)

For the ith individuals’ features, we encode center coordinates (xi, yi) of his
bounding box.

pos =

{
xi, k ∈ {0, 1, . . . , L/4− 1}
yi, k ∈ {L/4, L/4 + 1, . . . , L/2− 1}

(2)

For the scene feature map, we encode each scene element’s coordinate (x, y)
of the feature map, where x ∈ [0, H] , y ∈ [0,W ].

pos =

{
x, k ∈ {0, 1, . . . , L/4− 1}
y, k ∈ {L/4, d/4 + 1, . . . , L/2− 1}

(3)

Finally, we obtain the scene encoded individual features XE ∈ RT×N×dE

which integrate the scene contextual information to individual features.
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Image and Skeleton Based Group Activity Recognition 7

Spatial Transformer In order to propagate information between different in-
dividuals in the scene, we propose Spatial Transformer to regard individuals
as nodes of the graph and aggregate information from surrounding individuals.
Our Spatial Transformer captures the target individual’s interaction with sur-
rounding individuals and assigns the relative importance weight to them. Then
inter-person spatial relations can be integrated into individuals’ features. Spatial
Transformer views the temporal dimension of scene encoded individuals’ features
XE as the batch dimension. We adopt different projection functions to map XE

to QS , KS and VS , calculate the attention weights of neighbor individuals, and
obtain the feature XS which incorporate spatial information. Positional encoding
follows Scene Encoded Transformer.

Temporal Transformer Considering the temporal correlations of individual
actions and group activities, we propose Temporal Transformer to encode the
evolution of individual features in the temporal domain. Some previous works
[9,19] utilized I3D to integrate the temporal feature of the input images, but they
ignored individual-level temporal dynamics. Compared to the pooling operation
in the temporal domain [30], the attention mechanism in Temporal Transformer
can calculate the adaptive importance of individuals in the consecutive frames.
Temporal Transformer views the spatial dimension of scene encoded individu-
als’ features XE as the batch dimension, so we swap the temporal and spatial
dimension of XE reshaping them to X ′

E ∈ RN×T×dE . The self-attention mecha-
nism takes X ′

E as inputs and captures contextual temporal information to enrich
individuals’ features.

Positional encoding in Temporal Transformer uses time order as the position
information of different frames.

pos = t, t ∈ [0, T ] (4)

3.2 Skeleton Branch

We obtain human skeleton data from RGB images using Skeleton Data Ex-
tractor. Spatial and Temporal GCN are utilized to model intra-person spatial-
temporal features. These features are pooled to form the group feature of the
Skeleton Branch.

Skeleton Data Extractor The skeleton data contains intra-person interaction
information which is different from inter-person interaction modeled in the Image
Branch. It can be represented by 2D coordinates sequences of human joints.
We apply HRNet [26] pretrained on the COCO dataset as a pose estimation
network. Given the bounding box of each individual, we crop the RGB image
and resize it to 192 × 256. HRNet receives cropped images and then predicts
human joints coordinates with confidence which are utilized as the input of
Spatial and Temporal GCN.
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8 X. Zhai et al.

Graph Convolutional Network The input of graph convolutional network
(GCN) is graph-structured data which is different from common image-structured
data. Layer-wise propagation rules of GCN have a simple structure:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (5)

where Ã = A + I, A is the adjacent matrix of the input graph, I is the
identity matrix, D̃ii =

∑
j Ãij is the degree matrix of Ã, W (l) is the learned

weight matrix, H(l) is feature vectors of nodes in the lth layer, and σ(·) is the
activation function ReLU(·) = max(0, ·).

Spatial GCN Spatial relations of human joints can be represented as a graph,
so we utilize Spatial GCN to integrate intra-person spatial relations. We con-
struct the spatial graph Gt = (Vt, Et) on human joints in the tth frame. Vt ={
vti|vti, i = 1, . . . , N joint

}
represents joint nodes, and the attribute of vti is the

coordinates and estimate confidence. The edge set Et =
{
eij |i, j = 1, . . . , N joint

}
represents the relation between the joint node vti and vtj . Constructing rela-
tion matrix AS is the key component in GCN. We note that human joints can
only move within certain limits and interact with the surrounding joints. Hence,
we only consider interaction between the node vti and its neighborhood set
N(vti) = {vtj |d(vti, vtj) ≤ 1, j ̸= i}. Noting that the motion of joints is driven
by the muscles, the movements of muscles are split into two types, namely short-
ening and lengthening. Muscles shorten pulling the weight towards the body
center and muscles lengthen keeping the weight away from the body center. So
we divide nodes in the neighborhood set N(vti) into two categories: the proximal
set and the distal set.

Proximal = {vtj |d(vtj , vcenter) < d(vti, vcenter), vtj ∈ N(vti)}
Distal = {vtj |d(vtj , vcenter) > d(vti, vcenter), vtj ∈ N(vti)}

(6)

where we regard the neck node as the center vcenter of the body. The value of
AS

ij depends on which set the neighbor node vtj belongs to. vti in the tth frame
are stacked to form the H(0).

Temporal GCN Temporal GCN captures the temporal dynamics of the same
joint node in different frames. We construct the temporal graph Gi = (Vi, Ei)
on the ith joint node in the different frames, where Vi = {vti|t = 1, 2, . . . , T},
Ei = {ett′ |t, t′ = 1, 2, . . . , T, t′ ̸= t}. We only consider M frames around the tth

frame, namely

AT
tt′ =

{
1, t− M−1

2 ⩽ t′ ⩽ t+ M−1
2

0, else
(7)

vti on the ith joint node are stacked to form H(0).
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3.3 Training Loss

To train an end-to-end model, we calculate the loss using the cross-entropy loss:

L = L1(y
G, ŷG) + λL2(y

I , ŷI) (8)

where L1 and L2 are the cross-entropy loss, yG and ŷG are the ground truth
and the prediction value of the group activity, yI and ŷI are the ground truth
and the prediction value of the individual action, and λ is a hyper-parameter
balancing the two loss.

4 Experiments

In this section, we conduct experiments on the Collective Activity dataset and
the Volleyball dataset. First, we introduce the two datasets which are widely used
in group activity recognition. Second, we provide the implementation details of
our proposed model. Third, we compare our proposed method with state-of-
the-art methods. Finally, we present the ablation study and visualization of our
model to verify the effectiveness of our proposed modules.

4.1 Datasets

Collective Activity Dataset The Collective Activity dataset [6] consists of 44
clips composed of frames that range from 194 to 1814. The middle frame of every
ten frames contains the bounding box coordinates annotations and individuals’
action labels (NA, waiting, talking, queuing, crossing, and walking). Actions of
most individuals in the same scene determine the group activity (waiting, talking,
queuing, crossing, and walking). We follow [29,31,32] to merge the label crossing
with walking to the label moving. The test set is composed of 1/3 of the video
clips and the training set is composed of the rest of the video clips following [24].

Volleyball Dataset The Volleyball dataset [15] consists of multiple volleyball
clips whose length is 41 frames. The middle frame of each clip contains bounding
box coordinates, individual action labels, and group activity labels. Individual
action labels contain 9 actions: setting, digging, falling, jumping, blocking, mov-
ing, spiking, waiting, and standing. Group activity labels contain 8 activities,
namely right set, right pass, right spike, right winpoint, left set, left pass, left
spike, and left winpoint. We split the dataset into the training set composed of
3493 clips and the testing set composed of 1337 clips.

4.2 Implementation details

Referring to the previous methods, we resize the images in the Volleyball dataset
to H×W = 720×1280 and images in the Collective Activity dataset to H×W =
480 × 720. We select T = 10 frames in the clips, which contain 5 frames before
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10 X. Zhai et al.

Table 1. Comparison with state-of-the-art models on the Collective Activity
dataset(CAD) and Volleyball dataset(VD) using Multi-class Classification Accu-
racy(MCA) and Mean Per Class Accuracy(MPCA) metrics.

Method MCA-CAD MPCA-CAD MCA-VD MPCA-VD

HDTM [16] 81.5 - 81.9 -
SBGAR [20] 86.1 - 66.9 -
stagNet [24] 89.1 - 89.3 -
CRM [2] 85.8 94.2 93.0 -
ARG [30] 91.0 - 92.6 -
M. Ehsanpour et al. [9] 89.4 - 93.1 -
PRL [14] - 93.8 91.4 91.8
Actor-Transformer [11] 91.0 - 93.5 -
DIN [38] - 95.9 93.6 93.8

Ours-Image 93.7 93.1 92.9 93.5
Ours-Skeleton 95.0 92.8 83.9 83.0
Ours-Image+Skeleton 97.1 96.1 94.0 94.4

the middle frames and 4 frames after the middle frames. In the Image Branch,
we adopt pretrained VGG16 [25] as the backbone and apply RoIAlign with
the crop size K × K = 5 × 5 on the feature map. After the fully connected
layer, the dimension of individuals’ features d is 1024. We set scene encoded
individual feature dimension dE = 1024. For simplicity, the number of layers
in Scene Encoded/Spatial/Temporal Transformer is set as 1. In the Skeleton
Branch, we adopt HRNet model pose_hrnet_w32 which is pretrained on the
COCO dataset. Given the bounding boxes of individuals, we crop images and
resize them to H×W = 256×192. For the training loss, we set λ = 1 to balance
two tasks. In addition, we set the dropout rate as 0.3 to reduce overfitting.

For training on the Volleyball dataset, we adopt Adam optimizer with β1 =
0.9, β2 = 0.999, ϵ = 10−8. We finetune the backbone network with the learning
rate 10−5 in 200 epochs and then train the whole model in 30 epochs with the
learning rate ranging from 10−4 to 10−5. For training on the Collective Activity
dataset, we adopt Adam optimizer with the same hyper-parameters. We finetune
the backbone network with the same learning rate in 100 epochs and then train
the whole model in 30 epochs with the fixed learning rate 10−5. After training
the Image Branch and Skeleton Branch separately, we freeze the parameters in
the two branches, concatenate the group features extracted by the two branches,
and train the classifier layer to obtain the result of the fusion.

4.3 Comparison with the state-of-the-arts

Collective Activity Dataset To verify the effectiveness of our model, we
compare our model with the state-of-the-art models on the Collective Activity
dataset. The result measured by the Multi-class Classification Accuracy(MCA)
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(a) (b)

Fig. 3. (a)The confusion matrix of our proposed model on Collective Activity dataset.
(b)The confusion matrix of our proposed model on Volleyball dataset.

and Mean Per Class Accuracy(MPCA) metrics is shown in Table 1. We list the
results of the Image Branch, the Skeleton Branch, and the fusion of the two
branches. Our Image Branch model and Skeleton Branch model achieves 93.7%
MCA and 95.0% MCA respectively, and outperform other methods. Intra-person
spatial-temporal dynamics extracted in the Skeleton Branch play a pivotal role
in understanding individual and group behaviors. And inter-person relation cap-
tured in the Image Branch also models important contextual interaction. The
fusion of two branches surpasses all methods by 6.1% MCA and 0.2% MPCA,
which demonstrates that the two branches play a complementary role.

To show the effectiveness of our model, we draw the confusion matrix on the
Collective Activity dataset shown in Fig. 3(a). It indicates that our model can
distinguish well on most classes.

Volleyball Dataset We further evaluate the effectiveness of our model on the
Volleyball dataset and list the results compared with the state-of-the-art models
in Table 1. MCA and MPCA metrics are also used to evaluate the results on the
Volleyball dataset. Our Image Branch model achieves 92.9% MCA and 93.5%
MPCA. It shows that context encoded features and spatial-temporal relations
between individuals are pivotal for inferring group features. Our skeleton branch
model performs not well on the Volleyball dataset, as we think there are over-
lapping instances in some images, which will lead to a decline of recognition
accuracy. The fusion of two branches achieves 94.0% MCA and 94.4% MPCA
and outperforms previous methods, which also demonstrates that inter-person
and intra-person relations are complementary.

As shown in Fig. 3(b), the confusion matrix of the Volleyball dataset shows
that the accuracy of our model achieves 90% in most classes. Our model rarely
confuses the left and right sides because our model integrates the whole scene
feature with individuals’ features and captures the relation between individuals.
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12 X. Zhai et al.

Table 2. Ablation study of the Image Branch on the Volleyball dataset. The base model
contains the backbone network, utilizes RoIAlign to extract individuals’ features, and
applies a classifier layer to obtain the group activity.

Scene Encoded Transformer Spatial Transformer Temporal Transformer MCA MPCA

88.0 88.6
✓ 92.5 93.1
✓ ✓ 92.2 92.6
✓ ✓ 92.5 92.8
✓ ✓ ✓ 92.9 93.5

Table 3. Ablation study of the Skeleton Branch on the Collective Activity Dataset.
SGCN denotes Spatial GCN module. TGCN denotes Temporal GCN module.
STGCN denotes a layer composed of Spatial and Temporal GCN.

Components SGCN SGCN+TGCN Layers of STCGN

- - L=2 L=4 L=6 L=8 L=10 L=12

MCA/MPCA 53.7/42.2 69.9/50.6 78.0/67.9 86.7/77.0 87.2/78.7 88.2/79.0 95.0/92.8 93.7/90.0

4.4 Ablation Studies

To evaluate the effectiveness of our proposed modules, we perform ablation study
using MCA and MPCA metrics.

Scene Encoded Transformer To study the performance of Scene Encoded
Transformer, we append this module to the base model. As shown in Table 2,
Scene Encoded Transformer improves 4.5% MCA and 4.5% MPCA. Considering
that individuals always interact with the scene, the scene contains latent informa-
tion related to individuals’ actions and group activity. Hence, utilizing relations
between individuals and the scene can enhance the group representation.

Spatial and Temporal Transformer In Table 2, Spatial and Temporal Trans-
former are appended after Scene Encoded Transformer, respectively. Using Spa-
tial or Temporal Transformer alone impacts negatively on the effectiveness of our
model, as we consider that spatial and temporal dependency are not considered
simultaneously. After the concatenation of Spatial Transformer and Temporal
Transformer, our model achieves 92.9% MCA and 93.5% MPCA on the Volley-
ball dataset, which indicates that fusing the complex spatial-temporal interaction
can improve the effectiveness of our model.

Spatial and Temporal GCN We conduct the ablation study on the Skeleton
Branch to verify the effectiveness of Spatial and Temporal GCN. As can be seen
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frame0 frame4 frame9left spike left spike left spike

Fig. 4. Visualization results of the attention matrix in Scene Encoded Transformer on
the Volleyball dataset.

in Table 3, adding Temporal GCN after Spatial GCN improves the performance
from 42.2% MPCA to 50.6% MPCA. It demonstrates that integrating spatial
and temporal intra-person relations is fundamental to modeling individuals’ rep-
resentations. In addition, we gradually increase the number of layers, and observe
that the performance achieves the best result when the number of layers is set to
10. Stacked layers of Spatial and Temporal GCN can jointly exploit intra-person
spatial-temporal relations and integrate them into individuals’ features.

4.5 Visualization

Scene Encoded Transformer We visualize the attention map of Scene En-
coded Transformer on the Volleyball dataset in Fig. 4. Scene Encoded Trans-
former emphasizes the location of the volleyball, spectator seats, and referees
on the volleyball court. We observe that Scene Encoded Transformer pays more
attention to the volleyball at the moment of individual spiking the volleyball. It
is clear that key scene features can be captured by Scene Encoded Transformer.

Spatial and Temporal Transformer Visualization results of the left spike
activity on the Volleyball dataset are shown in Fig. 5. We observe that individ-
ual 4 is spiking the volleyball in frame 0. And Spatial Transformer highlights
individual 4 and relation with others. This shows that Spatial Transformer pays
attention to the key instances and utilizes relations with each other to infer the
group activity. In frame 9, individual 6 who is blocking the ball is highlighted by
Spatial Transformer. Interaction between individual 6 and individual 4 can also
confirm that the group activity is left spike. Additionally, Temporal Transformer
takes into account the inter-frame influence.

Spatial and Temporal GCN As shown in Fig. 6, we project group features
extracted by Spatial and Temporal GCN on the Collective Activity dataset to
2D dimensions using t-SNE [22]. Spatial and Temporal GCN aggregate intra-
person spatial and temporal dynamics to the group representations and cluster
the representations well. As the layers get deeper, group features are more dis-
criminative. These visualization results verify the effectiveness of our Spatial and
Temporal GCN in the Skeleton Branch.
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Fig. 5. Visualization results of the attention matrix in Spatial and Temporal Trans-
former on the Volleyball dataset.

Fig. 6. From left to right, they are t-SNE visualization of 2 layers, 6 layers and 10
layers of Spatial and Temporal GCN on the Collective Activity Dataset.

5 Conclusion

This paper proposes a spatial-temporal network with two branches taking RGB
images and human skeletons as input. For RGB image inputs, Scene Encoded
Transformer is proposed to incorporate scene features into individuals’ features.
Spatial and Temporal Transformer are designed to extract spatial and temporal
information, respectively. Furthermore, we utilize innovative human skeletons
as input and capture spatial and temporal dynamics by utilizing Spatial and
Temporal GCN. Experiments demonstrate our proposed model achieves out-
standing performance while it can capture spatial and temporal dependencies
on the intra-person and inter-person levels.
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