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Abstract. The 3D Lookup Table (3D LUT) is an efficient tool for image
retouching tasks, which models non-linear 3D color transformations by
sparsely sampling them into a discrete 3D lattice. We proposeDualBLN
(Dual Branch LUT-aware Network) which innovatively incorporates the
data representing the color transformation of 3D LUT into the real-
time retouching process, which forces the network to learn the adaptive
weights and the multiple 3D LUTs with strong representation capability.
The estimated adaptive weights not only consider the content of the raw
input but also use the information of the learned 3D LUTs. Specifically,
the network contains two branches for feature extraction from the input
image and 3D LUTs, to regard the information of the image and the 3D
LUTs, and generate the precise LUT fusion weights. In addition, to bet-
ter integrate the features of the input image and the learned 3D LUTs, we
employ bilinear pooling to solve the problem of feature information loss
that occurs when fusing features from the dual branch network, avoid-
ing the feature distortion caused by direct concatenation or summation.
Extensive experiments on several datasets demonstrate the effectiveness
of our work, which is also efficient in processing high-resolution images.
Our approach is not limited to image retouching tasks, but can also be
applied to other pairwise learning-based tasks with fairly good generality.
Our code is available at https://github.com/120326/DualBLN.

Keywords: 3D lookup table · Photo retouching · Color enhancement.

1 Introduction

Along with the promotion of digital image technology, it is common for people
to use cameras or cell phones to take photos and record beautiful moments.
However, most people will press the shutter randomly and the photos taken
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Fig. 1. Comparison between previous works and our method. Previous works (left)
only uses images as the only input to the network when training the model, while our
LUT-aware (right) applies look-up table information on the input side.

will be affected by external factors such as weather and time of day, and the
original photos taken directly may have darker or overly bright areas. Due to
this, the photos directly generated by the shooting equipment still need further
post-processing to improve their visual quality. The retouching process requires
the use of professional software that is very difficult to start, requires sufficient
expertise reserves, and is quite time-consuming. These problems directly lead to
the high threshold and tedious work for manual photo retouching.

The simplest solution for this task can be achieved to some extent by expert
pre-stored color filters, but the poor generalization of fixed retouching methods
is not a good solution. The 3D lookup table is a mapping relationship that can
handle low-quality images well. The areas near the edges of the lookup table
can be targeted for color conversion of light and dark areas to reduce noise
and achieve better mapping results. However, the internal parameters of the
lookup table depend on the expert’s preset, and it is complex to target the
optimization for a specific image. In recent years, combining traditional photo
retouching techniques with deep learning has gained attention in academia. For
example, Zeng et al. [45] combined multiple lookup tables with convolutional
neural networks to propose an image-adaptive 3D lookup table method. Based
on this, Liang et al. [24] focused on portrait photo retouching by segmenting
foreground portraits and rear scenes, then realizing weighted optimization of
different regions to give more attention to portrait regions. However, previous
works are not flexible enough to use the information of 3DLUT for fusion.

Benefiting from the above works, we believe that lookup table parameters are
a non-negligible element in image retouching tasks. No model directly uses the 3D
LUT itself as a learnable object but only optimizes the parameters inside the 3D
LUT using an optimizer from the field of deep learning to learn a pre-processed
3D LUT model for image retouching task. When performing transformations
related to image modification, the network needs to know the internal data of
the lookup table to perform targeted optimization. In other words, passively
changing the lookup table parameters based on the model retouching results is
not the optimal solution for image retouching since the information about these
parameters is not fully used in the learning model.

To alleviate this problem, we propose the dual branch LUT-aware network
named DualBLN which consists of image branch and LUT branch. In Fig. 2,
the image input branch is used to process unretouched raw images. This branch
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Fig. 2. Schematic diagram of the framework of the network structure. Given an unre-
touched input image, it is passed through the classifier network and used to generate
weights and fuse the N LUTs after flattening.

focuses on three dimensions: network depth, width and image resolution, using
EfficientNet [33] to extract features from the images and generate weights for the
initial fusion of lookup table information. The LUT input branch is the module
responsible for processing the 3D LUTs fed into the network. The 3D lookup
table data is converted into 2D data that approximates the shape of the input
image and fed into ResNet [12] with the fully connected layer removed for the
generation of the feature map and the initial fusion with the image weights,
resulting in the LUT fusion map. The inclusion of lookup table parameters al-
lows for an adaptive image modification model based on LUT perception and
thus generates more accurate lookup table fusion weights. To make the features
fused as much as possible and retain the information, bilinear pooling [25] is
used to generate 3D LUT fusion weights. Multiplied using the outer product at
each location of the feature map and pooled across locations to combine the fea-
ture information. The outer product captures the pairwise correlations between
feature channels and can model the interactions between dual branch features.

The contributions of this paper are as follows:

– In order to better utilize the internal information of the lookup table to
achieve more exquisite image retouching effects, we propose a new two-
branch network structure named DualBLN, which innovatively uses the LUT
as part of the input to implement an adaptive LUT-aware model structure.

– In an effort to reasonably fuse the two intermediate feature matrices gener-
ated by the bifurcated structure, bilinear pooling is used for feature fusion
to reduce the negative effects of two different feature matrices that are too
different and also to improve the overall robustness of the model.

– Extensive experiments are conducted on three datasets. The results demon-
strate that our method is reasonable and efficient.
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2 Related work

LUT in camera imaging process. The process of camera imaging is very
complex, with optical systems such as signal processing and imaging systems
focusing the image on the imaging element. This process includes image en-
hancement modules, including adjustment of exposure, contrast, color style, and
a number of other operations [43,5,8,21,3,29,20,27,23]. According to [16], most of
these modules in real systems use a common technique, namely LUT (Look-up
table). However, the use of these LUTs is not flexible enough require manual de-
bugging by experts if they want to change their parameters. Therefore, [45] used
this as their hair to study image adaptive 3D LUTs to improve the expressiveness
and flexibility of photo enhancement in the imaging pipeline.

Learning-based image enhancement. Image retouching aims to improve the
quality of the original image. With the development of deep learning networks,
significant progress has been made in this task [4,7,11,14,17,18,28,30,32,46,19,35,41].
Gharbi et al. proposed the HDRNet [7] that put most of the computation on
downsampled images. It can be regarded as a masterpiece along the lines of a
bilateral filter. He et al. [11] proposed the CSRNet that extracted global features
with normal CNN and modulated the features after 1×1 convolution. CSRNet
[11] used an end-to-end approach that is easy to train.

Image restoration [3,10,36,26,44,6,47,42] aims to remove image distortions
caused by various situations. Since manual retouching requires a mass of ex-
pert knowledge and subjective judgment, many learning-based image restoration
methods have emerged recently. Wang et al. [36] proposed a neural network for
photo enhancement using deep lighting estimation to fix underexposed photos.
Recently Mahmoud et al. [1] proposed a model that can perform multi-scale
exposure correction for images. Guo et al. [9] proposed a model based on a lu-
minance enhancement curve, which is iterated continuously to achieve gradual
contrast and luminance enhancement of low-light images. As for the noise reduc-
tion task, Huang et al. [13] presented a model which generates two independent
noise-bearing images of similar scenes to train the noise-reduction network.

Some researchers [28,17,39,40,38] have adapted the network structure to pur-
sue the enhancement of the original image. In addition to expert retouching, Han-
Ul et al. [18] developed PieNet to solve the problem of personalization in image
enhancement. These works demonstrate that image enhancement has splendid
results based on paired datasets. However, the collection of paired datasets is
expensive. Therefore, image enhancement methods based on unpaired datasets
started to receive attention. Some GAN-based methods [4,14] do not require
pairs of input and target images. Meanwhile, Jongchan et al. [30] proposed the
Distort-and-Recover method focusing on image color enhancement, which only
required high-quality reference images for training. While existing image en-
hancement models have good generality, our work focuses on exploring the role
of look-up table information in the network architecture, a novel approach that
makes it an under-explored task.
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Deep learning methods with 3D LUT. In previous studies, Zeng et al.
[45] combined the deep learning-based weight predictor and 3D LUT for the
first time, which achieved outstanding results. Then, multiple look-up tables
were dynamically combined to capture image characteristics and perform the
enhancement. [45] was a representative work that combined the deep learning
paradigm with the traditional image enhancement paradigm, which presented
the community with a new perspective on how to implement image enhancement.
Although the most significant contribution of Liang et al. [24] is to provide a
high-quality paired portrait photo retouch dataset, they changed the network
architecture to use ResNet [12] instead of the simple CNN in the network of Zeng
et al. [45] as an image classifier and achieved some improvements in the results,
which inspired us to replace some of the structures in the network, allowing the
final generation of more reasonable weights for fusing LUTs. Subsequently, Jo
et al. [15] implemented a similar look-up process from input to output values
by training a deep super-resolution network and transferring the output values
of the deep learned model into the LUT. Wang et al. [37] further optimized the
whole structure by employing UNet to generate the output of the encoding part
as the weights for fusing multiple LUTs and using the output of the decoding
part as the spatially-aware weights for the whole image to further optimize the
interpolation results of the 3D LUT.

3 Methodology

3.1 3D LUT of traditional image enhancement

Originally a traditional technique widely used in the field of screen color imaging
display, 3D LUT has been combined with deep learning in recent years to perform
image enhancement work.

As shown in Fig. 3(a), it can be simply interpreted as a 3D lattice consisting
of three 1D LUTs, corresponding to the RGB color channels, and a total of M3

elements. The input RGB value is mapped in three dimensions according to a
look-up table to obtain the converted color. The input image is defined as I, and
the converted image is O through the look-up table, then the conversion process
can be expressed by the formula:

O(i,j,k) = φ(IR(i,j,k), I
G
(i,j,k), I

B
(i,j,k)), (1)

where (i, j, k) are the coordinates corresponding to the pixel color of the image
in RGB space, and φ is defined as the conversion method from the input color
value to the output color value. Usually, M is usually set to 33 in practice,
and the range of coordinates (0 to 255) taken under the three channels is much
larger than the set value M . As shown in Fig. 3(b), the introduction of trilinear
interpolation can solve this problem. In this strategy, the LUT can be flattened
and fed into the network, we make M = 36, and this part of the work will be
described in detail in the following.
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Fig. 3. (a) The 3D LUT is a cube containing M3 nodes, but each coordinate system
can be regarded as a separate 1D LUT. (b) The trilinear interpolation can compensate
for the problem of an insufficient range of coordinates, and calculate the values of other
points in the cube by giving the values of the vertices.

3D LUT is applied to conventional camera imaging to improve the image
quality of the camera and also to reduce the effect of color difference between
various devices. For image retouching tasks, the part of the lookup table that
is closer to the black area inside the lookup table specializes in color mapping
the dark areas of the original image, improving the details in dark scenes, and
achieving better visual effects. Correspondingly, the part of the lookup table
closer to white is also good at handling overexposed areas of the image. For other
normal imaging areas, color conversion can also become more in line with human
visual preferences. In summary, 3D LUT is a very suitable color conversion model
for our work, as it can repair defects in photos and make images more brilliant.

The retouching style of the image shifts with the content of the shot, so a
single 3D LUT does not work well with a wide variety of photos. As the prior art
in 3D LUT paper, we use fused 3D LUTs, i.e., we fuse multiple LUTs according
to the weights generated by the classifier and thus achieve differentiation of
retouching results.

3.2 Proposed method

Retouching images using 3D LUTs is efficient and fast, and the individual pixel
color values of an image are found and mapped to produce a retouched image.
Our model uses a two-branch network to train weights and fuse multiple 3D
LUTs based on these weights to achieve a differentiated retouching result. The
network contains two starting points, corresponding to the dual branches in the
architecture, for input photos and lookup tables, respectively. Thus it can be
subdivided into four segments based on their functions: the input image branch
module, the input LUT branch module, the feature map fusion module, and the
weighted fusion of 3D LUTs module.

Image input branch. Unretouched images are essential as the input to the
network, and traditional deep learning methods generate weights directly from
the input images for subsequent weighted fusion. We adopt EfficientNet [33] as

2144



DualBLN: Dual Branch LUT-aware Network 7

the network layer of the image input branch, but we additionally reserve the
middle feature map for the subsequent feature map fusion module, in addition
to generating weights for fusing LUTs.

Input LUT branch. Since the structure of a 3D LUT is different from that
of a 2D image, an additional deformation operation is required before feeding
it into the network, which simply means flattening the data into a picture-like
storage pattern and feeding the flattened LUTs image into the network as input.
ResNet [12] is chosen as the network architecture for this branch, but we remove
the final fully connected layer and keep only the LUT feature maps up to the
middle, which is fused according to the weights generated by the image input
branch to produce the final LUT fusion map.

Feature map fusion. The previous two branching modules ensure that the
dimensions of the feature maps fed into the fusion module are the same. For the
two feature maps extracted from Image and 3D LUT, the vector of the two fused
features is obtained by bilinear pooling [25], which is used to generate the final
weights and used to weight the different 3D LUTs.

Weighted fusion of 3D LUTs. This is the most intuitive part of image
retouching, the original image is directly fused with the weighted 3D LUT to
find the mapping relationship in the lookup table pixel by pixel, and finally, the
image is mapped into a retouched and enhanced photo with better visual effect.

3.3 The image processing module

Simply using the set ResNet [12] does not achieve the best classification re-
sults, and if we want to further improve the accuracy of the classifier for image
classification, it is a good way to replace it with EfficientNet [33], which is more
suitable for image classification, it explores the effects of input resolution, depth,
and width of the network, and uses Neural Architecture Search to search for a
rationalized configuration of the above three parameters, which improves the
image classification accuracy while achieving a smaller parameter computation.
Considering all aspects, EfficientNet [33] is more suitable for our task and can be
used for image processing to obtain intermediate feature matrices that are more
conducive to subsequent computations and more accurate classification weights.

However, EfficientNet [33] is still not perfect. In our experiments, we found
that although it looks fast and lightweight, it is very memory cost in practice.
However, this problem can be avoided by reasonable settings.

EfficientNet [33] contains a total of eight branching categories from B0 to B7,
and the accuracy of the classification and the number of parameters required for
calculation are increasing in order. After consideration, we choose B0 as our
image classifier, although the other models have better accuracy, their increased
computational cost cannot be ignored. Considering the memory usage and the
fact that B0 already has very good training results, this choice is an extremely
cost-effective optimization decision.
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Fig. 4. A simple illustration of a look-up table directly subjected to reshapee operation
to obtain a flattened LUT-image that can be fed into a neural network.

3.4 The LUT-aware module

Look-up tables (LUTs) are widely used for color correction and grading, but they
are essentially a mapping of data between RGB values, with the coordinates still
storing the RGB three-channel color values. In terms of data type, it is identical
to the image that is fed into the network, the differences is that the image is a
two-dimensional plane. Theoretically, just as a three-channel RGB image can be
used as the input to a deep learning network, the data in the 3D LUT can also
be fed to the network. In short, we believe that drawing the information from
the 3D LUTs into the network can help the network to estimate better.

As shown in Fig. 4, before training, we set N 3D LUTs, each of which has
a parametric number of M3. We noted that the data in the form of 3D storage
cannot be fed directly into the network for learning, but could be converted into
a form similar to an image. This is the reason why we change the value of M to
36, under which the data can be directly expanded into a plane, and this step
can be expressed by the formula:

LUTorig(M
3)

flatten−−−−−→ LUTflat(M
√
M ×M

√
M), (2)

where LUTorig is the original 3D LUT storage form, and LUTflat is the flattened
storage form. We call it LUT image because it has a similar appearance to the
image. Obviously after this step, the idea of feeding the look-up table into the
network learning becomes possible.

As for how to handle the 3D LUT after the transformation, we chose an
incomplete ResNet [12] as the network model. Since the current module only
needs to obtain feature maps for the fusion module afterward, the network model
does not need the final fully connected layer for outputting weights. In addition,
ResNet [12] is mature enough, which is very friendly used in this task. After the
network layer, the LUT feature map is obtained.

Although it is possible to use the LUT feature map for the subsequent feature
map fusion module, it will eventually produce poor fusion results because of the
large gap between the image and the LUT feature maps. In order to reduce the
gap between the feature maps, we fuse the LUT feature maps initially according
to the image weights to ensure the effectiveness of the subsequent feature map
fusion module. The effects of this section will be compared and analyzed in the
subsequent experimental section. (see section 4.3)
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Fig. 5. Bilinear pooling is mainly used for feature fusion, for features x and y extracted
from the same sample, the two features are fused by bilinear pooling to obtain the
vector. The final output of the learned weights through the fully connected layer.

3.5 Feature fusion using bilinear pooling

Our network is constructed with two different inputs, the image, and the LUT
image. The overall framework is shown in Fig. 2, we keep the feature map be-
fore feeding it to the fully connected layer for subsequent operations; the LUTs
Feature Map is combined with the weights generated by the image classifier and
fused into a LUT fusion map with the same size as the Input Feature Map,
which is further mingled with it by averaging pooling and bilinear pooling [25].
For image I and 3D LUT L at the position l of two features fimg ∈ RT×M and
flut ∈ RT×N , the bilinear pooling can be expressed by the following equation:

b(l, I,L, fimg, fLUT ) = fT
img(I)fLUT (L) ∈ RM×N ,

ξ(I,L) =
∑
l

b(l, I,L, fimg, fLUT ) ∈ RM×N ,

x = vec(ξ(I,L)) ∈ RMN×1,

y = sign(x)
√
|x| ∈ RMN×1,

z = y/∥y∥2 ∈ RMN×1.

(3)

Intuitively, bilinear pooling [25] is the bilinear fusion of two features to obtain
the matrix b. Sum pooling, or max pooling, is performed on b at all positions,
after which the matrix ξ is obtained, and then, ξ is expanded into a vector, which
is called the bilinear vector x. After the moment normalization operation on x,
we could get smoothed feature y, and after further L2 normalization operation,
the fused feature z is obtained.

Besides, we have considered other possibilities - whether it is possible to use
a simpler approach (e.g.matrix stitching or element summation). But experience
and experiments led us to conclude that bilinear pooling, which is specifically
made for feature fusion, is more effective than the simple approach.

At this point, we can simply use the fully connected layer to generate weights
that can be better fused against the original lookup table rather than just
through optimization methods. Extensive experiments (see section 4.2) have
shown that our proposed LUT-aware module can significantly improve image
enhancement, not only for optimal retouching, but also for other image-related
tasks, and has shown advantageous results on several datasets.
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3.6 Loss function

As we adopt the look-up table paradigm to retouch photos, we follow [45], adopt
the MSE loss Lmse, the smooth regularization loss Rs and monotonicity regu-
larization loss Rm as the basic loss terms, which can be calculated as:

LLUT = Lmse + λsRs + λmRm, (4)

where λs and λm are trade-off coefficients, we follow [45] and set λs = 1 ×
10−4, λm = 10. The MSE Loss Lmse ensures the content consistency between
enhancing result and target photo. Smooth regularization Rs and monotonicity
regularization Rm are used to ensure the retouching process of the LUT are
smoothed and monotonic, and the relative brightness and saturation of the input
RGB values are maintained, ensuring natural enhancement results.

4 Experiments

4.1 Experiment setups

Datasets. We complete all experiments and compare the data on PPR10K
[24], MIT-Adobe FiveK [2], and HDR+ [10] datasets, respectively. PPR10K [24]
contains high-quality raw portrait photos and its corresponding retouched result
pairs. We use randomly scrambled, a-expert-retouched, low-resolution photos
for training according to the authors’ recommendation, and divide the dataset
into a training set with 8875 photos, and a test set with 2286 photos. Also, to
demonstrate that our work can be used for high-resolution photos, the PPR10K-
HR dataset are used. MIT-Adobe FiveK [2] is a database often used in many
studies on image enhancement and image retouching, and we set 4500 converted
photos for training and the remaining 500 for testing. The HDR+ dataset [10] is
a continuous shooting dataset collected by Google Camera Group to study high
dynamic range (HDR) and low-light imaging of mobile cameras, and we use this
dataset to study the generalizability of the model.

Implementation details. We perform our experiments on NVIDIA RTX 3090
GPUs with Pytorch framework [31]. The number of parameters in the model is
only 13.18M, and it takes only 13 ms to retouch a single image (360P). All of
the training photos are LR photos, so as to improve the training speed, and the
testing photos include HR photos (4K ∼ 8K) and LR photos (360P). We follow
the data augment setting in [24]. We use Adam [22] as the network optimizer
and the learning rate is fixed at 1× 10−4 following [45].

Evaluation metrics. Three metrics are employed to evaluate the performance
of different methods quantitatively. In addition to the basic PSNR and SSIM
, the color difference between the retouched photo R and the target photo T is
defined as the L2-distance in CIELAB color space with

∆Eab =∥ RLab − TLab ∥2 . (5)
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Table 1. Comparison of photo enhancement results on several different datasets. The
↑ and ↓ denote that larger or smaller is better.

Method Dataset PSNR ↑ ∆Eab ↓ SSIM ↑ Method Dataset PSNR ↑ ∆Eab ↓ SSIM ↑
Dis-Rec [30] FiveK 21.98 10.42 0.856 Camera Raw HDR+ 19.86 14.98 0.791
HDRNet [7] FiveK 24.32 8.49 0.912 UPE [4] HDR+ 21.21 13.05 0.816
DeepLPF [28] FiveK 24.73 7.99 0.916 DPE [36] HDR+ 22.56 10.45 0.872
CSRNet [11] FiveK 25.17 7.75 0.924 HDRNet [7] HDR+ 23.04 8.97 0.879
3D LUT [45] FiveK 25.21 7.61 0.922 3D LUT [45] HDR+ 23.54 7.93 0.885

Ours FiveK 25.42 7.29 0.917 Ours HDR+ 23.77 7.89 0.866

Method Dataset PSNR ↑ ∆Eab ↓ PSNRHC ↑ Method Dataset PSNR ↑ ∆Eab ↓ PSNRHC ↑
HDRNet [7] PPR-a 23.93 8.70 27.21 HDRNet [7] PPR-b 23.96 8.84 27.21
CSRNet [11] PPR-a 22.72 9.75 25.90 CSRNet [11] PPR-b 23.76 8.77 27.01
3D LUT [45] PPR-a 25.64 6.97 28.89 3D LUT [45] PPR-b 24.70 7.71 27.99
HRP [24] PPR-a 25.99 6.76 28.29 HRP [24] PPR-b 25.06 7.51 28.36
Ours PPR-a 26.51 6.45 29.74 Ours PPR-b 25.40 7.24 28.66

HDRNet [7] PPR-c 24.08 8.87 27.32 HDRNet [7] PPR-HR 23.06 9.13 26.58
CSRNet [11] PPR-c 23.17 9.45 26.47 CSRNet [11] PPR-HR 22.01 10.20 25.19
3D LUT [45] PPR-c 25.18 7.58 28.49 3D LUT [45] PPR-HR 25.15 7.25 28.39
HRP [24] PPR-c 25.46 7.43 28.80 HRP [24] PPR-HR 25.55 7.02 28.83
Ours PPR-c 25.89 7.21 29.15 Ours PPR-HR 26.21 6.62 29.44

In the training part of the implementation, we use PSNR as the only filtering
metric, based on which the model corresponding to the epoch with the highest
score is selected for testing, while the metrics ∆Eab and SSIM are computed
only in the testing part. In general, a better PSNR will correspond to a better
∆Eab and SSIM score, as this represents a better learning outcome of the model
and a higher quality of the augmented picture.

4.2 Visualization of results.

Quantitative Comparisons. Table 1 reports the comparison of our proposed
work with state-of-the-art methods. We obtained the results of these methods
using the code and default configuration provided by the existing methods, it can
be visually seen from the data presented in the table that with the introduction
of LUT-aware, the values of the metrics PSNR and SSIM have improved more
apparently, while the ∆Eab metric is well optimized, and these data show the
effectiveness of our work.

Qualitative Comparisons. The effectiveness of our work can be clearly seen
by comparing the photos before and after the optimization of each dataset.
Among Fig. 6, our output is the closest to the target photos provided in the
dataset, not only in terms of visual effect but also in terms of indicators that
demonstrate the validity of our work. For the two most obvious image retouching
datasets, PPR10K [24] and MIT-Adobe FiveK [2], our method is more friendly
to non-professionals than manually adjusting image parameters. On the HDR+
dataset [10], there are still some gaps compared to the targets provided in the
dataset, especially in the case of severe underexposure, and our enhancement
results are not natural. This may be due to not taking into account the local
contextual information. In future work, we will consider solving such problems.
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Table 2. (a)(b)The effect of the size and number of each LUT cell of the 3D LUT
was verified. (c)A comparison test of three combined methods of feature maps output
by two CNN layers. (d)A comparison experiment of two CNN layers in the network
architecture. (e)Comparative experiments demonstrate which of the two feature map
fusion methods is more effective. All experiments are trained on the PPR10K [24].

(a) M N PSNR ∆Eab SSIM (c) Method PSNR ∆Eab SSIM
36 3 26.09 6.72 0.915 Cat 25.62 7.12 0.901
36 4 26.17 6.55 0.921 Add 25.52 7.27 0.899
36 5 26.51 6.45 0.916 Bilinear Pooling 26.51 6.45 0.916
36 6 26.33 6.50 0.912 (d) Network PSNR ∆Eab SSIM
36 7 26.16 6.70 0.915 2 ResNet 25.84 7.04 0.903

(b) M N PSNR ∆Eab SSIM ResNet + EfficientNet 25.90 6.97 0.907
16 5 26.03 6.72 0.911 EfficientNet + ResNet 26.51 6.45 0.916
25 5 26.23 6.62 0.915 2 EfficientNet 25.93 6.93 0.911
36 5 26.51 6.45 0.916 (e) Method PSNR ∆Eab SSIM
49 5 26.14 6.67 0.909 Direct Fusion 25.94 7.01 0.909
64 5 26.23 6.64 0.914 Pre-weighted Fusion 26.51 6.45 0.916

4.3 Ablation study

We conduct extensive ablation experiments on the PPR10K dataset [24] to deter-
mine the validity of the components and verify the influence of each parameter,
and analyze the effects of each component of our model.

Efficacy of each component. As shown in Table 2, we chose to use the model
in 3D LUT [45] as the baseline model in our experiments and deploy the LUT-
aware model on it, and design the ablation experiments. From the experimental
data, we try to identify the most suitable experimental setup on all three different
metrics. In addition, we enumerated four different ways of using CNN layers
and apply them to both the input image and the input LUT, comparing four
sets of experiments. The results demonstrate that the combination of using the
EfficientNet [33] layer for image input and ResNet [12] for LUT input is the most
reasonable and effective.

In [34], layers were designed for image classification and explores the effects
of input resolution, depth, and width of the network at the same time, while
the LUT-transformed input does not have a resolution as a feature-level mean-
ing. Therefore, more suitable for using the ResNet [12] layer, which has better
generalization. In contrast, if the ResNet [12] layer is used for both CNN lay-
ers, although it does reduce the training cost substantially, the training results
become unsatisfactory. Although there is an improvement compared to the base-
line, this proves that the LUT is valuable as an input, but it is obvious that the
feature matrix after EfficientNet [33] layer processing has better training effect.

As future research continues, network architectures more suitable for LUT-
aware models than EfficientNet [33] layer and ResNet [12] layer may emerge, but
the flexibility of the model makes network replacement feasible and convenient,
which makes our approach not limited to the performance of the classifier at the
moment, but constantly evolving and improving.
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Feature fusion method. In the previous section, we illustrate that the LUT-
aware model uses two different CNN layers, which means that our model archi-
tecture has two intermediate feature matrices corresponding to the two inputs.

After the LUTs image is passed through ResNet [12] Layers, the first inter-
mediate feature (LUT feature map) on the lookup table is generated. According
to our initial idea, we can directly fuse the double matrix with the features at
this point, however, this does not prove to be reasonable. We first perform a
weight-based feature map fusion before the feature map fusion. The results of
the comparison experiments are shown in Table 2, and the results after the initial
fusion are much better than the direct fusion, which proves that our design rea-
sonably eliminates the difference between the image information and the lookup
table information and makes the subsequent fusion more effective.

In order to subsequently generate 3D LUT fusion weights, we need to fuse
the two feature matrices and put them into the subsequent fully connected layer
to learn the fusion weights. We initially consider simply using splicing (cat) or
summing (add) to process the matrix data, but the results were unsatisfactory.
Therefore, to solve this problem, bilinear pooling [25] is introduced to better
handle the fusion operation of feature matrix. The experimental results in Table
2 show that the combination of bilinear pooling [25] can achieve better optimiza-
tion results, and the improvement is surprising.

However, with the introduction of bilinear pooling, the fully connected layer
where our network finally generates the weights becomes more cumbersome. This
is due to the fact that bilinear pooling is different from simple splicing or element
summing, which makes the dimensionality of the matrix grow substantially.

As scientific research progresses, many contributions have been made to re-
lated research. When introducing bilinear pooling into our design, many variants
were considered, but this would make the already cumbersome weight output
layer more complex and would have limited improvement in the final result. The
most original architecture of bilinear pooling [25] was finally adopted.

The parameter of 3D LUTs. In order to ensure that the experiment settings
are appropriate, we change the dimension of LUT for different experiments while
keeping other conditions constant. Results of the experiments are shown in Table
2. The ablation results indicate that the most suitable number of 3D LUTs is 5,
while the suitable dimension is 36.

Theoretically, the number and size of LUT become relatively larger will have
a more detailed mapping of pixel values and thus achieve better retouching.
However, a more moderate choice would achieve more desirable results. In fact,
if the number N is set too much, it will make the network layer generate too
much weight on the image, which is close to the weight generated by image clas-
sification and will trigger overfitting-like results, affecting the final fusion effect
instead. Besides, the LUT size M is due to the refinement of the interpolation
algorithm, which means finer inputs will sightly improve the accuracy, and the
larger size of LUT, the more difficult for model learning.
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Fig. 6. Qualitative comparisons with corresponding error maps on the FiveK dataset
[2] for photo retouching. Blue indicates good effect and red indicates large differences.
Our model has the best visualization with the output image closest to the target images.

5 Conclusion

Since the existing deep learning work on image enhancement based on 3D LUT
simply uses the look-up table as a parameter for optimization, ignoring that the
look-up table itself is also valuable information that can be sent to the network
input port for training, this paper designs a lightweight LUT-aware module,
which feeds the 3D LUT into the network module as a parameter after a rea-
sonable deformation. In order to obtain more accurate and reasonable adaptive
fusion LUT weights. In addition, we improve the network architecture necessary
for training the model, so that the input images and the look-up table informa-
tion can be effectively combined. Since the final training result contains only one
image classifier and some 3D LUTs fused based on the classification results, our
approach still maintains the advantage of lightweight look-up table-based photo
enhancement. Extensive experiments on several different datasets demonstrate
that our approach is effective and can be applied to other image enhancement
tasks (e.g.low-light enhancement) rather than being limited to image retouch-
ing tasks. It is worth mentioning that the unintended using of our method for
surveillance may violate personal privacy. In the future, we consider applying
this work to other areas as the next research direction, such as image denoising,
underwater image enhancement, and super-resolution.
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