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Abstract. Mainstream handwritten text recognition (HTR) approaches
require large-scale labeled data for training to achieve satisfactory per-
formance. Recently, contrastive learning has been introduced to perform
self-supervised training on unlabeled data to improve representational
capacity. It minimizes the distance between the positive pairs while max-
imizing their distance to the negative ones. Previous studies typically
consider each frame or a fixed window of frames in a sequential feature
map as a separate instance for contrastive learning. However, owing to
the arbitrariness of handwriting and the diversity of word length, such
modeling may contain the information of multiple consecutive characters
or an over-segmented sub-character, which may confuse the model to per-
ceive semantic clues information. To address this issue, in this paper, we
design a character-level pretext task termed Character M ovement Task,
to assist word-level contrastive learning, namely CMT-Co. It moves the
characters in a word to generate artifacts and guides the model to per-
ceive the text content by using the moving direction and distance as
supervision. In addition, we customize a data augmentation strategy
specifically for handwritten text, which significantly contributes to the
construction of training pairs for contrastive learning. Experiments have
shown that the proposed CMT-Co achieves competitive or even supe-
rior performance compared to previous methods on public handwritten
benchmarks.

Keywords: Self-supervised learning · Pretext task · Handwritten text
recognition · Contrastive learning.

1 Introduction

Handwritten text recognition (HTR) is a vital field in computer vision [5, 16,
35, 32, 39, 38, 37, 29, 2, 36]. Most current methods for handwritten text recogni-
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(b) Overall Framework of CMT-Co.

Fig. 1. Illustration of CMT and our method CMT-Co. CMT-Co uses the CMT as an
auxiliary task to assist contrastive learning, which contains word-level learning and
character-level learning. The red arrow in the representation space represents minimiz-
ing the distance of positive pairs, while the black dashed arrows in the representation
space represent maximizing the distance between negative samples.

tion [41, 25, 8, 26, 42] require full supervision, which not only takes much anno-
tation time but also needs expensive costs. Moreover, with the advent of the era
of big data and the development of network information technology, data ac-
quisition is becoming easier, resulting in an exponential increase in the amount
of unlabeled data. Therefore, it is necessary to explore how to effectively utilize
them without manual annotation.

Self-supervised learning provides a solution to this problem and has been
widely studied [11, 3, 15, 7, 6, 46, 33, 20, 31, 21]. It aims to learn representations
from the data itself, without manual annotation. Features learned through the
self-supervised process are then fine-tuned in specific downstream tasks to speed
up convergence or achieve better performance, while greatly reducing the amount
of data annotation.

Early self-supervised methods often designed pretext tasks [11, 46, 33, 9, 31,
44, 22, 18]. They focused on discovering tasks in which labels can be derived from
prior knowledge or manual modification of data. For example, Gidaris et al. [11]
rotated the original image by specific angles, and then let the network deal with
the rotation prediction task. It is worth noting that almost no pretext task has
been specifically designed for handwritten text recognition.

In recent years, self-supervised methods based on contrastive learning have
received considerable attention [24, 11, 6, 3, 15, 7, 17, 30, 4]. Contrastive learning
aims to minimize the distance between the positive pairs while maximizing their
distance to the negative ones to achieve feature learning. A few related studies
have introduced this concept into the field of handwritten text recognition [1,
23]. Aberdam et al. [1] proposed SeqCLR, which creates positive and negative
samples by sliding a window over sequential feature maps and then performs
contrastive learning on them. This method must guarantee sequence alignment
between different augmented views of the same image, and consequently, the
data augmentation method of SeqCLR is limited. Liu et al. [23] proposed PerSec,
which learns both low- and high-level features through contrastive learning from
shallow and deep feature maps. It aims to enable each element of sequential
features to distinguish itself from the context. These methods for handwritten
text recognition typically consider each frame or a fixed window of frames in a
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sequential feature map as a separate instance for contrastive learning. However,
owing to the arbitrariness of handwriting and the diversity of word length, such
modeling may contain the information of multiple consecutive characters or an
over-segmented sub-character, which may confuse the model to perceive semantic
clues information.

To address this issue, in this paper, we design a character-level pretext task
called the Character Movement Task (CMT), which is suitable for handwritten
text. The handwritten text has unique prior knowledge, such as its vertical and
horizontal projection distributions, which were applied to the traditional docu-
ment text line and word segmentation methods [14, 34]. For handwritten word
images, we first use vertical projection distribution, denoted by the red line in
Figure 1(a), to estimate the approximate position of each character. Then, some
characters are selected to move, and the artifact is generated. Note that the ar-
tifact does not change the meaning of the word. Finally, the network is required
to predict the moving direction and distance. To solve the Character Movement
Task, the network needs to recognize the moving characters and achieve the
purpose of character-level feature learning.

To utilize both word-level and character-level semantic information, we adopt
CMT as an auxiliary task to assist the contrastive learning of the entire word
image, termed CMT-Co. In addition, to enhance the effectiveness of contrastive
learning, we customize a data augmentation strategy for handwritten text, named
Text-Aug. It includes four aspects: affine transformation, stroke jitter, stroke
overlap, and stroke thickness. Text-Aug can sufficiently provide variety for con-
trastive learning frameworks.

Experimental results have shown that our method achieves competitive or
even superior performance on public handwritten benchmarks compared to the
previous self-supervised method for text recognition.

The main contributions of the paper are as follows:

(1) We propose a character-level pretext task for handwritten text, called the
Character Movement Task (CMT), which is combined with the word-level
contrastive learning process. To the best of our knowledge, this is the first
pretext task in the field of handwritten text recognition.

(2) We propose a data augmentation strategy named Text-Aug, including affine
transformation, stroke jitter, stroke overlap, and stroke thickness, to further
unlock the power of our framework.

(3) The overall frameworks CMT-Co achieve competitive or even superior per-
formance compared to the previous self-supervised method in terms of rep-
resentation quality and downstream fine-tuning of handwritten text.

2 Related works

2.1 Pretext Task

Early self-supervised methods often designed self-supervised tasks, also called
pretext tasks [11, 46, 33, 9, 31]. Self-supervised tasks have been studied exten-
sively [44, 10]. They focus on discovering tasks in which labels can be derived
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from prior knowledge or manual modification of data. For example, in image
classification, Gidaris et al. [11] rotated the original image by specific angles and
then let the network deal with the rotation prediction task. Doersch et al. [9]
extracted random pairs of patches from each image and drove the network to
predict the position of the second patch relative to that of the first.

However, to the best of our knowledge, currently in the field of handwritten
text recognition, there is no method for designing a pretext task based on unique
prior knowledge of the handwritten text.

2.2 Contrastive Learning

In addition to designing specific pretext tasks, recent self-supervised methods
based on contrastive learning have shown significant potential [15, 6, 3, 12, 1, 23].
SimCLR [3] generates negative samples through a large batch size. Further-
more, because of rich data augmentation, it learns sufficient representations af-
ter contrastive learning and shows pleasing performance in downstream tasks.
MoCo [15] designed a symmetric structure, and then one party generated nega-
tive samples through momentum update, which not only did not need to store
all the data in advance but also did not require a large batch size to generate
negative samples. BYOL [12] designed an asymmetric structure, and a pleasing
performance could be achieved without negative samples.

In the field of handwritten text recognition, SeqCLR [1] improves upon Sim-
CLR [3], which uses the instance-mapping function on the sequential feature
map to generate positive and negative samples. Multiple instances are generated
from a single image through a sliding window. The same position in the same
image with different data augmentation is a positive pair. Different positions and
other images are negative samples. However, this method must ensure sequence
alignment; otherwise, the same position of the same image with different data
augmentation may not contain the same characters, which greatly limits the
data augmentation method of SeqCLR. PerSec [23] learned both low- and high-
level features through contrastive learning from shallow and deep feature maps
within one image. It aims to enable each element of the sequential features to
distinguish itself from the context. In general, the instance of the aforementioned
contrastive learning for handwritten text recognition may contain the informa-
tion of multiple consecutive characters or an over-segmented sub-character, thus
confusing the model in perceiving semantic information.

Therefore, this paper will use prior knowledge of handwritten word text to
design a character-level Character Movement Task, and then assist the word-
level learning of the entire word image in contrastive learning to achieve better
results on handwritten text.

3 Method

3.1 Text-Aug

It is known from recent self-supervised studies on contrastive learning [3, 15,
6, 12, 40] that data augmentation plays an important role in feature represen-
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Fig. 2. Composition of Text-Aug and examples of different parts.

tation learning. Thus, we designed a data augmentation strategy suitable for
handwritten text.

It is well known that text is composed of strokes. For handwritten text, the
same word or character may have different sizes due to different writers’ styles. A
stroke of the same character may also have different degrees of bending or jitting
distortions. Moreover, when people write, they may not erase the wrongly written
characters and choose to overwrite the correct characters directly on them, which
will result in many overlapping strokes. Due to different writing equipment and
writing strength, strokes of the same character may be inconsistent in thickness,
and handwriting may be separated or stuck together.

Therefore, for the above situation, we design Text-Aug for handwritten text.
It includes four types of text augmentation: affine transformation, stroke jit-
ter, stroke overlap, and stroke thickness. Figure 2 gives some examples of these
four types of text augmentation in Text-Aug. The affine transformations include
scaling, translation, rotation, shear deformation, and sharpening. This data aug-
mentation provided text images of different scales, positions, and brightness.
The stroke jitter includes piecewise affine and elastic transformation. They can
simulate the bending and jittering of strokes in a text. Data augmentation for
stroke overlap simulates the overlapping and blurring of strokes in text images.
It includes blended alpha, motion blur, and Gaussian blur. The stroke thickness
contains erosion, dilation, sigmoid contrast, and median blur. These augmenta-
tions can change the thickness of the strokes and may also produce modifications
in character sticking and separation.

It can be seen that Text-Aug greatly improves the diversity of the text, which
can enable the network to distinguish more variable texts. Pseudo-code and more
examples of Text-Aug are shown in the Appendix.

3.2 Character Movement Task

It can intuitively know some prior knowledge from the handwritten word image,
such as the vertical projection distribution, which can give the approximate lo-
cation of the characters in the image. The Character Movement Task (CMT)
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(a) Illustration of Character Localization.

(b) Character Selection (|U | = 1). (c) Determination of borderb and bordera.

Fig. 3. Process illustration of Character Movement Task (CMT).

first roughly locates the characters through the vertical projection distribution,
then moves the characters, and finally, drives the network to predict the move-
ment direction and the moving distance of the characters. To solve the Charac-
ter Movement Task, the network needs to recognize the moving characters and
achieve the purpose of character-level feature learning. The process of the CMT
is shown in Algorithm 1 and explained in detail below. We assume that each
word image I has characters.

Character Localization Because this task requires moving characters, we first
need to locate the position of each character in the word image. For the handwrit-
ten grayscale word image, it is resized to H ×W and then adaptively binarized
and normalized to [0, 1]. Note that the value of the area where the characters
are located is one. Finally, row summation is performed to obtain the vertical
projection distribution Sta of the text image. As shown in the first image of
Figure 3(a), the red line represents the vertical projection distribution, indicat-
ing the projected cumulative value of the character pixel at the corresponding
column position. According to Sta, we can locate the approximate position of
the characters in the word image.

However, writers usually have continuous strokes between different characters
in the word. Therefore, to approximately eliminating the interference of stroke
adhesion, we set the number less than t in Sta to zero, where t takes the second
smallest value in Sta. As shown in the second image of Figure 3(a), the blue
line represents the value of t, and the position below the blue line is set to
zero, resulting in the third image of Figure 3(a). We define a continuous region
with non-zero projected values as the character block region u. Taking the third
image in Figure 3(a) as an example, there are three continuous regions with
non-zero projection values, implying that there are three character block regions,
U = {u1, u2, u3}. It can be inferred from the process of character block region
generation that each character block region contains characters.
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Character Selection After locating the positions of the characters in the word
image, we then need to select the characters to move. We define the center
position of the selected moving characters as locb and the moving target position
as loca. The characters will move from locb to loca. The position locb and loca
are randomly selected from the character block region set U .

If |U | = 1, it means that there is only one character block region, U = u1. If
the movement is too small (such as the movement of one or two pixels), there
is no difference to the naked eye, so it is unreasonable to force the network to
predict the moving distance. Thus, the characters will move a certain distance
here. As shown in Figure 3(b), we first denote the front 40% of u1 as h1 and the
back 40% of u1 as h2. Then, we randomly select a position from each of h1 and
h2. Finally, these two positions are randomly used as loca and locb. If |U | ≥ 2, it
means there are two or more character block regions. In this case, two character
block regions ub and ua are randomly selected from U as the character block
region before the movement and the character block region after the movement.
Then, we randomly select a location from ub as locb and randomly select a
location from ua as loca.

After determining the center position of the selected moving characters, we
need to specify the width of the characters. Firstly, we randomly sample a value
from [ 0.152 W, 0.25

2 W ] and regard it as half of the initial moving character area
width, denoted as wini, whereW is the image width. Then the minimum distance
between locb and the image border is borderb, and the minimum distance between
loca and the image border is bordera, as shown in Figure 3(c). Half of the final
moving character area width wmove is the minimum value among wini, borderb,
and bordera.

The selected character area is denoted as

imgb = I[0 : H, locb − wmove : locb + wmove] (1)

The original image of the area to which the characters are moved is

imga = I[0 : H, loca − wmove : loca + wmove] (2)

Finally, the selected character area is superimposed on the image at a scale of
1− λ, which means that

imga = λimga + (1− λ)imgb (3)

Algorithm 1 Process of the Character Movement Task

Input: Grayscale image I
Output: Image MI after character movement, Label y

1. Obtain the vertical projection distribution Sta of image I.
2. Obtain the character block region set U .
3. Randomly select the position locb and loca from the character block region set U .
The characters will move from locb to loca.
4. Determine the width wmove of the character movement, and then superimposes
the selected character area on the target position to get image MI.
5. Determine the label y of the character movement.
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The rest of I remains unchanged. We set image I after character movement as
MI, which does not change the meaning of the initial word image I.

Loss Function Character Movement Task is defined as a classification task.
The label y is given by the formula (4).

y = pixelm +W (4)

where W denotes the image width and pixelm = loca − locb. When pixelm = 0,
there is no movement in the image, while pixelm < 0, means that the character
moves to the left; and pixelm > 0, means that the character moves to the right.

Because the image has been resized before the character movement, the value
range of pixelm is [−W,W ]. Thus, the number of categories for classification is
2W + 1. The loss in the Character Movement Task is given by equation (5).

Lmove = −
N∑
i=1

yi log pi (5)

where

pi =
eF (MIi)∑2W+1

j=1 eF (MIj)
(6)

where F represents the encoder and the multilayer perceptron and N represents
the mini-batch size.

Figure 4 shows the pixelm distribution generated by the Character Movement
Task on the IAM training set. It can be seen that the range of movement to the
left and right is roughly equal and the distribution is roughly balanced. Figure 5
shows some examples of the Character Movement Task.

3.3 Overall Framework

Our CMT-Co method uses CMT as a character-level auxiliary task to assist in
the learning of the entire word-level image in contrastive learning. MoCo v2 [6] is

Fig. 4. Distribution of the pixelm
generated by the CMT.

Original Image
Image after 

augmentation
Selected 

character area
Image after 

character movement

Fig. 5. Examples of character movement.
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character-level auxiliary task to assist the learning of the entire word-level image in con-
trastive learning. Noted that the labels used to calculate the loss Lmove are generated
by the Character Movement module.

selected as the basic architecture. The overall architecture of CMT-Co is shown
in Figure 6. In CMT-Co, the high-level semantic information of the word can
be learned through the contrastive learning of the whole-word image, and the
low-level single-character information can be learned through the CMT.

We use Text-Aug to augment the text images. However, due to the overlap-
ping phenomenon of the Character Movement Task, we remove the data augmen-
tation method that produces overlapping characters to prevent ambiguity and
interference with the Character Movement Task learning. Similar to MoCo [15],
we predefine a queue with a large length and initialize the queue randomly. In
the training process of the network, the current mini-batch is enqueued and the
oldest mini-batch is dequeued. For each feature vector generated by the encoder
projection module, the positive sample is the feature vector generated by the
momentum encoder projection module after different data augmentation of the
same image and the negative samples are the feature vectors in the queue. The
feature vector in the queue is extracted by the momentum encoder projection
module; therefore, it should be relatively consistent with the features extracted
by the encoder projection module. Inspired by MoCo v2 [6], the momentum en-
coder projection module adopts the same structure as the encoder projection
module, but it does not share parameters. Formally, we denote the parameters
of the momentum encoder projection module as θv and those of the encoder
projection module as θq, θv is initialized by θq and updated by

mθv + (1−m)θq → θv (7)
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where m ∈ [0, 1) is a momentum coefficient.
The encoder and the momentum encoder are CNN-based networks. The pro-

jection and momentum projection heads are multilayer perceptrons with a hid-
den layer, and they are used to map the visual representation to the contrastive
space. The multilayer perceptron (MLP) for the Character Movement Task con-
sists of two fully connected layers, which mainly convert the visual feature map
into a vector for classification.

The total loss of CMT-Co can be formulated as (8).

L = Lcontrast + αLmove (8)

where

Lcontrast = − log
exp (MIq · k+/τ)∑C
i=1 exp (MIq · ki/τ)

(9)

Here, C is the queue size, τ is a temperature hyper-parameter [43], MIq is the
feature vector output by the encoder projection module, k+ is the feature vector
output by the momentum encoder projection module and ki is the feature vector
in the queue. α is a hyper-parameter that is adopted for weighting loss items.

4 Experiments

4.1 Implementation Details

Datasets and Metrics We conduct our experiments on public handwritten
benchmarks, which are IAM [28], RIMES [13], and CVL [19]. We use word-level
accuracy as the evaluation metric for all experiments. We follow the dataset
setting of SeqCLR [1] for pre-training and downstream fine-tuning, which only
uses the training set when training. All images are resized to 32× 100 as input
size.

Pre-training and Downstream Fine-tuning Settings We conduct all ex-
periments on one A40 GPU with a mini-batch size of 256. For pre-training, we
adopt the same settings as MoCo v2 [6]. We use SGD as the optimizer with an
initial learning rate of 0.03. For the CMT, the superposition scale λ in formula
(3) is 0.7. The hyper-parameter α in formula (8) is 0.2. The momentum coef-
ficient m in formula (7) is 0.999. The momentum encoder and the encoder is

Image

Augmentation … BiLSTM BiLSTM CTC/Attention “freely”

Decoder

Fig. 7. Framework for downstream task training. We follow the framework of Seq-
CLR [1].
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Table 1. Representation quality. We freeze the encoder and only train the decoder.
Bold represents the best result, and underlined represents the second-best result. “Ft
Aug.” represents the augmentation during downstream fine-tuning. “Seq. Aug.” repre-
sents the augmentation in SeqCLR [1]. “MoCo v2†” indicates that our data augmen-
tation method Text-Aug is used in pre-training.

Method Ft Aug. Decoder IAM RIMES CVL

Baseline

Seq. Aug. [1] CTC

29.9 22.7 24.3
SimCLR [3] 4.0 10.0 1.8
SeqCLR [1] 39.7 63.8 66.7

MoCo v2† [6] 51.7 66.9 71.1
CMT-Co(Ours) 53.1 66.0 72.1

Baseline

Seq. Aug. [1] Attention

33.9 28.7 35.0
SimCLR [3] 16.0 22.0 26.7
SeqCLR [1] 51.9 79.5 74.5

MoCo v2† [6] 56.3 75.1 74.1
CMT-Co(Ours) 58.2 74.7 74.7

ResNet29 [8], which is the same as the backbone of SeqCLR [1]. The MLP for
the Character Movement Task is two fully connected layers. The projection head
and the momentum projection head are multilayer perceptrons with a hidden
layer. We train the model for 68K iterations for each dataset, which takes about
20 hours.

For downstream fine-tuning, we follow the settings of SeqCLR [1] for a fair
comparison. Specifically, we use the “encoder-decoder” paradigm in text recogni-
tion, in which there are two types of decoders: CTC-based decoder and attention-
based decoder, as shown in Figure 7. We use Adadelta [45] optimizer with an
initial learning rate of 2. To further demonstrate the effectiveness of Text-Aug,
we also present results using our data augmentation approach for downstream
fine-tuning.

4.2 Experimental Results

In this section, we quantitatively verify the effectiveness of the proposed method.
We compare our method with previous self-supervised methods based on con-
trastive learning ( i.e. SeqCLR [1], PerSec [23]) on the handwritten dataset. We
first conduct experiments on the representation quality to validate the represen-
tational ability of the encoder parameters learned from the pre-training stage.
We then conduct experiments on a certain proportion of labeled training data
to further confirm the effect of our method on fine-tuning with few data.

Representation Quality To examine the quality of encoder representations
learned by pre-training, we follow SeqCLR [1] and PerSec [23], which freeze
the parameters of the encoder and only train the decoder. The decoder is all
randomly initialized. For Baseline, we initialize the encoder randomly, but for
other methods, we use pre-trained parameters to initialize the encoder.
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Table 2. Downstream Task Fine-tuning. We train the entire model including the
encoder and the decoder. Bold represents the best result, and underlined represents
the second-best result. “Ft Aug.” represents the augmentation during downstream fine-
tuning. “Seq. Aug.” represents the augmentation in SeqCLR [1]. “MoCo v2†” indicates
that our data augmentation method Text-Aug is used in pre-training.

Method Ft Aug. Decoder
IAM RIMES CVL

5% 10% 100% 5% 10% 100% 5% 10% 100%

PerSec-CNN [23] Luo et al. [27]

CTC

- - 77.9 - - - - - 78.1
SimCLR [3]

Seq. Aug. [1]

15.4 21.8 65.0 36.5 52.9 84.5 52.1 62.0 74.1
SeqCLR [1] 31.2 44.9 76.7 61.8 71.9 90.1 66.0 71.0 77.0

Baseline 35.8 44.2 78.6 56.7 67.7 87.0 63.0 70.6 77.7

MoCo v2† [6] 42.2 51.7 79.6 63.2 72.6 89.4 67.3 72.7 77.8
CMT-Co (Ours) 41.7 52.0 79.9 63.8 72.7 89.3 68.1 72.8 78.0
CMT-Co (Ours) Text-Aug 47.7 56.0 80.1 67.1 75.4 90.1 71.9 74.5 78.2

PerSec-CNN [23] Luo et al. [27]

Attention

- - 80.8 - - - - - 80.2
SimCLR [3]

Seq. Aug. [1]

22.7 32.2 70.7 49.9 60.9 87.8 59.0 65.6 75.7
SeqCLR [1] 40.3 52.3 79.9 70.9 77.0 92.5 73.1 74.8 77.8

Baseline 40.5 49.8 79.5 62.1 72.7 90.0 68.4 73.8 77.3

MoCo v2† [6] 44.2 53.3 80.7 66.8 75.7 90.8 70.2 74.9 78.6
CMT-Co (Ours) 45.5 53.4 81.3 66.9 76.0 90.4 71.5 75.1 78.5
CMT-Co (Ours) Text-Aug 50.4 55.8 81.9 68.8 77.6 91.2 73.6 76.2 78.7

Table 1 shows the representation quality comparison with our method, Sim-
CLR [3], and SeqCLR [1] on IAM, RIMES, and CVL datasets. Combined with
our data augmentation Text-Aug in pre-training, “MoCo v2†” can achieve even
better performance than SeqCLR [1], which is specifically designed for text
recognition in most datasets. “MoCo v2†” is improved by 12% on the IAM
dataset on the CTC-based decoder method compared to SeqCLR [1]. Then, as-
sisted by CMT, CMT-Co achieves better performance on IAM and CVL datasets
compared to “MoCo v2†”. This proves that our Character Movement Task de-
signed with prior knowledge of the handwritten text is indeed beneficial for
self-supervised representation learning. Finally, our method CMT-Co outper-
forms SeqCLR [1] on most datasets, with the most significant improvement on
the IAM dataset with a gain of 13.4%.

Downstream Task Fine-tuning To further demonstrate the pre-trained model
representation ability, we explore the performance of the model on a small
amount of labeled data. In Table 2, we present the results for 5%, 10%, and
100% of the labeled training data, respectively. In fine-tuning, we train the entire
model, including the encoder and decoder. The encoder and decoder parameters
of the baseline are initialized randomly. The encoders of other methods load the
pre-trained parameters, and the decoder parameters are initialized randomly.

Table 2 shows the downstream task fine-tuning comparison with our method,
SimCLR [3], SeqCLR [1], and PerSec [23]. It can be seen that in most datasets,
combined with our data-augmented Text-Aug in pre-training, “MoCo v2†” can
achieve comparable performance to SeqCLR [1] and PerSec [23], which are spe-
cially designed for text recognition. Assisted by CMT, CMT-Co has further
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Fig. 8. Training loss and word-level accuracy between baseline and CMT-Co during
downstream fine-tuning with an attention-based decoder on the IAM dataset.

improvements on most scales of datasets. Eventually, when augmenting data us-
ing Text-Aug during fine-tuning, our method improves again, achieving best or
second-best results on all scales of datasets. With the dual power of Text-Aug
and CMT, our method achieves promising performance on the IAM dataset.

Figure 8 shows training loss and word-level accuracy between baseline and
CMT-Co during downstream fine-tuning with an attention-based decoder on the
IAM dataset. It can be seen that the encoder parameters pre-trained by CMT-Co
indeed speed up the convergence and achieve better results.

4.3 Ablation Study

In this section, we first explore the effect of important parts in CMT-Co, in-
cluding CMT and data augmentation Text-Aug. Then, we perform ablation of
the important parameters λ and loss function in CMT, where λ determines the
superposition scale. More ablations to verify the effectiveness of the proposed
method are shown in the Appendix.

We conduct ablation experiments on the IAM dataset. We use attention for
the decoder and the data augmentation in SeqCLR [1] during fine-tuning. Table 3
explores the ablation of two parts of CMT-Co. It can be seen that Text-Aug per-
forms better than “MoCo v2-Aug.” and “Seq. Aug.”, verifying the effectiveness
of our Text-Aug strategy. Assisted by the pretext task CMT, the performance

Table 3. The ablation of data augmentation and CMT. “Pre-training Aug.” represents
the augmentation during pre-training. “MoCo v2-Aug.” represents the augmentation
in MoCo v2 [6]. “Seq. Aug.” represents the augmentation in SeqCLR [1].

Method Pre-training Aug. Pretext Task Accuracy

MoCo v2 [6] MoCo v2-Aug. [6] % 80.2

MoCo v2* [6] Seq. Aug. [1] % 79.8

MoCo v2† [6] Text-Aug % 80.7
CMT-Co (Ours) Text-Aug CMT 81.3
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Table 4. The ablation of λ.

λ 0.1 0.3 0.5 0.7 0.9

Accuracy 80.7 80.0 80.5 81.3 80.9

Table 5. The ablation of different loss func-
tions for the CMT.

Loss CE MSE

Accuracy 81.3 72.5

of the CMT-Co method is further improved, showing the effectiveness of CMT.
The influence of λ that determines the superposition scale is shown in Table 4.
The performance of CMT-Co reaches its best when λ is 0.7.

Although in this paper, we define the Character Movement Task as a clas-
sification task, it is also reasonable for CMT to be defined as a regression task.
Therefore, we also explored its effect as a regression task. The ablation of differ-
ent loss functions of the Character Movement Task is studied in Table 5. “CE”
refers to the cross-entropy loss, which means we regard CMT as a classification
task, and the equation is shown in (5). “MSE” refers to the mean-squared loss,
which means we regard CMT as a regression task, and the equation is shown in
(10).

Lmove = ∥ypred − y∥2 (10)

where ypred is the prediction of the network and y is generated by CMT.
It can be seen that when CMT is used as a classification task, the per-

formance is better. We believe that CMT is different from reconstruction and
generation tasks, which reduce the penalty when the predicted distance gap be-
comes smaller. To better learn the representation of the character, the position
of the character should be accurately predicted.

5 Conclusion

In this paper, we propose a Character Movement Task (CMT) to learn character-
level features based on prior knowledge of the handwritten text. Our method
CMT-Co uses the CMT as a character-level auxiliary task to assist the learning
of the entire word-level image in contrastive learning. Furthermore, to better
improve the performance of contrastive learning, we also propose a data aug-
mentation strategy named Text-Aug which is suitable for handwritten text. Ex-
periments show that our method can achieve comparable performance or even
better performance than existing self-supervised methods for text recognition.

In the future, it is worth exploring more effective text-related pretext tasks
and multi-task self-supervised learning methods. In addition, we hope that this
work can inspire more research on self-supervised learning for text recognition,
which has not been well investigated in the literature.
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