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Abstract. Recently, it has been demonstrated that the performance
of a deep convolutional neural network can be effectively improved by
embedding an attention module into it. In this work, a novel lightweight
and effective attention method named Pyramid Squeeze Attention (PSA)
module is proposed. By replacing the 3x3 convolution with the PSA
module in the bottleneck blocks of the ResNet, a novel representational
block named Efficient Pyramid Squeeze Attention (EPSA) is obtained.
The EPSA block can be easily added as a plug-and-play component into
a well-established backbone network, and significant improvements on
model performance can be achieved. Hence, a simple and efficient back-
bone architecture named EPSANet is developed in this work by stack-
ing these ResNet-style EPSA blocks. Correspondingly, a stronger multi-
scale representation ability can be offered by the proposed EPSANet for
various computer vision tasks including but not limited to, image clas-
sification, object detection, instance segmentation, etc. Without bells
and whistles, the performance of the proposed EPSANet outperforms
most of the state-of-the-art channel attention methods. As compared to
the SENet-50, the Top-1 accuracy is improved by 1.93% on ImageNet
dataset, a larger margin of +2.7 box AP for object detection and an
improvement of +1.7 mask AP for instance segmentation by using the
Mask-RCNN on MS-COCO dataset are obtained.

Keywords: Computer Vision - Attention Module.

1 Introduction

Attention mechanisms are widely used in many computer vision areas such as
image classification[1, 2], object detection|3], instance segmentation|4], seman-
tic segmentation[5, 6], scene parsing and action localization[7]. Specifically, there
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are two types of attention methods, which are channel attention and spatial
attention. Recently, it has been demonstrated that significant performance im-
provements can be achieved by employing the channel attention|8,9], spatial
attention[10], or both of them[11]. The most commonly used method of channel
attention is the Squeeze-and-Excitation (SE) module [12], which can signifi-
cantly improve the performance with a considerably low cost. The drawback of
the SENet is that it ignores the importance of spatial information. Therefore,
the Bottleneck Attention Module(BAM) [10] and Convolutional Block Attention
Module(CBAM) [11] are proposed to enrich the attention map by effectively
combining the spatial and channel attention. However, there still exists two im-
portant and challenging problems. The first one is how to efficiently capture
and exploit the spatial information of the feature map with different scales to
enrich the feature space. The second one is that the channel or spatial atten-
tion can only effectively capture the local information but fail in establishing a
long-range channel dependency. Correspondingly, many methods are proposed
to address these two problems. The methods based on multi-scale feature rep-
resentation and cross-channel information interaction, such as the PyConv [13],
the Res2Net [14], and the HS-ResNet [15], are proposed. In the other hand, a
long-range channel dependency can be established as shown in [6, 16, 17]. All the
above mentioned methods, however, bring higher model complexity and thus
the network suffers from heavy computational burden. Based on the above ob-
servations, in this work, a low-cost and high-performance novel module named
Pyramid Squeeze Attention (PSA) is proposed. Firstly, the proposed PSA mod-
ule uses the multi-scale pyramid convolution structure to process the input tensor
at multiple scales. Secondly, the PSA module can effectively extract spatial in-
formation with different scales from each channel-wise feature map by squeezing
the channel dimension of the input tensor. Third, a cross-dimension interaction
can be built by extracting the channel-wise attention weight of the multi-scale
feature maps. Finally, the softmax operation is employed to recalibrate the at-
tention weight of the corresponding channels, and thus the interaction between
the channels that are in different groups of the squeeze-concatenate module is
established. Correspondingly, a novel block named Efficient Pyramid Squeeze
Attention (EPSA) is obtained by replacing the 3x3 convolution with the PSA
module in the bottleneck blocks of the ResNet. Furthermore, a novel backbone
EPSANet is proposed by stacking these EPSA blocks as the ResNet style. The
main contributions of this work are summarized as below:

— A novel Efficient Pyramid Squeeze Attention (EPSA) block is proposed,
which can effectively extract multi-scale spatial information at a more gran-
ular level and develop a long-range channel dependency. The proposed EPSA
block is very flexible and scalable and thus can be applied to a large variety
of network architectures for numerous tasks of computer vision.

— A novel backbone architecture named EPSANet is proposed, which can
learn richer multi-scale feature representation and adaptively re-calibrate
the cross-dimension channel-wise attention weight.
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2. RELATED WORK 3

— Extensive experiments demonstrated that promising results can be achieved
by the proposed EPSANet across image classification, object detection and
instance segmentation on both ImageNet and COCO datasets.

2 Related Work

Attention mechanism. The attention mechanism is used to strength the al-
location of the most informative feature expressions while suppressing the less
useful ones, and thus makes the model attending to important regions within a
context adaptively. The Squeeze-and-Excitation (SE) attention in [12] can cap-
ture channel correlations by selectively modulating the scale of channel. The
CBAM in [11] can enrich the attention map by adding max pooled features
for the channel attention with large-size kernels. Motivated by the CBAM, the
GSoP in [18] proposed a second-order pooling method to extract richer feature
aggregation. More recently, the Non-Local block [17] is proposed to build a dense
spatial feature map and capture the long-range dependency via non-local opera-
tions. Based on the Non-Local block, the Double Attention Network(A?Net) [19]
introduces a novel relation function to embed the attention with spatial infor-
mation into the feature map. Sequently, the SKNet in [20] introduces a dynamic
selection attention mechanism that allows each neuron to adaptively adjust its
receptive field size based on multiple scales of input feature map. The ResNeSt
[21] proposes a similar Split-Attention block that enables attention across groups
of the input feature map. The Fcanet [8] proposes a novel multi-spectral chan-
nel attention that realizes the pre-processing of channel attention mechanism
in the frequency domain. The GCNet [1] introduces a simple spatial attention
module and thus a long-range channel dependency is developed. The ECANet
[9] employs the one-dimensional convolution layer to reduce the redundancy of
fully connected layers. The DANet [16] adaptively integrates local features with
their global dependencies by summing these two attention modules from differ-
ent branches. The above mentioned methods either focus on the design of more
sophisticated attention modules that inevitably bring a greater computational
cost, or they cannot establish a long-range channel dependency. Thus, in order
to further improve the efficiency and reduce the model complexity, a novel at-
tention module named PSA is proposed, which aims at learning attention weight
with low model complexity and to effectively integrate local and global attention
for establishing the long-range channel dependency.

Multi-scale Feature Representations. The ability of the multi-scale
feature representation is essential for various vision tasks such as, instance seg-
mentation [4], face anaxlysis [22], object detection [23], salient object detection
[24], and semantic segmentation [5]. It is critically important to design a good op-
erator that can extract multi-scale feature more efficiently for visual recognition
tasks. By embedding a operator for multi-scale feature extraction into a convolu-
tion neural network(CNN), a more effective feature representation ability can be
obtained. In the other hand, CNNs can naturally learn coarse-to-fine multi-scale
features through a stack of convolutional operators. Thus, to design a better

1163



4 H. Zhang et al.

convolutional operator is the key for improving the multi-scale representations
of CNNs.

3 Method

3.1 Revisting Channel Attention

Channel attention The channel attention mechanism allows the network to
selectively weight the importance of each channel and thus generates more in-
formative outputs. Let X € RE*H*W denotes the input feature map, where
the quantity H, W, C represent its height, width, number of input channels
respectively. A SE block consists of two parts: squeeze and excitation, which
is respectively designed for encoding the global information and adaptively re-
calibrating the channel-wise relationship. Generally, the channel-wise statistics
can be generated by using a global average pooling, which is used to embed the
global spatial information into a channel descriptor. The global average pooling
operator can be calculated by the following equation

attention weight

H GAP Excitati

Ix1xC 1x1xC

Fig. 1. SEWeight module.

1 H W
ge = wa;;xc(z,ﬁ (1)

The attention weight of the c-th channel in the SE block can be written as
we = o(W16(Wo(ge))) (2)

where the symbol § represents the Recitified Linear Unit (ReLU) operation
as in [25], Wy € RE*T and Wy € R%*C represent the fully-connected (FC)
layers. With two fully-connected layers, the linear information among channels
can be combined more efficiently, and it is helpful for the interaction of the
information of high and low channel dimensions. The symbol o represents the
excitation function, and a sigmoid function is usually used in practice. By using
the excitation function, we can assign weights to channels after the channel
interaction and thus the information can be extracted more efficiently. The above
introduced process of generating channel attention weights is named SEWeight
module in [12], the diagram of the SEWeight module is shown by Figure 1.
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3.2 PSA Module

The motivation of this work is to build a more efficient and effective channel at-
tention mechanism. Therefore, a novel pyramid squeeze attention (PSA) module
is proposed. As illustrated by Figure 3, the PSA module is mainly implemented
in four steps. First, the multi-scale feature map on channel-wise is obtained by
implementing the proposed squeeze pyramid concat (SPC) module. Second, the
channel-wise attention vector are obtained by using the SEWeight module to ex-
tract the attention of the feature map with different scales. Third, re-calibrated
weight of multi-scale channel is obtained by using the Softmax to re-calibrate the
channel-wise attention vector. Fourth, the operation of an element-wise product
is applied to the re-calibrated weight and the corresponding feature map. Fi-
nally, a refined feature map which is richer in multi-scale feature information
can be obtained as the output. As illustrated by Figure 2, the essential operator
for implementing the multi-scale feature extraction in the proposed PSA is the
SPC, we extract the spatial information of the input feature map in a multi-
branch way, the input channel dimension of each branch is C. By doing this,
we can obtain more abundant positional information of the input tensor and
process it at multiple scales in a parallel way. Thus a feature map that contains
a single type of kernel can be obtained. Correspondingly, the different spatial
resolutions and depths can be generated by using multi-scale convolutional ker-
nels in a pyramid structure. And the spatial information with different scales
on each channel-wise feature map can be effectively extracted by squeezing the
channel dimension of the input tensor. Finally, each featur map with different
scales F; has the common channel dimension ¢ = % and ¢ = 0,1,---,5 — 1.
Note that C' should be divisible by S. For each branch, it learns the multi-scale
spatial information independently and establishs a cross-channel interaction in
a local manner. However, a huge improvement in the amount of parameters will
be resulted with the increase of kernel sizes. In order to process the input tensor
at different kernel scales without increasing the computational cost, a method of
group convolution is introduced and applied to the convolutional kernels. Fur-
ther, we design a novel criterion for choosing the group size without increasing
the number of parameters. The relationship between the multi-scale kernel size
and the group size can be written as

25 K>3
G_{ 1 K=3 3)

where the quantity K is the kernel size, G is the group size. Finally, the multi-
scale feature map generation function is given by

Fi:CODV(kiin,Gi)(X) 7::0,1,2“-5—1 (4)

where the i-th kernel size k; = 2 x (¢ + 1) + 1, the i-th group size G; and

F; € RC *HxW (Jenotes the feature map with different scales. The whole multi-
scale pre-processed feature map can be obtained by a concatenation way as

F:Cat([Fo,Fl,'” ,Fs_l]) (5)
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Concat

F3

Fig. 2. A detailed illustration of the proposed Squeeze Pyramid Concat (SPC) module
with S=4, where ’Squeeze’ means to equally squeeze in the channel dimension, K is
the kernel size, G is the group size and 'Concat’ means to concatenate features in the
channel dimension.

Softmax

(X): element-wise product

Input

H — SPC module

Output
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H
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Fig. 3. The structure of the proposed Pyramid Squeeze Attention (PSA) module.

where F' € RE*H*W ig the obtained multi-scale feature map. By extract-
ing the channel attention weight information from the multi-scale pre-processed
feature map, the attention weight vectors with different scales are obtained.
Mathematically, the vector of attention weight can be represented as

Z; = SEWeight(F;), i=0,1,2---5—1 (6)

where Z; € RC *1*X1 is the attention weight. The SEWeight module is used to
obtain the attention weight from the input feature map with different scales.
By doing this, our PSA module can fuse context information in different scales
and produce a better pixel-level attention for high-level feature maps. Further,
in order to realize the interaction of attention information and fuse the cross-
dimensions vector without destroying the orginal channel attention vector. And

1166



3. METHOD 7

thus the whole multi-scale channel attention vector is obtained in a concatenation
way as

Z=2007,® - ®Zs_1 (7)

where @ is the concat operator, Z; is the attention value from the F;, Z is the
multi-scale attention weight vector. A soft attention is used across channels to
adaptively select different spatial scales, which is guided by the compact feature
descriptor Z;. A soft assignment weight is given by
att; = Softmax(Z;) = ﬁpi 8)
Ei:() exp(Zi)

where the Softmax is used to obtain the re-calibrated weight att; of the multi-
scale channel, which contains all the location information on the space and the
attention weight in channel. By doing this, the interaction between local and
global channel attention is realized. Next, the channel attention of feature re-
calibration is fused and spliced in a concatenation way, and thus the whole
channel attention vector can be obtained as

att = atto © atty & - & attg_q 9)

where att represents the multi-scale channel weight after attention interaction.
Then, we multiply the re-calibrated weight of multi-scale channel attention att;
with the feature map of the corresponding scale F; as

Yi=F oatt; i=1,23--5-1 (10)

where ® represents the channel-wise multiplication, Y; refers to the feature map
that with the obtained multi-scale channel-wise attention weight. The concate-
nation operator is more effective than the summation due to it can integrally
maintain the feature representation without destroying the information of the
orginal feature map. In sum, the process to obtain the refined output can be
written as

Out = Cat([Yy, Y1, -+ ,Ys_1]) (11)

As illustrated by the above analysis, our proposed PSA module can integrate
the multi-scale spatial information and the cross-channel attention into the block
for each feature group. Thus, a better information interaction between local and
global channel attention can be obtained by our proposed PSA module.

3.3 Network Design

As shown by Figure 4, a novel block named Efficient Pyramid Squeeze Attention
(EPSA) block is further obtained by replacing the 3x3 convolution with the PSA
module at corresponding positions in the bottelneck blocks of ResNet. The multi-
scale spatial information and the cross-channel attention are integrated by our
PSA module into the EPSA block. Thus, the EPSA block can extract multi-scale
spatial information at a more granular level and develop a long-range channel
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ResNet Bottleneck SENet Block EPSANet Block
(h,w,c) (h,w,c)

Fig. 4. Illustration and comparison of ResNet, SENet, and our proposed EPSANet
blocks.

Table 1. Network design of the proposed EPSANet.

Output ResNet-50 EPSANet(Small)-50 EPSANet(Large)-50

112x112 77, 64, stride 2
5656 3x3 max pool, stride 2
Ix1, 64 1x1, 64 Ix1,128
56x56 (3 x3, 64| x3 PSA, 64| x3 PSA, 128 x3
1x 1,256 1x 1, 256 1 x 1, 256
1x1,128 1x1,128 1x 1,256
28%x28 (3 x 3,128 x4 PSA, 128 x4 PSA, 256| x4
1x1,512 1x1,512 1x1,512
1x1, 256 1x1, 256 1x1, 512
14x14 [3x 3, 256 | x6 |PSA, 256 | x6 PSA, 512 | x6
1x1,1024 1x1,1024 1x1,1024
[1x1, 5127 [1x 1, 512]] [1 x 1, 1024]
X7 3x3, 512 | x3 |PSA, 512 | x3 PSA, 1024| x3
1 x 1, 2048 1 x 1, 2048 1 x 1, 2048
1x1 7xT global average pool,1000-d fc

dependency. Correspondingly, a novel efficient backbone network named EP-
SANet is developed by stacking the proposed EPSA blocks as the ResNet style.
The proposed EPSANet inherits the advantages of the EPSA block, and thus it
has strong multi-scale representation capabilities and can adaptively re-calibrate
the cross-dimension channel-wise weight. As shown by Table 1, two variations
of the EPSANet, the EPSANet(Small) and EPSANet(Large) are proposed. For
the proposed EPSANet(Small), the kernel and group size are respectively set as
(3,5,7,9) and (1,4,8,16) in the SPC module. The proposed EPSANet(Large) has
a higher group size and is set as (32,32,32,32) in the SPC module.

4 Experiments

4.1 Implementation Details

For image classification tasks, we employ the widely used ResNet [26] as the back-
bone model and perform experiments on the ImageNet [27] dataset. The training

1168



4. EXPERIMENTS 9

configuration is set as the reference in [12, 14, 26]. Accordingly, the standard data
augmentation scheme is implemented and the size of the input tensor is cropped
to 224x224 by randomly horizontal fliping and normalization. The optimisation
is performed by using the stochastic gradient descent (SGD) with weight decay
of le-4, momentum as 0.9 and a minibatch size of 256. The Label-smoothing
regularization [?] is used with the coefficient value as 0.1 during training. The
learning rate is initially set as 0.1 and is decreased by a factor of 10 after every
30 epochs for 100 epochs in total. For object detection tasks, the ResNet-50
along with FPN [29] is used as the backbone model, we use three representative
detectors, Faster RCNN [23], Mask RCNN [4] and RetinaNet [30] on the MS-
COCO [31] dataset. The default configuration setting is that the shorter side
of the input image is resized to 800. The SGD is used with a weight decay of
le-4, the momentum is 0.9, and the batch size is 2 per GPU within 12 epochs.
The learning rate is set as 0.01 and is decreased by the factor of 10 at the 8th
and 11th epochs, respectively. For instance segmentation tasks, we employ the
main-stream detection system, Mask R-CNN [4] and also in companion with
FPN. The settings of training configuration and dataset are similar to that of
the object detection. Finally, all detectors are implemented by the MMDetection
toolkit [32], and all models are trained on 8 Titan RTX GPUs.

Table 2. Comparison of various attention methods on ImageNet in terms of network
parameters(in millions), floating point operations per second (FLOPs), Top-1 and Top-
5 Validation Accuracy(%). For a fair comparison, the SKNet* is reduplicated to follow
the same training configuration as the proposed EPSANet.

Network | Backbones |[Parameters| FLOPs| Top-1 Acc (%)|Top-5 Acc (%)
ResNet [26] 25.56M | 4.12G 75.20 92.91
SENet [12] 28.07TM | 4.13G 76.71 93.70
CBAM [11] 28.07TM | 4.14G 77.34 93.66
A%-Net[19] 33.00M | 6.50G 77.00 93.50
SKNet*[20] 26.15M | 4.19G 77.55 93.82
Res2Net+SE [14] ResNet-50 28.21M | 4.29G 78.44 94.06
GCNet [1] 28.11M | 4.13G 77.70 93.66
Triplet Attention [33] 25.56M | 4.17G 77.48 93.68
FcaNet [8] 28.07M | 4.13G 78.52 94.14
AANet [34] 25.80M | 4.15G 77.70 93.80
ECANet [9] 25.56M | 4.13G 77.48 93.68
EPSANet(Small) 22.56M [3.62G|  77.49 93.54
EPSANet(Large) 27.90M | 4.72G 78.64 94.18
ResNet [26] 44.55M | 7.85G 76.83 93.91
SENet [12] 49.33M | 7.86G 77.62 94.10
CBAM [11] 49.33M | 7.88G 78.49 94.06
AANet [34] 45.40M | 8.05G 78.70 94.40
SKNet* [20] ResNet-1011 5 6aM | 7.96G 78.84 94.29
Triplet Attention|33] 44.56M | 7.95G 78.03 93.85
ECA-Net [9] 44.55M | 7.86G 78.65 94.34
EPSANet(Small) 38.90M [6.82G|  78.43 94.11
EPSANet(Large) 49.59M | 8.97G 79.38 94.58
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4.2 Image Classification on ImageNet

Table 2 shows the comparison results of our EPSANet with prior arts on ResNet
with 50 and 101 layers. For the Top-1 accuracy, the proposed EPSANet(Small)-
50 achieves a margin of 2.29% higher over the ResNet-50, and using 11.7%
fewer parameters and requires 12.1% lower computational cost. Moreover, with
almost the same Top-1 accuracy, the EPSANet(Small)-50 can save 54.2% pa-
rameter storage and 53.9% computation resources as compared to SENet-101.
The EPSANet(Small)-101 outperforms the original ResNet-101 and SENet101
by 1.6% and 0.81% in Top-1 accuracy, and saves about 12.7% parameter and
21.1% computational resources. With the similar Top-1 accuracy on ResNet-101,
the computational cost is reduced about 12.7% by our EPSANet(Small)-101 as
compared to SRM, ECANet and AANet. What’s more, our EPSANet(Large)-50
shows the best performance in accuracy, achieving a considerable improvement
compared with all the other attention models. Specifically, the EPSANet(large)-
50 outperforms the SENet, ECANet and FcaNet by about 1.93%,1.16% and
0.12% in terms of Top-1 accuracy respectively. With the same number of pa-
rameters, our EPSANet(Large)-101 achieves significant improvements by about
1.76% and 0.89% compared to the SENet-101 and CBAM, respectively. In sum,
the above results demonstrate that our PSA module has gain a very competitive
performance with a much lower computational cost.

4.3 Object Detection on MS COCO

As illustrated by Table 3, our proposed models can achieve the best performance
for the object detection task. Similar to the classification task on ImageNet,
the proposed EPSANet(Small)-50 outperforms the SENet-50 by a large mar-
gin with less parameters and lower computational cost. The EPSANet(Large)-
50 can achieve the best performance compared with the other attention meth-
ods. From the perspective of complexity (in term of parameters and FLOPs),
the EPSANet(Small)-50 offers a high competitive performance compared to the
SENet50, i.e., by 1.5%, 1.3%, and 1.1%, higher in bounding box AP on the
Faster-RCNN, Mask-RCNN, RetinaNet, respectively. What’s more, as compared
to the SENet50, the EPSANet(Small)-50 can further reducing the number of pa-
rameters to 87.5%, 88.3% and 86.4% on Faster RCNN, Mask RCNN and Reti-
naNet, respectively. The EPSANet(Large)-50 is able to boost the mean average
precision by around 4% on the above three detectors as compared with the
ResNet-50. It is worth noting that the most compelling performance improve-
ment appears in the measurement of AP;,. With almost the same computational
complexity, the AP performance can be improved by 1.9% and 1.1% by our pro-
posed EPSANet(Large)-50 on both Faster-RCNN and Mask-RCNN detector, as
compared to the FcaNet. The results demonstrate that the proposed EPSANet
has good generalization ability and can be easily applied to other downstream
tasks.
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Table 3. Object detection results of different attention methods on COCO val2017.

Methods | Detectors |Parameters| FLOPs | AP |APso| APrs| APs| APy | APy
ResNet-50[26] 41.53M | 207.07G |36.4|58.4 | 39.1]21.5] 40.0 |46.6
SENet-50 [12] 44.02M | 207.18G |37.7| 60.1{40.9|22.9| 41.9 |48.2
ECANet-50 [9] 41.53M | 207.18G |38.0| 60.6 | 40.9|23.4| 42.1 48.0
FcaNet-50 8] Faster R.ONN| 44-02M | 215.63G |39.0| 61.1|42.3|23.7| 42.8 |49.6
EPSANet(Small)-50 38.56M |197.07G|39.2|60.3 | 42.3|22.8| 42.4|51.1
EPSANet(Large)-50 43.85M | 219.64G |40.9|62.1|44.6|23.6|44.5|54.0
ResNet-50[26] 44.18M | 275.58G |37.3| 59.0 | 40.2|21.9] 40.9 | 48.1
SENet [12] 46.66M | 261.93G |38.7|60.9 | 42.1|23.4| 42.7 |50.0
GCNet-50 [1] 46.90M | 279.60G [39.4|61.6 (424 | - | - | -

ECANet-50 [9] | 44.18M | 275.69G |39.0{61.3 | 42.1 |24.2| 42.8{49.9

Mask R-CNN

FcaNet-50 8] 46.66M | 261.93G | 40.3| 62.0 | 44.1|25.2| 43.9 |52.0
EPSANet(Small)-50 41.20M |248.53G|40.0| 60.9 | 43.3|22.3| 43.2 | 52.8
EPSANet(Large)-50 46.50M | 271.10G |41.4/62.3|45.3|23.6|45.1|54.6
ResNet-50[26] 37.74M | 239.32G |35.6| 55.5 | 38.3]20.0] 39.6 | 46.8
SENet-50 [12] 40.25M | 239.43G |37.1|57.2|39.9|21.2| 40.7 49.3
EPSANet(Small)-50| RetinaNet | 34.78M |229.32G|38.2| 58.1 |40.6 [21.5| 41.5 | 51.2
EPSANet(Large)-50 40.07M | 251.89G |39.6|59.4|42.3|21.2|43.4|52.9

Table 4. Instance segmentation results of different attention networks by using the
Mask R-CNN on COCO val2017.

Network AP AP5Q AP75 APS APM APL
ResNet-50 [26] 34.1155.5|36.2|16.1| 36.7 |50.0
SENet-50 [12] 35.4|57.4|37.8[17.1|38.6 |51.8
ResNet-50 + 1 NL-block [17]|34.7 | 56.7 | 36.6 | - - -
GCNet [1] 35.7/58.4(376| - | - | -
FcaNet [8] 36.2|58.6(38.1| - | - | -
ECANet [9] 35.6|58.1|37.7[17.6|39.0 |51.8
EPSANet(Small)-50 35.9|57.7|38.1]18.5|38.8 [49.2
EPSANet(Large)-50 37.1/59.0(39.5|19.6/40.4|50.4

4.4 Instance Segmentation on MS COCO

For instance segmentation, our experiments are implemented by using the Mask
R-~-CNN on MS COCO dataset. As illustrated by Table 4, our proposed PSA mod-
ule outperforms the other channel attention methods by a considerably larger
margin. Specifically, our EPSANet(Large)-50 surpass the FcaNet which can offer
the best performance in existing methods, by about 0.9% , 0.4% and 1.4% on
AP, AP5y and APry respectively. These results verified the effectiveness of our
proposed PSA module.

5 Ablation Studies

In order to provide a comprehensive understanding about the efficiency of our
proposed EPSANet. Here, we mainly conduct some ablation experiments to eval-
uate the performance of each part of the proposed block independently. Such as
the effect of kernel size and group size, the benefit of the SPC and SE module, the
lightweight performance, and the ability of multi-scale feature representation.
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Table 5. Accuracy performance with the change of group size on the ImageNet [27]
dataset.

Kernel size | Group size | Top-1 Acc(%) | Top-5 Acc(%)

(3,5,7,9) (4,8,16,16) 77.25 93.40
(3,5,7,9) (16,16,16,16) 77.24 93.47
(3,5,7,9) (1,4,8,16) 77.49 93.54

Table 6. Accuracy performance with the change of kernel size on the CIFAR-100[35].

Kernel Size ‘ Group Size ‘ Top-1 Acc(%)
(3,3,5.5) (1,4,8,16) 79.27
(3,5,5,5) (1,4,8,16) 79.06
(3,5,5,7) (1,4,8,16) 79.67
(3,5,7,9) (1,4,8,16) 79.83

5.1 Effect of the Kernel Size and Group size

Firstly, we explore in detail the combinatorial relationship between the convolu-
tion kernel and the group size. The EPSANet(Small)-50 as our baseline model.
As shown by Table 5, when the kernel size is fixed as (3,5,7,9), we adjust the
group size of different sub-kernel properly. The results show that the best per-
formance can be achieved when the group size is changed as (1,4,8,16). Corre-
spondingly, when the group size is fixed as (1,4,8,16), we adjust the kernel size
in different sub-group to explore the best combination relationship. As shown
by Table 6, the best performance can be obtained by setting the kernel size as
(3,5,7,9). All the above results also verified equation (3).

5.2 Effect of the SPC and SE module

Secondly, we conduct an experiment to evulate the benefits coming from the
SPC module and the SE module separately. As illustrated by Table 7, the ’SPC’
is denote that remove the SE module and only replace the SPC module with the
3x3 convolution in the BottleNeck of the ResNet. The 'SE’ is denote that the
squeeze size of the SPC module is set as 1, which can be seem as remove the
benefits come from the SPC module. The ’'SPC+SE’ is mean that equipped with
the SPC and the SE module. As shown by Table 7, the SPC module and the SE
module can bring a more about 0.90% and 0.95% improvement as compared to
SENet-50 respectively. The results show that the benefits coming from the SPC
module and the SE module are equally important. What’s more, equipped with
the SPC module and the SE module can achieves a large margin of 1.92% higher
accuracy performance over SENet, while using 17.2% fewer parameters.

5.3 Effect of the Lightweight performance

Third, as shown by Table 8, the proposed EPSANet can improve the Top-1 accu-
racy by about 1.76% and 0.98% over the MobileNetV2 and SENet respectively.
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Table 7. The benefits coming from the SPC module and the SE module on the CIFAR-
100 [35] dataset.

Model | Module |Parameters| Top-1 Acc(%)
SENet-50 [12] | SE | 25.00M | 7791
SpPC 20.70M 78.81
EPSANet(Small)-50 SE 23.8TM 78.86
SPC+SE| 20.71M 79.83

Table 8. Comparison of different lightweight attention methods on the ImageNet in
terms of network parameters and Top-1 accuracy(%).

Network | Backbones |Parameters|Top-1 Acc (%)
MobileNetV2[36] 3.50M 71.64
SENet[12] . 3.89M 72.42
ECA-Net[9] MobileNetV2| 5 5o\ 72.56
EPSANet(ours) 3.75M 73.40

Meanwhile, as compared to the most competitive model ECANet, the proposed
EPSANet also achieves about 0.84% improvement in Top-1 accuracy. Thus, the
efficiency and effectiveness of the proposed PSA module for lightweight CNN
architectures has verified.

5.4 Effect of the Multi-scale Feature Representation

Finally, we mainly compare the proposed EPSANet with several classical multi-
scale neural networks. These CNN models have more granular level, deeper and
wider architectures, and their results all are copied from the original papers. As
shown by Table 9, the proposed EPSANet(Large)-50 outperforms DenseNet-264
[37] and Inception-v3 in terms of Top-1 accuracy, respectively, by about 0.79%,
1.19%. The EPSANet(Large)-50 is very competitive to ResNeXt-101 [38], while
the latter one employs more convolution filters and expensive group convolutions.
In addition, The proposed EPSANet(Large)-50 is comparable to Res2Net-50
[14], PyConvResNet-50 [13]. All above results demonstrate that the proposed
EPSANet has great potential to further improve the ability of multi-scale feature
representation of the existing CNN models.

5.5 The Visualization Results

For an intuitive demonstration of the intrinsic multi-scale ability, as illustrated by
Figure 5, we visualize the class activation mapping (CAM) of the EPSANet(Small)-
50 by using Grad-CAM. The visualization results demonstrated that the EP-
SANet is able to capture richer and more discriminative contextual information
for a particular target class.
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Table 9. Accuracy performance with several classical multi-scale neural networks on
the ImageNet dataset.

Network Top-1 Acc (%) Top-5 Acc (%)
DenseNet-264(k=32) [37] 77.85 93.78
InceptionV3 [28§] 77.45 93.56
ResNeXt-101 [38] 78.80 94.40
Res2Net-50 [14] 77.99 93.85
Res2Net-50-+SE[14] 78.44 94.06
PyConvResNet-50[13] 77.88 93.80
EPSANet(Large)-50 78.64 94.18

Input

SENet-50

EPSANet(Small)-50

Fig.5. Visualization of GradCAM results. The results are obtained for six ran-
dom samples from the ImageNet validation set and are compared for SENet50 and
EPSANet(Small)-50.

6 Conclusion

In this paper, an effective and lightweight attention module named Pyramid
Squeeze Attention(PSA) is proposed, which can fully extract the multi-scale
spatial information and the important features across dimensions in the chan-
nel attention vectors. Correspondingly, the proposed Efficient Pyramid Squeeze
Attention(EPSA) block inherits the advantage of the PSA module, which im-
proves the multi-scale representation ability at a more granular level. Extensive
qualitative and quantitative experiments demonstrated that the proposed EP-
SANet surpassed most conventional channel attention methods across a series
of computer vision tasks.
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