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Abstract. To further reduce the cost of semi-supervised domain adap-
tation (SSDA) labeling, a more effective way is to use active learning
(AL) to annotate a selected subset with specific properties. However,
domain adaptation tasks are always addressed in two interactive as-
pects: domain transfer and the enhancement of discrimination, which
requires the selected data to be both uncertain under the model and
diverse in feature space. Contrary to active learning in classification
tasks, it is usually challenging to select pixels that contain both the
above properties in segmentation tasks, leading to the complex design
of pixel selection strategy. To address such an issue, we propose a novel
Active Domain Adaptation scheme with Multi-level Contrastive Units
(ADA-MCU) for semantic image segmentation. A simple pixel selection
strategy followed with the construction of multi-level contrastive units
is introduced to optimize the model for both domain adaptation and ac-
tive supervised learning. In practice, MCUs are constructed from intra-
image, cross-image, and cross-domain levels by using both labeled and
unlabeled pixels. At each level, we define contrastive losses from center-
to-center and pixel-to-pixel manners, with the aim of jointly aligning
the category centers and reducing outliers near the decision boundaries.
In addition, we also introduce a categories correlation matrix to im-
plicitly describe the relationship between categories, which are used to
adjust the weights of the losses for MCUs. Extensive experimental results
on standard benchmarks show that the proposed method achieves com-
petitive performance against state-of-the-art SSDA methods with 50%
fewer labeled pixels and significantly outperforms state-of-the-art with a
large margin by using the same level of annotation cost. Code will be in
https://github.com/haoz19/ADA-MCU.

1 Introduction

Semantic segmentation is one of the most classic tasks in computer vision and
image processing.The goal is to learn the semantic context in the image and
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Fig. 1. traditional active learning methods via the complex sample selection policy for
domain adaptation task and (b) the pipeline of our proposed Active Domain Adaptation
with Multi-level Contrastive Units. Gl and Gh denote low and high uncertainty pixel
groups determined by the uncertainty score.

automatically annotate each pixel a category label according to such learned
information [1, 2]. In practice, such a task always requires excessively numerous
annotations, limiting its scalability in real applications. One way to reduce an-
notation cost is to leverage a large amount of virtual data that is easy to obtain
labels from game engines to extend training samples (e.g., GTA5, SYNTHIA,
Synscapes). However, the model trained merely with virtual data performs ter-
ribly on real-world data distribution because of the domain shifts. Therefore,
many domain adaption methods are raised in recent years to bridge the gap
between label-rich virtual data and label-scarce real-life data.

One way to address the domain adaptation problem is to train the model
under the semi-supervised manner (SSDA), which jointly leverages fully labeled
source domain data and a subset of labeled target domain data in the training
phase. Compared to unsupervised domain adaptation (UDA), semi-supervised
methods are able to significantly improve the segmentation accuracy through
a small amount of annotated samples. Although the SSDA method makes a
good balance between performance and annotation cost, there is still a big gap
compared with the performance of the fully supervised approaches. In practice,
how to bridge this gap by effectively labeling data is still an open issue.

In the literature, active learning (AL), which aims to select a subset of sam-
ples with specific properties, is proposed to annotate the training samples in a
cost-effective way [19–21]. Although it has extensive research [23] on various
areas by adopting active learning, it remains a challenge to deal with domain
adaptation semantic segmentation since we need to address this task by dealing
with two entangled issues from the pixel level, i.e., aligning domain distribu-
tion and improve the model’s discriminant ability. In simple terms, we
need to make the representative pixels (i.e., the ones near the category center)
from the same category but different domains be closer in the feature space,
and to reduce uncertainty pixels (i.e., the ones with low predictive confidence)
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of each domain by pushing them to the corresponding centers from the decision
boundary. However, it is especially challenging to select pixels that simultane-
ously meet the above two properties. Moreover, mining pixels being satisfied with
the above properties from thousands of candidate pixels in an image through a
complex scheme is also a time-consuming process.

To tackle such an issue, we propose a novel Active Domain Adaptation scheme
with Multi-level Contrastive Units (ADA-MCU) for semantic segmentation. As
shown in Fig. 1 (a) and Fig. 1 (b), different from active domain adaptation for
image classification, which requires a complex scoring policy to labeled specific
samples for model supervision, we use a simple selection policy in ADA-MCU to
divide each image into two subsets of pixels, (i.e., actively labeled ones with low
confidence scores and unlabeled ones), then adopt pixels from these two subsets
to construct contrastive pairs from multiple perspectives for model optimization.
Specifically, at the cross-domain level, we enforce the distribution of the fea-
ture representations in the target domain being aligned to the source domain.
While at the intra-image and cross-image level, we enforce the instance rep-
resentations belonging to the same category to be closer in the feature space and
make those are belonging to different categories to be far away in both source
and target domain. Additionally, for each contrastive level, we do the alignment
in two perspectives by using two kinds of loss, i.e., center to center contrastive
loss and pixel to pixel contrastive loss. The former enforces the centers of distri-
bution to be aligned while the latter reduces the uncertainty of pixels by pulling
them closer to the category center representations. In this way, two domains
would be better aligned by employing the synergy of the above two losses.

In practice, since the misclassified pixels are highly relevant to its spatial
layout, e.g., the sidewalk is more likely to be misclassified as the road but be
rarely misclassified as sky, we further introduce a dynamic categories correla-
tion matrix (DCCM) to model the implicit relationship between each pair of
categories. DCCM will be updated online during the training phase, aiming to
adjust the weights of contrastive losses for the MCUs. Such a categories-aware
contrastive loss could further improve the discriminative feature representation
learning across domains. In this way, the domain transfer and discrimination
enhancement are unified into one single framework.

The main contributions of this article can be summarized as follows,

1. We propose ADA-MCU, a novel active learning scheme, which uses a simple
selection policy along with the construction of MCUs to optimize the model.

2. We introduce a simple yet effective scheme to construct Multi-level Con-
trastive Units (MCU) to regularize model training from multiple perspectives
and propose a dynamic categories correlation matrix (DCCM) to describe
the implicit relationship between categories, making more effective usage of
the labeled and unlabeled pixels for model training.

3. As shown in Fig. 1 (c), extensive experiments demonstrate that our proposed
method can achieve similar performance on two standard synthetic-to-real
semantic segmentation benchmarks with less than 50% labeled data com-
pared with current semi-supervised domain adaptation methods, and signif-
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icantly outperforms state-of-the-art with a large margin by using the same
level of annotation cost.

2 Related Work

2.1 Domain Adaptation for Semantic Segmentation

Domain adaptation task aims to explore how to transfer the knowledge that
the model learned from one domain to another. In domain adaptation task,
typically there are two domains, which have a certain domain shift but also share
some common knowledge with each other. The domain that we train our model
originally with is called source domain and the domain that we want to transfer
our model to is called target domain. According to the usage of target domain
annotations, we can divide domain adaptation semantic segmentation task into
two main parts: 1) unsupervised domain adaptation one termed UDA and 2)
semi-supervised domain adaptation termed SSDA. UDA is aimed at transferring
the knowledge obtained from a labeled source domain to an unlabelled target
domain. While SSDA aims at narrowing the gap with the fully supervised results
by using a small set of labeled samples.

In recent years, some UDA methods for semantic segmentation [3–5] have
been proposed via adversarial training which relies on a discriminator to mea-
sure the divergence between two domains’ distributions. Adversarial based meth-
ods aims at aligning the feature space of source domain and target domain by
confusing the discriminator. Image translation has also been widely used in the
UDA methods [6, 7]. As we know the most obvious gap between source domain
and target domain is the color distribution. The aligning of color distribution is
a very easy but efficient way to improve the performance. Recently some works
[51] proposed that class-agnostic training paradigm gives model stronger gener-
alization ability, which also pointed out a promising way of UDA. In addition,
several methods [8, 9] also focus on self-training that generates pseudo labels
for unlabelled data in the target domain.

For the SSDA, some methods [10–12] implemented feature alignment across
domain from global and semantic level. For example, Chen et al. [11] proposed
a framework based on dual-level domain mixing to address the differences in
the amount of the labeled data between two domains. Huang et al. [12] aligned
features by employing a few labeled target samples as anchors. However, none
of those methods focus on sample selection, especially from the pixel-level per-
spective. We introduce pixel-level active learning to make more effective use of
labeled pixels compared with SSDA.

Contrastive Learning. Contrastive learning (CL) aims at pushing positive
sample pairs away from the negative ones in the representation space to learn
better representations. For positive pair sampling, mainstream methods [13, 14]
create different views of each sample using multiple perturbations. At the same
time, negative pairs can be obtained by hard example mining strategies. [15, 16].
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Fig. 2. Detailed illustration of construction of Multi-level Contrastive Units.

For the semantic segmentation task, CL could also be used to do intra-domain
model pre-training [17]. Recently, [18] also propose a pixel-wise contrast scheme
for semantic segmentation, making the representation of each category’s pixel
more compact.

Active Learning. Active learning (AL) aims at obtaining high performance
with low annotation costs by selecting the most informative samples. Usually,
there are three major views to address AL tasks. 1) uncertainty-based meth-
ods [19, 20], 2) diversity-based methods [21, 22], 3) methods based on expected
model change [23]. The former selected the samples with the highest uncer-
tainty, while the latter selected the samples that could better represent the whole
dataset. The last one aims to select the sample which can lead to more effect
on the model. Compared to the existing works in active learning, our proposed
method address AL in pixel-level and we construct MCUs for assistance in order
to achieve great performance without a complicated selection strategy.

3 Methodology

In this section, we will describe our proposed method ADA-MCU in detail.
Firstly, we will introduce a simple pixel-level sample selection policy, dividing
each image into different pixel subsets. Secondly, we will present how to construct
multi-level contrastive units (MCU) using labeled samples and unlabeled ones.
At last, we will discuss how to apply contrastive loss with the dynamic category
correlation to optimize the segmentation model.

3.1 Problem Setting and Notation

The goal of semantic segmentation domain adaptation is to transfer the model
from source domain Xs to the target domain Xt. In our setting, we have a fully
labeled source domain {(xn

s , y
n
s )}

Ns
n=1, indicating the n-th source image xn

s with
the ground truth label map yns , and the target domain {xn

t }
Nt
n=1. Here Ns and

Nt denote the number of source and target domain images, respectively. For
the pixel-level active domain adaptation, the n-th target image xn

t contains two
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subsets in pixel-level, naming active annotated pixel xn:(i,j)
t with its correspond-

ing ground-truth label yn:(i,j)t and unlabeled pixel xt
n:(i,j), where (i, j) and (i, j)

denote the labeled and unlabeled pixel positions in the target image. We use
Me and Ma to represent the number of expected labeled pixels number and al-
ready labeled pixels. And Mt is the total number of pixels in the target training
dataset.

3.2 Active Pixel Annotation via Uncertainty Score

In practice, we first use source domain images to train the segmentation network.
Once the pre-trained model F is obtained, we use the output of F on both source
and target images to obtain the calculate their predictive uncertainty scores. The
uncertainty score of pixel (i, j) in the n-th image can be calculated as follows,

S(xn:(i,j)) = E(xn:(i,j)) + γDKL(p
n:(i,j)|| p̂n:(i,j)) (1)

where the first part E(·) is the pixel-wise entropy, which is calculated by Eq. (2).
The second part, DKL(·) is the pixel-wise KL divergence between the predictions
of the main segmentation head and the auxiliary head.3 γ is a hyperparameter
to control the weights of two uncertainty indicators. E(·) and DKL(·) can be
calculated as follows,

E(xn:(i,j)) =
−1

log(C)

C∑
c=1

pn:(i,j)c log pn:(i,j)c , (2)

DKL(p || p̂) =
C∑

c=1

pc (log pc − log p̂c), (3)

where C denotes the total number of categories, By calculating the entropy of
the pixel and the KL divergence of two head outputs, the degree of each pixel’s
uncertainty is obtained for further pixel annotation.

Using the scoring function mentioned above with the threshold πhigh, πlow,
we can divide both source and target image pixels into three groups termed high,
low, and medium uncertainty groups respectively. Here the higher uncertainty
indicates the lower model predictive confidence. By adjusting πhigh, we can con-
trol the annotation rate of the target domain. We will discuss how to use pixels
in different groups for contrastive unit construction in the next subsection.

Category Center Generation Strategy. After we divide both source and
target pixels of each training batch into three groups, we use those pixels from the
low uncertainty group with high predictive confidence to generate the category
center. Intuitively, high confident samples always lie in the center of category
3 The auxiliary loss is proposed in [1] to improve the accuracy. We leverage the outputs

from both auxiliary and main segmentation heads of DeepLab v2 to calculate KL
divergence.
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Fig. 3. Illustration of the construction of MCUs. We leverage both labeled data from
Gh (when adding adaptive sampling, we also consider Gm to label) and unlabeled data
from Gl to construct MCUs, and in each level of MCUs we use both pixel-to-pixel
and center-to-center contrast to regularize the model in both uncertainty and diversity
perspectives. Note that the representations can be from different pairs of images at
different levels. High transparency means high uncertainty.

clusters, leading to a high density. According to the boundary assumption [36],
the decision boundary should not across the high-density region of a cluster.
In other words, high confident pixels are always reliable and can be applied as
representative of the cluster. Therefore, the aggregation of those pixels in the
low uncertainty group for each domain can be considered as the representation
of each category’s center.

Annotation via Adaptive Sampling When labeling the target domain pix-
els, we introduce adaptive sampling (AS) to maximize the advantages of active
learning strategy. For each training batch, after dividing each target domain im-
age into three groups: Gt

h, Gt
m and, Gt

l , we randomly select the same number of
pixels in those three groups. Then for Gt

h and Gt
m, we give ground-truth labels

to those pixels, and we use the current predictions as pseudo labels to annotate
those pixels selected by AS in Gt

l . Note that the size of each group changes for
each training iteration. Thus the annotated pixels in Gt

h, Gt
m and Gt

l should
be dynamically sampled, and we called it annotation via adaptive sampling. In
practice, the size of Gt

m is always larger than Gt
h, therefore, in other words, we

give a higher sampling rate to the group with high uncertainty for labeling.

3.3 Multi-level Contrastive Unit Construction

After obtaining the active labeled target pixels, we construct the multi-level
contrastive units for domain adaptation and discrimination enhancement, which
is partially inspired by the pixel-wise contrastive learning for semantic segmen-
tation [25]. For each batch size that contains the same number of source and
target images, we construct the contrastive units in three levels: (1) intra-image
level, (2) cross-image level, and (3) cross-domain level.
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Anchor Selection Policy. Before constructing the contrastive units for each
level, we first require to select the anchor pixels for each contrastive unit to
construct. In practice, rather than mining informative samples, we follow the
work [25], determining whether it is a hard anchor through its uncertainty and
whether the model predicts it correctly. In the source domain, we compare the
predictive pixels’ labels and their ground truth and then select the ones which
are incorrectly predicted as anchors. Similarly, in the target domain, we use
active learning to annotate the pixels with high uncertainty. Then the incorrectly
predicted pixels in the high uncertainty group4 are selected as the target anchors.

Contrastive Unit Construction. In each level, we firstly extract anchors from
images using the above anchor selection policy. Then the pixels with the same
label as the anchor are indicated as the positive samples, while the others with
different labels are identified as the negative ones. After that, we construct the
contrastive units in three levels, which are illustrated in Fig. 2. For the intra-
image level, we extract positive pixels and negative pixels from the same image
according to anchors. While there is a problem that the independence of images
leads to the loss of information across the whole dataset. For example, the class
car and class train may never appear in the same image through the entire
domain, making these two categories lack inter-actions at the intra-image level.
Therefore, we introduce cross-image level contrast to solving this problem. For
the cross-images level, we first extract anchors from one image and extract pos-
itive pixels and negatives ones from another random image in the same domain.
In this way, any two categories could be able to have interactions with each
other along with the training iterations. According to the above strategy, the
intra-image and the cross-image contrast units encourage the feature represen-
tation to be more discriminative in a specific domain. In contrast, we introduce
cross-domain level contrastive units to align source and target distribution for
the domain transfer. Different from cross-images level contrast, for cross-domain
level, we extract anchors from one image in a certain domain and extract positive
samples and negative ones from another image from the other domain. Through
the synergy of three levels’ contrast units, we could achieve the discrimination
enhancement and domain alignment in the model optimization process.

3.4 Pixel-level Active Domain Adaptation with MCUs

Segmentation Loss Function. In target domain, we use Gt
h, Gt

m, and Gt
l to

denote the labeled pixels selected by adaptive sampling in high, medium, and
low uncertainty groups, because there only labels for those samples selected by
AL with AS in target domain. Thus the active training loss by using the labeled
high uncertainty pixels can be defined as,

LGt
h,G

t
m

seg =
∑

n:(i,j)∈Gt
h,G

t
m

LCE(p
n:(i,j), yn:(i,j)) (4)

4 Note that the pixel with high uncertainty does not necessarily to have the wrong
predictive result.
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where pn:(i,j) and yn:(i,j) are the prediction and ground truth of pixel in position
(i, j) of n-th target image, and LCE denotes the cross-entropy loss function. On
the contrary, pixels in Gt

l are with low uncertainty, which means more likely to
be correctly predicted. Thus, we directly use their predictions as pseudo labels
to calculate the loss,

LGt
l

seg =
∑

n:(i,j)∈Gt
l

LCE(p
n:(i,j), ỹn:(i,j)), (5)

where ỹn:(i,j) = softmax(pn:(i,j)). Thus the overall segmentation loss can be
represented as follows,

Lseg = LGt
h,G

t
m

seg + LGt
l

seg + LGs
h,G

s
m,Gs

l
seg . (6)

where Gs
h, Gs

m and Gs
l denote the pixel groups of the source domain. Note that

since we have all annotations for images in source domain, we just calculate
cross-entropy loss as their segmentation loss.

Dynamic Categories Correlation Matrix (DCCM). In practice, the con-
text information and spatial layout are critical for segmentation accuracy. For
instance, class road and sidewalk are misclassified more frequently, while sky
and road are rarely to be misclassified. To better leverage such information,
we introduce DCCM to describe the implicit relationship between any two cate-
gories. Denote M

(cu,cv)
k as the number of pixels being misclassified from category

cu to cv. Let M cu indicate the number of all pixels in cu, then the error rate
R

(cu,cv)
k can be calculated as follow,

R
(cu,cv)
k = M

(cu,cv)
k / M cu (7)

And at each iteration, we could dynamically update each element of the corre-
lation matrix W by using exponential moving average as,

w(u,v)
τ = β w

(u,v)
τ−1 + (1− β) R

(cu,cv)
k , (8)

where w
(u,v)
τ denotes the correlation coefficient of u-th and v-th categories at

the iteration τ . Then DCCM will further guide multi-level contrastive units by
adjusting the weight of contrastive loss for each MCU.

Contrastive Loss Function. In each level of MCUs, we define loss function in
two perspectives. On the one hand, we introduce pixel-to-pixel (p2p) contrastive
loss based on the labeled pixels to reduce their uncertainty by pulling the same
class pixel being close and pushing different class samples being apart. The loss
function is defined based on InfoNCE [29], modified by using the weights in
DCCM.

Lp2p
con =

1

|Pp|
∑

p+∈Pp

− log Hp, (9)
1648
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Hp =
exp(w(u,v) p · p+/λ)

exp(w(u,v) p · p+/λ) +
∑

p−∈Np
exp(w(u,v) p · p−/λ)

, (10)

where · denotes dot multiplication of two vectors with the scalar as the output.
Pp and Np denote pixel-wise embedding collections of the positive and negative
samples.

On the other hand, we introduce class-to-class (c2c) contrastive loss by using
the category centers introduced in the former section, which are most represen-
tative for each category. Then we define c2c contrastive loss in the same form
with the p2p,

Lc2c
con =

1

|Pc|
∑

c+∈Pc

log Hc, (11)

where Pc and Nc denote class-wise embedding collections of the positive and
negative samples, and Hc has the same form as Eqn. 10 but uses class-wise
anchors instead of pixel-wise ones. Using two kinds of contrastive losses as regular
terms, we can encourage the features from the same category to be closer and
from different categories to be further. And the DCCM can increase the weight
between the categories which are more likely to be misclassified so as to guiding
model optimization. In this way, the total loss of the proposed ADA-MCU can
be presented as Ltotal = Lseg + Lcon, where Lcon is the sum of (Lp2p

con + Lc2c
con)

from three levels.

Table 1. Experimental results on GTA5-
to-Cityscapes compared with current
SSDA, semi-supervised learning (SSL)
methods. 19-class mIoU (%) scores are re-
ported on Cityscapes validation set by us-
ing 1.7%, 3.4%, 6.8%, 16.8% labeled pixels
from whole dataset.

Type Method Label Percentage (%)
1.7 3.4 6.8 16.8

Supervised Image-wise - 41.9 47.7 55.5

SSL CutMix (bmvc20) - 50.8 54.8 61.7
DST-CBC (arxiv20) - 48.7 54.1 60.6

SSDA

MME (cvpr19) - 52.6 54.4 57.6
MinEnt (cvpr19) 47.5 49.0 52.0 55.3
AdvEnt (cvpr19) 44.9 46.9 50.2 55.4

ASS (cvpr20) 50.1 54.2 56.0 60.2
FDA (cvpr20) 53.1 54.1 56.2 59.2
DDM (cvpr21) - 61.2 60.5 64.3
PCL (arxiv21) 54.2 55.2 57.0 60.4

Ours 58.7 61.6 63.9 65.8

Table 2. Experimental results on
SYNTHIA-to-Cityscapes compared with
current SSDA and semi-supervised
learning (SSL) methods. 13-class mIoU
(%) scores are reported on Cityscapes
validation set. Note that 1.7% pixels of
2795 images are at the same pixel number
of 50 images.

Type Method Label Percentage (%)
1.7 3.4 6.8 16.8

Supervised Image-wise - 53.0 58.9 61.0

SSL CutMix (bmvc20) - 61.3 66.7 71.7
DST-CBC (arxiv20) - 59.7 64.3 68.9

SSDA

MME (cvpr19) - 59.6 63.2 66.7
MinEnt (cvpr19) 52.9 56.4 57.9 62.5
AdvEnt (cvpr19) 51.4 55.2 59.6 62.6

ASS (cvpr20) 60.7 62.1 64.8 69.8
FDA (cvpr20) 58.5 62.0 64.4 66.8
DDM (cvpr21) - 68.4 69.8 71.7
PCL (arxiv21) 61.2 63.4 65.2 70.3

Ours 66.2 69.1 70.6 73.1
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Image Ground Truth Fully Supervise Ours AdvEnt+CycleGAN

Fig. 4. Visualization of the segmentation results. Ours stands for our proposed method
with 20% active annotations.

4 Experiment

4.1 Dataset, Setting and Implementation

We evaluate our proposed method by using the two standard large-scale segmen-
tation benchmarks for domain adaptation, GTA5-to-Cityscapes, and SYNTHIA-
to-Cityscapes. Following the previous method [32], we apply 19 classes domain
adaptation for the former, and 13 classes for the latter. We conduct extensive
experiments and report mean Intersection-over-Union (mIoU) compared with
existing domain adaptation methods. All of the methods employ Deeplab v2 [2]
as the basic model, which utilizes a pre-trained ResNet-101 [26] on ImageNet as
backbone network. To measure the uncertainty, we calculate the KL divergence
in Eqn. (3) by using multi-level outputs coming from both conv4 and conv5 fea-
ture maps. All experiments are run on a single Tesla V100 GPU with 32 GB of
memory. All the models are trained by the Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate of 2.5 × 10−4 and decreasing with the
polynomial annealing procedure with the power of 0.9.

Before the domain adaptation procedure, we use translated source domain
data to train the model first. Then in each iteration, we randomly select 4 images,
contains 2 from the source domain and 2 from the target domain. For source do-
main images, we feed them to the model and get the predictions and pixel-wise
features. After that, we use predictions and labels to calculate cross-entropy loss,
execute anchor selection and calculate intra-image and cross-image contrastive
loss. While for target domain images, since we don’t have any annotations
at the beginning, we directly calculate the pixel-wise uncertainty score of the
model output (after softmax function) and divide the batch of images into three
groups according to the uncertainty, where γ is set to 0.5 in Eqn. (1). We ask the
Oracle to label the high uncertainty group, and use the predictions as pseudo
labels for pixels in low uncertainty group. Then, we can calculate cross-entropy
loss and intra-image and cross-image contrastive loss similar to soure domain.
Furthermore, we also calculate cross-domain contrastive loss using both source
domain and target domain data.
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AS MCU-Li MCU-Ld DCCM
AL(w/o AS)
AL(w AS) ✓
AL(w MCUi) ✓ ✓
AL(w MCUd) ✓ ✓ ✓
Full Model ✓ ✓ ✓ ✓

Table 3. Experiments setting of ablation study.

4.2 Comparison with State-Of-The-Art Methods

As presented in Table 1 and Table 2, we compare the proposed method with two
SSL methods, i.e. CutMix [30], DST-CBC [31], and seven SSDA methods, i.e.
MME [32], ASS [33], MinEnt [4], AdvEnt [4], FDA [35], PCL [34], DDM [11],
in different percentage of annotation: 1.7%, 3.4%, 6.8%, 16.8%. As expected,
compared with those methods, our purposed method has achieved a significant
accuracy (mIoU) improvement.

From the Table 1, we can clearly see that our method can achieve comparable
results with only about 50% of the annotations compared with other methods.
Even compared with the state of art SSDA method DDM, we can still achieve
similar performance using 30% fewer annotations. In addition, our proposed
method can achieve similar performance with the fully supervised method using
only 16.8% annotation of the whole target set. The visualization of the segmen-
tation results of fully supervised method, UDA method [4] and our proposed
method with 20% annotations are shown in Fig. 4. We can clearly see that our
proposed scheme with 20% annotations can obviously improve the effect of some
critical small areas, e.g. sign, rider and person.

5 Comparison with State-Of-The-Art ADA Methods

Recently, one article termed Multi-Anchor Active Domain Adaptation (MADA) [41],
which is about active domain adaptation for semantic segmentation, has been
accepted by ICCV2021 as the oral representation. The authors claim that it is
the first study to adopt active learning to assist the domain adaptation regard-
ing the semantic segmentation tasks, which adopts multiple anchors obtained via
clustering-based method to characterize the feature distribution of the source-
domain and multi-anchor soft-alignment loss to push the features of the target
samples towards multiple anchors leading to better latent representation. Since
the DeepLab v3+ [43] is adopted as the backbone network of this method, we
have not listed in the main article considering fair comparisons with previous
DeepLab v2 [2] based methods.

Different from our proposed pixel-level group partition regarding the uncer-
tainty, such a method still adopts an image-level scheme to conduct active tar-
get sample selection against source anchors. As presented in Table 5, we compare
our method with this active domain adaptation (ADA) method, MADA [41]. For
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fairness, we follow the same setting that MADA uses. The DeepLab v3+ [43] is
applied with the pre-trained ResNet-101 on ImageNet as the backbone network.
We set Me = 5% since MADA also selects 5% target-domain samples as active
samples for their experiments. The other settings are the same as the former
experiments described in the main article. The experiment shows that our pro-
posed method outperform MADA by a large margin, i.e., 1.6% mIoU, which
demonstrates the proposed method could take little annotation workload but
brings large performance gain compared with the recent SOTA method.

5.1 Ablation Study

Effectiveness of AL with Adaptive Sampling. Firstly, we want to inves-
tigate the effectiveness of our proposed active learning strategy. As shown in in
Table. 1, UDA is the performance of an unsupervised domain method AdvEnt
with cycleGAN [4]. RBA denotes the performance of a pixel-level Region-based
active learning method proposed in [37]. AL(w/o AS) indicates the degrada-
tion model which only uses the pixels from the high uncertainty group (i.e. pixels
with manual labeling) and all of the pixels from the low uncertainty group (i.e.
pixels with pseudo labels) to optimize the model. According to the results shown
in Table. 1, we surprisingly find out that in our work, merely adding an active
learning strategy may lead to performance degradation, e.g. 43.2% compared
with 46.3%. One acceptable reason is that our proposed scheme not only uses
labeled samples but also uses some of the unlabeled ones with pseudo labels to
supervise the network, and the proportion of selected labeled pixels in different
images varies greatly. For instance, if we set the annotation percentage for the
whole dataset to be 10%, some of the images may get 2% or less labeled data
(e.g. images with simple scenes) yet more than 50% pseudo label to supervise the
model together. In such case, the loss calculated by those ground truth labels
would be overwhelmed by the loss calculated by the pseudo labels, especially
when the annotation budget is extremely limited. After we introduce adaptive
sampling (AS) to our pixel-level active learning scheme, we get a satisfactory
result (64.3% mIoU) shown by AL(w AS) in Table.1. Such result also outper-
forms RBA by 2.5%, showing the superiority of our proposed active selection
strategy.

6 Conclusion

In this paper, we propose ADA-MCU, a novel active learning method, which uses
a simple selection policy along with the construction of MCUs to optimize the
segmentation model. As shown in Fig. 1, such a scheme abandons the complex
sample selection policy in previous methods, leading to a more efficient active
supervised training process. To the best of our knowledge, this work is the first
study to conduct pixel-level annotation-based active domain adaptation for se-
mantic image segmentation. The multi-level contrastive units (MCU), together
with dynamic categories correlation matrix (DCCM), are carefully designed for
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mIoU
UDA (cvpr19) 92.4 52.7 83.8 32.4 24.1 30.7 33.2 25.7 83.7 35.1 85.1 58.2 27.4 85.5 37.1 41.9 2.1 25.2 22.6 46.3
RBA (wacv19) – – – – – – – – – – – – – – – – – – – 61.8
AL(w/o AS) 90.4 34.9 82.3 30.0 23.4 27.4 31.9 21.9 84.0 38.5 77.8 58.4 25.0 84.8 26.9 34.9 1.5 27.6 19.8 43.2
AL(w AS) 96.4 75.7 86.8 40.3 42.0 47.4 46.1 65.4 87.9 44.0 84.3 68.6 44.9 91.5 66.7 72.6 53.9 41.9 64.7 64.3
AL(w MCUi) 96.8 76.5 86.8 40.5 43.2 47.4 48.5 66.3 88.6 50.7 80.7 69.4 48.4 91.7 67.4 73.2 54.2 45.6 66.6 65.5
AL(w MCUd) 97.1 77.4 87.8 42.1 43.9 48.1 47.4 65.3 87.4 55.1 82.9 72.1 49.1 91.2 70.4 73.1 55.3 45.7 66.3 66.1
Full Model 97.2 78.3 88.4 46.0 42.9 48.5 48.6 66.5 89.2 54.9 89.3 70.3 49.7 92.1 70.9 72.2 49.0 46.4 67.0 66.7

Table 4. Evaluation of different components of proposed method on GTA5-to-
Cityscapes, with 20% labeled pixels except UDA.

GTA5 to Cityscapes (DeepLab v3+)
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mIoU
MADA (iccv21) 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9
Full Model 97.3 78.5 88.7 50.8 44.3 49.6 49.5 64.1 89.3 55.9 91.8 68.7 37.5 91.6 65.9 74.6 58.6 41.5 65.5 66.5

Table 5. Experimental results on GTA5-to-Cityscapes compared with current Active
learning domain adaptation (ADA) method [41] with 5% annotations. The segmen-
tation network used in the above experiment is DeepLab v3+ [43], which utilizes a
pre-trained ResNet-101 on ImageNet as the backbone.

efficient active supervised model training, leading to many appealing benefits.
(1) It enables the models to learn more compact feature representation for each
category. (2) It could employ fewer annotations (16.8%) to achieve compara-
ble performance with fully supervised method (65.3% mIoU). (3) It is effective
for dealing with boundaries and small objects. Future work will combine the
proposed scheme with more powerful architecture, e.g., vision transformer, to
explore more challenge tasks, such as panoptic segmentation.
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