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Abstract. Scene Graph Generation(SGG) aims to detect visual triplets
of pairwise objects based on object detection. There are three key fac-
tors being explored to determine a scene graph: visual information, local
and global context, and prior knowledge. However, conventional methods
balancing losses among these factors lead to conflict, causing ambiguity,
inaccuracy, and inconsistency. In this work, to apply evidence theory to
scene graph generation, a novel plug-and-play Causal Property based
Anti-conflict Modeling (CPAM) module is proposed, which models key
factors by Dempster-Shafer evidence theory, and integrates quantitative
information effectively. Compared with the existing methods, the pro-
posed CPAM makes the training process interpretable, and also manages
to cover more fine-grained relationships after inconsistencies reduction.
Furthermore, we propose a Hybrid Data Augmentation (HDA) method,
which facilitates data transfer as well as conventional debiasing methods
to enhance the dataset. By combining CPAM with HDA, significant im-
provement has been achieved over the previous state-of-the-art methods.
And extensive ablation studies have also been conducted to demonstrate
the effectiveness of our method.

Keywords: Scene graph generation · D-S evidence theory · Data aug-
mentation.

1 Introduction

Scene Graph Generation(SGG) is an important task in computer vision, which
can bridge low-level visual tasks such as object detection [26] and high level
visual tasks such as visual question answering [44], 3D scene synthesis [25], image
caption [38], etc. Today’s SGG [3, 30, 32, 42] is considered as a deterministic
task, recognizing relationships between pairwise objects. Recent work has made
steady progress on SGG and provides powerful models to encode both visual and
linguistic context of the scene. As illustrated in Fig. 1, a scene graph is composed
of visual triplets in the form of ⟨subject− predicate− object⟩.
⋆ Corresponding author
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Fig. 1. An example of Visual Genome [14] dataset and its scene graph. Obviously, most
of the predicates in this image are trivial, and the same is true for the dataset.

However, due to the long-tailed distribution of annotations, SGG is far from
practical. In Visual Genome [14], there are 50 predicate classes, yet more than
100K samples are top 5 predicate classes [43]. BA-SGG [12] divided all predi-
cates into two categories: informative and common. The frustrating fact is that
annotators prefer common predicates, which are exactly the “head” predicates
in the dataset. Therefore, we should not blame the model generates trivial and
less informative predicates. To address this problem, we propose a Hybrid Data
Augmentation (HDA) to deal with it.

Meanwhile, as Fig. 2 shown, counterfactual inference by causal graph [29]
is also adopted to eliminate this highly-skewed long-tailed bias. A causal graph
summarizes three key factors to determine a scene graph: visual appearance
feature, context feature, and prior knowledge. Specifically, visual features are
extracted from paired objects, context features are encoded by RNN or GNN
for each object and prior knowledge denotes the predicate class distribution in
the dataset after the categories of subject and object are identified. Then the
predicate confidence scores are predicted by these features separately. Finally,
these scores are fused to get a final result, usually by adding or gating.

Though models based on causal graphs outperform the conventional ones, we
find an extra bias introduced by casual graphs. As Fig.3 shown, the output dis-
tributions of branches in casual graph may conflict each other. For the triplet of
⟨helmet− on− shelf⟩, if only context branch is considered, the final prediction
is “on”, while visual branch tends to wrongly predict “in”. Meanwhile, background
is also regarded as a highest probable prediction by prior knowledge. What’s
worse, after these three predicted distributions are fused together, the final result
is misdirected to “in”, although one branch performs correctly. To eliminate this
extra bias, we propose a Causal Property Anti-conflict Modeling(CPAM) mod-
ule, direct modeling these three branches via Dempster-Shafer(D-S) evidence
theory [40], which is first applied in expert system [20] to handle uncertain in-
formation. In D-S evidence theory, evidences are mutually exclusive probability
distributions which represent all possible answers to a question. By transferring
this theory to causal graph based SGG task, the predicted confidence scores
of these three branches can be explicitly modeled as evidences. Then the fused
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scores can be computed by Dempster combination rules, and thus this additional
bias may be removed. By the way, CPAM is a plug-and-play module.

Fig. 2. The causal graph [29] in SGG. The final confidence scores of predicates come for
three branches: context feature encoded by RNN or GNN from each proposal, visual
appearance feature extracted by paired proposals, and prior knowledge distribution
after the categories of subject and object are identified. Meanwhile, as input of the
context branch, object visual features are also passed to the other two branches.

To sum up, the main contributions of our work contain: (1) We systematically
reveal the long-tailed bias which limits SGG’s overall performance and an extra
bias introduced by multibranch prediction of a causal graph. (2) We propose a
novel Causal Property Anti-conflict Modeling (CPAM) module, which applies
Dempster-Shafer evidence theory and can serve as a plug-and-play module. (3)
By combining data transfer and conventional debiasing method, we propose
a Hybrid Data Augmentation (HDA) method to balance data distribution in
Visual Genome. (4) Experimental results demonstrate the effectiveness of the
proposed CPAM and HDA, which achieve state-of-the-art performance under
existing evaluation metrics on Visual Genome and may improve the mean recall
metric significantly.

2 Related Work

2.1 Scene Graph Generation

Scene Graph Generation has drawn widespread attention in computer vision
community since Lu et.al [24] formalized SGG as a visual task to recognize
relationships between objects. After the large-scale image semantic understand-
ing dataset Visual Genome [14] is proposed, SGG has become a popular task
in computer vision gradually. However, more and more researchers recognize
the highly-skewed long-tailed distribution in the dataset which limits SGG per-
formance seriously. To address this issue, TDE [29] introduced counterfactual
causal analysis in the inference stage. BA-SGG [12] transferred common pred-
icates to informative predicates by semantic adjustment. BGNN [16] proposed
a bi-level data sampling strategy to sample instances of different entities and
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predicates. SHA-GCL [9] first grouped all the predicates and then employed a
median-resampling method to make a balanced distribution. We, therefore, also
propose an effective strategy HDA to reduce the impact of long-tailed bias and
better results are shown by experiments.

Fig. 3. This is an example of ⟨helmet− on− shelf⟩ in Fig.1. Predicate probability
distributions arise from different causal properties in re-implemented MOTIFS [42] as
shown in (a) to (c). Predictions generated from prior knowledge in (c) are intuitive
guesses obtained from the probability distribution in the dataset, after the categories
of subject and object are known. It is obvious that predictions of these branches cause
ambiguity because maximum logits of (a), (b), and (c) are not all the same. After
CPAM, the wrong prediction is corrected.

The existing SGG models can be roughly divided into two categories: two-
stage methods [22, 35, 45] and one-stage methods. One-stage methods [17–19]
predict object labels and relationships at last simultaneously, which loses the
assistance of language semantics during training. The co-occurrence of object
pairs and predicates in the dataset shows that knowing the categories of sub-
jects and objects are quite helpful to make a correct prediction, such as the
predicate between “person” and “horse” is probably “riding on”. Specifically, two-
stage methods can provide extra semantic information of object labels, while the
one-stage methods are not able to do this. Currently, two-stage methods are in
the slight majority, and we also use this method to build our pipeline.

2.2 Evidence Theory

In 1967, Dempster proposed evidence theory and applied it to statistical prob-
lems [4, 5]. After that, Shafer published the first monograph of evidence theory
in 1976. By introducing the concept of belief function, Shafer developed and
improved evidence theory, namely Dempster Shafer (D-S) theory, marking the
birth of evidence theory [27].

Currently, evidence theory has been rapidly developed because of its strong
ability in uncertain inference and this is why we apply it to model the ambiguity
brought by different predictions of casual graphs. Evidence theory is widely used
in pattern recognition [6], information fusion [10], artificial intelligence [1], expert
systems [36], etc. Researchers in the community of computer vision are trying
to introduce evidence theory to model the uncertainty [8, 15, 31, 33]. More detail
background knowledge can be found in [11, 13, 37, 40].
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3 Approach

3.1 Overview of Approach

Conventional SGG models can be defined as SG = (B,O,R), where B, O and R
represent the bounding box, object and relational prediction model respectively.
The whole process of SGG can be expressed in the following form conventionally.
I is the given image.

P (SG|I) = P (B|I)P (O|B, I)P (R|O,B, I) (1)

The Faster R-CNN [26] is adopted to return coordinate bi ∈ R4 of each
proposal, visual feature vi ∈ R4096 and object classification confidence scores
ci ∈ RO of each node. O is the number of object categories. The visual feature
xi of each node is formed by concatenating semantic embedding feature, spa-
tial embedding feature and extracted feature by Faster R-CNN. Then the global
context is encoded and object-level context and edge-level context are obtained.
Furthermore, paired boxes feature of i-th and j-th proposals is extracted, de-
noting as uij ∈ R4096. As Fig. 4(c) shown, to better capture the connection of
properties in a causal graph and avoid conflict, our proposed CPAM module is
adopted, which employs uncertainty modeling instead of a discriminative man-
ner. Conventional causal properties fusion method is replaced with CPAM. As
Fig.4(a) shown, our proposed HDA method is also adopted to relieve long-tail
distribution.

Fig. 4. The pipeline of our proposed method. In this work, we utilize Faster R-CNN as
an object detector, and divide the method into three parts: (a) Enhancing the dataset
to balance data distribution. (b) Extracting all the features used in the framework, in-
cluding initial object relabel generated by Faster R-CNN, semantics embedding feature
and encoded global context, etc. (c) Modeling data distributions of different branches
based on the causal graph.
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3.2 D-S Evidence Theory

D-S evidence theory models uncertainty by applying Dempster combination rules
[40]. Some basic concepts of evidence theory are introduced below.

Defination 1. Frame of Discernment. The Θ = {H1, H2, . . . ,HN} is defined
as a frame of discernment which consists of a set of mutually exclusive non-empty
events. Namely, ∀i, j ∈ [1, N ] and i ̸= j, Hi ∩ Hj = Φ. Φ is the empty set and
Hi denotes i-th event. In SGG task, events are the predicate class distribution
predicted by the three branches of a casual graph.

Defination 2. Mass function. Basic Probability Assignment(BPA) is the out-
put of the mass function. The mass function is a mapping function and denotes
as follows. In our method, n is the number of predicate categories and m(Hi) is
the confidence score corresponding to each predicate class.

m(Φ) = 0,

n∑
i=1

m(Hi) = 1 (2)

Defination 3. Belief Function and Plausibility Function. Bel(·) and Pl(·)
are basic concepts in evidence theory to measure the confidence of evidence.
Bel(A) denotes the sum of the BPAs of all subsets of proposition A, while Pl(A)
denotes the sum of BPA of all subsets intersecting proposition A.

Bel(A) =
∑
B⊆A

m(B) (3)

Pl(A) =
∑

B∩A̸=Φ

m(B) (4)

Defination 4. Dempster Combination Rules. Suppose there are two inde-
pendent and completely reliable evidence, corresponding to BPAs m1 and m2
respectively. ∀A ⊆ Θ, the Dempster Combination Rules (DCR) are defined by:

m(A) =

{
0 , A = Φ

1
1−K

∑
B∩C=A

m1(B)m2(C) , A ̸= Φ (5)

with
K =

∑
B∩C=Φ

m1(B)m2(C) (6)

where K is the conflict coefficient between m1 and m2. Note that some works
denote 1 − K as the conflict coefficient, and the effect is the same. Predicted
distribution of visual branch is modeled as B, while C represents the result from
context branch. The intersection of B and C are confidence scores corresponding
to the same predicate class.
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3.3 Causal Property Anti-Conflict Modeling

To reduce the possibility of conflict between causal properties, a Casual Property
Anti-Conflict Modeling module is proposed. To apply D-S evidence theory to
SGG, we should figure out which are the frame of discernment and exclusive
events. Take “person” as the subject and “motorbike” as the object for example,
the events will be: “The predicate between them is riding”, or “The predicate
between them is sitting on”. There are 50 classes of predicate in Visual Genome.
For each pair of objects, the discriminant results of the predicate category are
events in the frame of discernment. To capture the intrinsic uncertainty of a
causal graph, we try to model the output distribution of each branch as evidence
explicitly.

First, visual feature vi and context feature ci are projected into a subspace
of the same dimension. W1,W2 ∈ R4096×512 are linear transformation matrices.
To satisfy Equ. (2), we normalize the projected features as:

v′ = softmax(WT
1 v) (7)

c′ = softmax(WT
2 c) (8)

To obtain conflict coefficient K, an auxiliary matrix A is introduced. All
elements of A are 1 except that the diagonal elements are 0. N is the number
of predicate categories. I ∈ RN×N is identity matrix. After getting the conflict
coefficient K, the combined probability assignment is calculated as m, which
is taken as the weighted coefficient of visual dist v′ and context dist c′ with
the frequency dist of each pair of objects added. We call this approach binary
causal attribute fusion. Also, a triple fusion is introduced among all of the three
properties. These strategies are compared in Section 4.4. The classification score
vector of relationships can be obtained as follows:

K =

N∑
i=1

N∑
j=1

v′(i)× c′(j)×A(i, j) (9)

m =
1

1−K

N∑
i=1

N∑
j=1

v′(i)× c′(j)× I(i, j) (10)

p = m× v′(i) +m× c′(i) + frequency (11)

The category of relationship between a pair of nodes is predicted by:

r = argmaxr∈N (p) (12)

3.4 Hybrid Data Augmentation.

There are many semantically ambiguous triplets in the dataset. Some predicates
share similar semantic spaces like “holding” and “carrying”, while some predicates
can reasonably describe relations at the same time, such as “on” and “standing
on”.
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To deal with the highly-skewed long-tailed distribution, a Hybrid Data Aug-
mentation method is proposed. Based on [43], internal and external data transfer
are adopted to deal with semantic ambiguity and long-tailed problems. Internal
data transfer tries to transform general predicates into informative predicates,
and external data transfer takes advantage of negative samples. Specifically, neg-
ative samples are relabeled to generate a more diverse training set.

Furthermore, to get a more enhanced dataset, the conventional resampling
strategy [2] is introduced. Predicate categories in the tail of data distribution
were up-sampled according to sample fraction during training. Count(·) denotes
the number of training samples in the dataset. We set p = 3.0 as default, and
the sampling rate φi is calculated as below.

φi =


1.0 , if

M∑
k=1

Count(pk)

Count(pi)
< m

p , if

M∑
k=1

Count(pk)

Count(pi)
≥ m

(13)

4 Experiment

In this section, a series of comprehensive experiments are conducted to validate
the effectiveness of our method. The generalizability of our method is demon-
strated by plugging into different baseline models. Below introduces implementa-
tion details while training. Then we show experimental analysis and do ablation
studies on Visual Genome.

4.1 Evaluation Settings

Dataset. The popular Visual Genome [14] is used to train and evaluate our
method, and followed the popular split VG-150 [32, 42] benchmark. VG-150 is
composed of 108k images with the most frequent 150 object categories and 50
predicate categories. The whole dataset is divided into a training set and a testing
set, which includes 70% images and 30% images separately. We also preserve 5k
images for validation.

Tasks. In SGG, three widely-used subtasks are supposed to implement. (1)
Predicate Classification (PredCls) classifies predicate categories with ground
truth bounding boxes and labels. (2) Scene Graph Classification (SGCls) clas-
sifies object categories and predicate categories only with correct localization.
(3) Scene Graph Detection (SGDet) requires a model to localize objects and
recognize both objects and predicate classes. Namely, SGDet asks the model to
detect scene graphs from scratch.
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Metrics. Following the previous works [3, 29, 30], Mean Recall@K (mR@K)
metric is used as our evaluation metrics. mR@K could evaluate the performance
of a model more fairly, because it treats each predicate category as equal, and
does not give more importance to “head” predicates due to the number of sam-
ples. mR@K first calculates Recall@K (R@K) of each predicate, and then aver-
ages them for all predicates. Furthermore, Zero-Shot Recall@K (zR@k) metric
is introduced to better evaluate model performance, which was firstly proposed
by [24]. zR@K aims to evaluate the generalization ability of the model when
encountering triplets unseen in the training set. In other words, zR@K reports
only the R@K of unseen triples.

4.2 Implementation Details

Object Detector. Following previous works [32, 42], a two-stage method is ap-
plied to build the overall model. For object detector, we employ a pre-trained
Faster R-CNN and adopt ResNeXt-101-FPN as backbone. To reduce the com-
putation cost, the parameters of the object detector are frozen while training.
The object detector has 38.52 mAP on the training set and 28.14 mAP on the
testing set.

Scene Graph Generation. In the training process, a SGD optimizer with
an initial learning rate of 5e-3 is applied. We do not decay the learning rate
while training but apply a warmup strategy to make the whole training process
steady. The batch size of the three subtasks was set to be 8. Originally, the
time complexity of all candidate pair boxes is O(n2). For HDA, all sampling
rates are set to 1.0 for SGDet. To limit the number of candidate pair boxes,
candidate bounding boxes are sorted in descending order by confidence scores
and only choose 256 candidate pairs, thus a lot of time and computation can be
saved. Furthermore, the ground truth triplets are added while training in case
some gt boxes are missing only for SGDet. And during preparing candidate pair
of objects, overlapping boxes are not required, because there is no need for a
spatial overlap between the subject and the object, like ⟨person− throw − ball⟩
or ⟨girl − looking at− kite⟩.

4.3 Comparisons with State-of-the-art Methods

We evaluate three models on VG-150 dataset: MOTIFS [42], VCTree [30] and
VTransE [45] to demonstrate the generalization ability of our proposed method.
As Table 1 shown, our proposed method can boost all metrics in three subtasks
(PredCls, SGCls, SGDet) and achieve state-of-the-art. The model architecture
includes LSTM, TreeLSTM ,and translation embedding. Furthermore, the train-
ing process can be divided into supervised learning and reinforcement learning.
For the MOTIFS model, our method achieves 25.0% higher on mR@100 for
PredCls. Compared with other plug-and-play methods, our method outperforms
all of them in nearly all metrics. For VTransE model, in particular, which has the
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Table 1. Performance (%) of our method and other state-of-the-art models on VG-150.
The re-implemented models under codebase of [29] are denoted by †.

Predicate Classification Scene Graph Classification Scene Graph Detection

Models mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

FC-SGG [23] 4.9 6.3 7.1 2.9 3.7 4.1 2.7 3.6 4.2

KERN [3] - 17.7 19.2 - 9.4 10.0 - 6.4 7.3

GBNet [41] - 22.1 24.0 - 12.7 13.4 - 7.1 8.5

BA-SGG [12] 26.7 31.9 34.2 15.7 18.5 19.4 11.4 14.8 17.1

PCPL [34] - 35.2 37.8 - 18.6 19.6 - 9.5 11.7

BGNN [16] - 30.4 32.9 - 14.3 16.5 - 10.7 12.6

GPS-Net [22] - 19.2 21.4 - 11.7 12.5 - 7.4 9.5

MOTIFS† [42] 11.5 14.6 15.8 6.5 8.0 8.5 4.1 5.5 6.8

-TDE [29] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8

-CogTree [39] 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8

-CPAM+HDA(ours) 29.3 37.3 40.8 17.3 20.8 22.2 9.7 12.2 13.7

VCTree† [30] 11.7 14.9 16.1 6.2 7.5 7.9 4.2 5.7 6.9

-TDE [29] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1

-CogTree [39] 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1

-CPAM+HDA(ours) 25.9 33.5 38.2 17.7 22.9 26.0 9.7 11.7 13.8

VTransE† [45] 11.6 14.7 15.8 6.7 8.2 8.7 3.7 5.0 6.0

-TDE [29] 18.9 25.3 28.4 9.8 13.1 14.7 6.0 8.5 10.2

-CPAM+HDA(ours) 25.9 34.6 38.7 15.1 18.9 21.4 10.3 14.6 17.1

weakest performance for SGDet in baseline, our method has made tremendous
improvement with 65.0% on mR@100.

Meanwhile, compared with other strong baselines, our method still achieve
competitive performance when compared with state-of-the-art KERN [3], GB-
Net [41], BA-SGG [12], PCPL [34], BGNN [16] and GPS-Net [22]. Considering
SGDet, our method is slightly lower than BA-SGG, while performs best in Pred-
Cls and SGCls.

On the other hand, model performance on zR@K is also evaluated as Table
2 shown. The focal loss [21], reweight [34] and resample [7, 16] are chosen as
conventional plug-and-play debiasing methods, while EBM [28] as a debiasing
method using deep learning model. Compared with these debiasing methods,
our method outperforms them. Specifically, for MOTIFS, our method performs
almost five times better than the baseline, changing the embarrassing result that
almost no unseen triplets are recognized on zR@20.

4.4 Ablation Studies

Model Components. CPAM is proposed to solve the conflict problem among
causal attributes, and HDA to deal with the imbalance distribution in VG-150.
To prove the effectiveness of the above components, ablation studies are per-
formed to get a clear sense of how these different components affect final perfor-
mance. Experiments on VCTree [30] are performed, and the results are reported
in Table 3. w/o-HDA represents models without HDA, and only CPAM works.
We observe that all the metrics are improved, which means the existence of
causal property conflict while training and our proposed CPAM can effectively
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Table 2. Performance (%) of Zero-Shot Recall (zR@K) of baseline model and model
using our method on VG-150.

Scene Graph Detection
Models zR@20 zR@50 zR@100

MOTIFS [42] 0.0 0.1 0.2
-Focal [21] - 0.1 0.3
-Resample - 0.1 0.3
-Reweight - 0.0 0.0
-EMB [28] 0.2 0.3 -
-CPAM+HDA(ours) 0.4 0.6 1.0

VCTree [30] 0.2 0.5 0.7
-EMB [28] 0.3 0.6 -
-CPAM+HDA(ours) 0.6 1.1 1.5

eliminate it. Meanwhile, CPAM improves the performances of all metrics. w/o-
CPAM represents models evaluating only with HDA. We also find the perfor-
mance outperforms the baseline with a large margin, which means the imbalance
distribution (i.e. long-tailed bias) impairs model performance extremely.

To sum up, the necessity of all components are demonstrated. Only when
these two components are applied at the same time, the model may achieve the
best performance.

Fusion types for CPAM. As aforementioned, the two fusion types for CPAM
are proposed: binary fusion and triple fusion. Binary fusion fuses visual distri-
bution and context distribution, with the frequency distribution added. Triple
fusion fuses all of the three causal attribute distributions simultaneously. As
shown in Table 4, the performance of these two fusion types is compared on
several baseline models.

Intuitively, the more causal attributes fuse, the better performance a model
could behave. However, we observe an opposite result: triple fusion is generally
weaker than binary fusion. Therefore, the reasons are shown as follows: (1) As
prior knowledge, the frequency distribution is a fixed attribute, while visual and
context distribution is uncertain. If certain attributes and uncertain attributes
are forced to combine, it will violate the premise of D-S evidence theory, intro-
ducing extra bias at the same time. (2) CPAM is applied at the end of a model to
calculate the joint distribution of the three attributes directly, and this will lead
to a slight gradient vanishing through backward propagation. The fact is that
the fusion of three pieces of evidence is more computationally intensive than the
fusion of two, so the problem of gradient vanishing will be enlarged.
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In a word, the performance of binary fusion with triple fusion is compared
and we conclude that binary fusion is better. Also, the experimental results are
analyzed and the reasons for them are summarized.

Table 3. Ablation study of model components.

PredCls SGCls SGDet
mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

baseline 14.9 16.1 7.5 7.9 5.7 6.9
w/o-HDA 17.4 18.9 11.1 11.9 7.3 8.7
w/o-CPAM 30.3 33.9 16.5 18.1 11.5 14.0
CPAM+HDA 33.5 38.2 22.9 26.0 11.7 14.1

Table 4. Ablation study of CPAM using different fusion types.

PredCls SGCls SGDet
mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

MOTIFS [42] triple 15.1 16.4 8.0 9.0 6.7 8.1
binary 15.6 16.9 9.0 9.6 6.9 8.2

VTransE [45] triple 15.6 16.8 8.0 8.5 6.0 7.1
binary 16.7 18.0 8.9 9.5 6.4 7.6

VCTree [30] triple 15.7 17.8 9.1 9.7 5.6 6.5
binary 17.4 18.9 11.1 11.9 7.3 8.7

4.5 Qualitative Studies

Several testing examples of VTransE on the PredCls subtask are visualized .
As Fig. 5 shown, our method generates more fine-grained relationships such as
“people-near-train” v.s. “people-looking at-train” in the first row and “tree-near-
building” v.s. “tree-in front of-building” in the second row. Take predicate on, for
example, it is divided into painted on, parked on, walking on, etc, and the latter
predicates are more semantically informative instead of trivial and common.
Head predicates such as has, of, in, and near rarely appear in predictions and
the performance of tail predicates is promoted.

Furthermore, R@100 of each predicate category is calculated for baseline and
our method as Fig. 6 shown. It can proved our inference proposed before that
long-tailed distribution is alleviated. Specifically, we observe the drop of head
predicate and substantial improvement of the tail.
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Fig. 5. Qualitative results of VTransE [45] (gray) and VTransE adopting our proposed
method (orange).
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Fig. 6. R@100 of all the predicate classes of baseline and our method on VG-150.

5 Conclusion

In this work, the problems are analyzed in SGG, which could be attributed to
long-tailed bias, and an extra bias caused by conflicts of different causal branches.
To address the problems mentioned above, a novel plug-and-play CPAM module
is proposed, applying the Dempster-Shafer evidence theory to eliminate conflict
among causal attributions. The predicted distribution of each branch is regarded
as evidence and Dempster combination rules are employed to model the uncer-
tainty. Meanwhile, a HDA method is introduced to get an enhanced dataset by
integrating IETrans and conventional debiasing strategies. Through extensive
comparative experiments, our method achieved state-of-the-art performance un-
der the existing evaluation metric mR@K of the three subtasks (PredCls, SGCls,
SGDet), either model-agnostic baselines or specific baselines.

Furthermore, comprehensive ablation studies are conducted to demonstrate
the universal effectiveness of CPAM and HDA, and the effectiveness of both
model components are validated. For CPAM, we do more detailed experiments.
Two fusion types of CPAM are proposed and the performance of binary fusion
type and triple fusion type is compared. Then we show scene graphs generated by
baseline and our method, and the results demonstrate our method can perform
more fine-grained predictions and relieve long-tailed distribution effectively.
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