
Efficient Hardware-aware Neural Architecture Search
for Image Super-resolution on Mobile Devices

Xindong Zhang1,2,⋆, Hui Zeng2,⋆, and Lei Zhang1,2,⋆⋆

1 Dept. of Computing, The Hong Kong Polytechnic University
2 OPPO Research, China

{csxdzhang, cslzhang}@comp.polyu.edu.hk, cshzeng@gmail.com

Abstract. With the ubiquitous use of mobile devices in our daily life, how to
design a lightweight network for high-performance image super-resolution (SR)
has become increasingly important. However, it is difficult and laborious to man-
ually design and deploy different SR models on different mobile devices, while
the existing network architecture search (NAS) techniques are expensive and un-
friendly to find the desired SR networks for various hardware platforms. To mit-
igate these issues, we propose an efficient hardware-aware neural architecture
search (EHANAS) method for SR on mobile devices. First, EHANAS supports
searching in a large network architecture space, including the macro topology
(e.g., number of blocks) and microstructure (e.g., kernel type, channel dimen-
sion, and activation type) of the network. By introducing a spatial and chan-
nel masking strategy and a re-parameterization technique, we are able to finish
the whole searching procedure using one single GPU card within one day. Sec-
ond, the hardware latency is taken as a direct constraint on the searching pro-
cess, enabling hardware-adaptive optimization of the searched SR model. Ex-
periments on two typical mobile devices demonstrate the effectiveness of the
proposed EHANAS method, where the searched SR models obtain better per-
formance than previously manually designed and automatically searched mod-
els. The source codes of EHANAS can be found at https://github.com/
xindongzhang/EHANAS.

Keywords: NAS · Super-resolution · Mobile devices.

1 Introduction

Image super-resolution (SR) aims at recovering high-resolution (HR) images from their
degraded low-resolution (LR) counterparts. Benefiting from the rapid development of
deep learning [22], convolutional neural networks (CNN) based SR models [7,19,27,6,50]
have exhibited superior performance over traditional SR methods and shown promis-
ing practical values in improving image quality. However, many existing SR networks
employ very complicated and cumbersome backbones in order to achieve high recon-
struction accuracy, which is infeasible for many real-world applications running on

⋆ Equal contribution
⋆⋆ Corresponding author. This work is supported by the Hong Kong RGC RIF grant (R5001-18)

and the PolyU-OPPO Joint Innovation Lab.

721

https://github.com/xindongzhang/EHANAS
https://github.com/xindongzhang/EHANAS

2 X. Zhang et al.

(a) (b)

Fig. 1. Latency of applying a 3 × 3 convolution with different input and output channels to an
image of 540× 960 resolution using stride 1. The hardware platforms are (a) GPU of Dimensity
1000+ and (b) DSP of Snapdragon 865.

resource-limited edge or mobile devices. Therefore, how to design and train lightweight
and efficient SR (LESR) models has been becoming increasingly important and attract-
ing much attention.

One popular trend of LESR is to design convolution blocks with low-FLOPs (e.g.,
group-wise convolution, depth-wise convolution, and element-wise operator) and param-
eter-free operators (e.g., splitting, shuffling, concatenation and attention) [36,8,17,16,29,1,40].
However, the FLOPs and number of parameters of an SR model cannot faithfully re-
flect its real hardware latency [34,46,49]. It still requires a large amount of human labor
and resources to adapt and deploy such models on hardware devices. Network pruning
is another direction to obtain LESR models by removing less important parameters or
blocks from larger SR models [42,25]. However, the pruned model may be sub-optimal
on both SR accuracy and inference latency.

The huge space of possible network architectures intertwined with the various hard-
ware platforms makes it very challenging and cumbersome to manually design and de-
ploy SR models on different hardware devices. On one hand, the network architecture
varies from macro topology (e.g., number of blocks) to microstructure (e.g., kernel type,
channel dimension, and activation type). On the other hand, different mobile or edge de-
vices (e.g., CPU, GPU, DSP, and NPU) can have very different hardware resources such
as computational capacity, memory access speed, and supporting operators. As shown
in Figure1, even the same operator (e.g., a 3×3 convolution) can have very different
hardware latency when evaluated on the same device using different input and output
channels.

To alleviate the laborious work on network design and deployment, researchers
have made several attempts to leverage the network architecture search (NAS) tech-
nique to autonomously search for LESR models [5,4,14,37,23,45]. However, most of
these works conduct NAS based on computationally expensive reinforcement learning
[14,23] or evolutionary algorithms [5,4,37,45], which take hundreds or even thousands
of GPU hours to search a model. To speed up the searching process, one may com-
promise on the searching space (e.g., only searching a part of the microstructure) or
searching step (e.g., using a large step), which may lead to sub-optimal models. In ad-
dition, most of the existing methods use the indirect proxy (e.g., FLOPs and number of
parameters) to guide the searching process, without considering the hardware setting of
target devices [5,4,14,37,23].

722

EHANAS for Image Super-resolution on Mobile Devices 3

To solve the above-mentioned problems, we propose an efficient and hardware-
aware NAS (EHANAS) method for SR on mobile devices. Our EHANAS is based
on the differential NAS (DNAS) methods [43,41], which have recently proven their
effectiveness and efficiency on image classification tasks compared to the NAS methods
based on reinforcement learning or evolutionary algorithms [2,52,51,35,28]. However,
with multiple convolution branches and intermediate feature maps, the DNAS methods
still cost considerable computation and memory resources for searching each block. In
this paper, we propose to search a set of spatial and channel masks, which can be used to
re-parameterize one single convolution to achieve block search. In this way, our block
search takes almost the same computation and memory cost as training one normal
convolution block. Combined with a differential strategy for searching the number of
blocks, our EHANAS model can be trained using one single GPU card and the whole
process can be finished within one day. In addition, the hardware latency is taken as a
direct constraint into the objective function using a pre-computed latency look-up table
(LUT) from the target hardware device, making the searched model well optimized for
the target device.

Our contributions are summarized as follows:

1) We present a highly efficient neural architecture search method for training and
deploying SR models on mobile devices, using less than one GPU day.

2) We take the hardware latency as a direct constraint in the optimization process,
which enables hardware-adaptive optimization of the searched model.

3) Experiments on two typical mobile devices validate the effectiveness of the pro-
posed EHANAS method. The searched SR models achieve higher SR accuracy
than previous ones with comparable or less hardware latency.

2 Related work

LESR network design. Most of the manually designed LESR models mainly focus
on reducing the number of FLOPs or network parameters. The pioneer LESR models,
such as FSRCNN [8] and ESPCN [36], have validated the efficiency of a plain topology
with several convolution blocks. Since then, a lot of more powerful modules have been
proposed to improve SR performance while maintaining low FLOPs and small model
sizes. For example, Ahn et al. [1] introduced a cascading residual network (CARN) with
group convolution that has low FLOPs. Hui et al. [17] designed an information distilla-
tion network (IDN) to compress the number of filters per layer. IDN was then extended
to the information multi-distillation network (IMDN) [16] which won the AIM 2019
constrained image SR challenge [47]. Liu et al. [29] further improved IMDN to residual
feature distillation block (RFDB) and won the AIM 2020 [46] SR challenge. In NTIRE
2022 [26], more architectures and metrics are proposed and discussed for designing
LESR. However, neither FLOPs nor parameters can faithfully reflect the real latency,
especially on mobile devices [49]. Recently, Zhang et al. [49] carefully designed an
edge-oriented convolution block for efficient SR on mobile devices. However, such a
manual design consumes a huge amount of human labor and resources. In this work, we
propose to automatically search a LESR model for the given target device and latency
constraint in a very efficient way.

723

4 X. Zhang et al.

Network pruning. Network pruning focuses on removing redundant or less impor-
tant network parameters or blocks, which is a popular approach to compress large mod-
els to smaller ones [9,13,30,33]. For example, Li et al. [25] proposed a differentiable
meta pruning method and applied it to SR models with a slight performance drop. Zhan
et al. [45] utilized a hardware-aware filter pruning algorithm to design LESR models
with latency constraints. Though network pruning is effective at reducing computational
cost and accelerating inference speed, its upper bound is determined by the original
model and it is very likely to generate a sub-optimal solution for the given hardware
devices.

Neural architecture search. Neural architecture search (NAS) has emerged as a
promising direction for automating the design of LESR models [4,5,14,24,37,38]. How-
ever, most of them use computationally intensive reinforcement learning or evolution
methods to search models and employ indirect proxies (i.e., parameters and FLOPs)
as optimization constraints. As a result, the searched models are usually unfriendly for
mobile devices. Single-path NAS [38] provides a micro search space for coarse-grained
hardware-aware search. However, it does not support searching the depth of the network
which is vital for real-time models on mobile devices and likely to yield sub-optimality.
Very recently, Zhan et al. [45] proposed a hardware-aware neural architecture and prun-
ing search method, which takes hardware latency as a direct constraint. However, the
proposed NAS method is based on a slow evolution algorithm and it contains three
separate stages, including network search, pruning, and tuning. Different from it, we
design a totally differentiable NAS pipeline where the searching and tuning are finished
in one single stage in less than one GPU day.

3 Methodology

...

(a)

...

(b) (c)

...

(d)

...

...

......

input & output features

convolution kernels

...
spatial masks

...

channel masks

intermediate features

...

Fig. 2. Illustration of kernel type and channel dimension search. (a) The two-step search process
of the DNAS method [41], contains multiple convolution branches and intermediate feature maps.
(b) Kernel masking and (c) channel masking of the proposed method. (d) Re-parameterization
of both kernel and channel masking for efficient search, where only one single convolution is
required.

724

EHANAS for Image Super-resolution on Mobile Devices 5

In this section, we discuss in detail the search for micro and macro network topol-
ogy, hardware latency estimation, and latency-constrained optimization.

3.1 Block search

The convolution block is the core module for feature extraction in SR models. A typi-
cal convolution block consists of three variables: kernel type, channel dimension, and
activation type 3. The kernel type and channel dimension search in the existing DNAS
method [41] is shown in Figure 2(a). As can be seen, in the kernel selection step, the
input feature is passed into multiple convolution kernels, resulting in multiple inter-
mediate features. The weighted summed feature is then fed into the channel selection
step. Although the whole process is differentiable, the computation and memory cost
increases linearly with the number of candidate kernels. To address this issue, we pro-
pose a kernel and channel masking strategy to conduct block searches at almost constant
computation and memory costs.

Kernel mask. Our kernel masking strategy is shown in Figure 2(b). Given the input
feature x, instead of employing multiple independent convolution kernels as candidates,
we use a set of spatial masks {mk

ker}Kk=1 to dynamically adjust the spatial size of a
shared convolution kernel w, where K is the number of kernel masks. In this way, the
kernel search can be achieved by using one single convolution as:

y = (

K∑
k=1

pkker ·mk
ker · w) ∗ x+ b (1)

where y denotes the output feature, pkker is the probability of choosing the k-th kernel
mask and pkker follows a Gumbel-Softmax distribution [18,31,10]:

pkker =
exp[(θk + ϵk)/τ]∑K
k=1 exp[(θk + ϵk)/τ]

(2)

where θ, ϵ, and τ represent the sampling parameter, Gumbel noise, and temperature,
respectively.

With the consideration of mobile-friendly models, we set the spatial size of w to
5× 5 and employ five kernel masks, including 1× 1, 1× 3, 3× 1, 3× 3 and 5× 5.

Channel mask. Similarly, we can employ a set of channel masks to select the chan-
nel dimension as shown in Figure 2(c). Denote by mc

chn the c-th channel mask and by
pcchn the corresponding probability (also following Gumbel-Softmax distribution), the
channel selection process can be formulated as:

y = (

C∑
c=1

pcchn ·mc
chn) · (w ∗ x+ b) (3)

where C is the total channel dimension of features.
3 We do not consider those more complicated operators such as splitting, skip connection, and

attention for block search since they are not friendly for resource-limited mobile devices [49].

725

6 X. Zhang et al.

Re-parameterization for efficient search. The kernel and channel selection method
shown in Figure 2(a) has two steps, which doubles the training latency. Benefiting from
our kernel and channel masking strategy, Eq. 1 and Eq. 3 can be naturally merged into
one single convolution:

y = wrep ∗ x+ brep (4)

where wrep and brep are the weight and bias after re-parameterization:
wrep = (

C∑
c=1

pcchn ·mc
chn) · (

K∑
k=1

pkker ·mk
ker) · w

brep = (

C∑
c=1

pcchn ·mc
chn) · b

(5)

The merged convolution is shown in Figure 2(d).
Activation search. The activation function is important for providing non-linear

transformation capability to the SR model. However, most powerful activation func-
tions are not supported by mobile devices. We thus incorporate two mobile-friendly ac-
tivation functions, i.e., ReLU and identity mapping, as candidates for activation search.
Denote by p0act and p1act the probabilities of selecting ReLU and identity mapping, re-
spectively. The activation search can be formulated as follows:

A(x) = p0act ·ReLU(x) + p1act · x (6)

where A denotes the weighted activation operation. Since both ReLU and identity map-
ping are linear functions, A could be further re-parameterized as follows:

A(x) =

{
x, x ≥ 0

p1act · x, x < 0
(7)

Compared to Eq. 6, Eq. 7 consumes less memory access and computation cost, which
can further accelerate the searching speed.

The whole block search process, denoted by C, can be formulated as follows:

C(x) = A(Wrep ∗ x+ brep) (8)

3.2 Network search

Based on the above block, we could search the overall network topology. Following
prior arts on designing mobile-friendly SR models [49], we employ a plain network
topology consisting of N blocks {Cn}Nn=1, one skip connection, and one PixelShuf-
fle operation E , as shown in Figure 3(a). The network search can be simplified to the
search of the number of blocks, which is usually achieved by using discrete optimiza-
tion in reinforce-learning or evolution-based NAS methods [45,37,4,5,14]. However,

726

EHANAS for Image Super-resolution on Mobile Devices 7

...

(a)

...

...

(b)

Fig. 3. Illustration of the network search. (a) A mobile-friendly plain topology for mobile SR
consisting of N blocks {Cn}Nn=1, one skip connection, and one PixelShuffle operation E . (b) The
differential search of the number of blocks.

this is infeasible for DNAS. As shown in Figure 3(b), we design a differential method
to achieve this goal.

Specifically, we assume the network has at least two blocks where the first block
C1 has a fixed number of input channels and the last block CN has a fixed number of
output channels, depending on the SR settings. For each block Cn, n ≤ N − 1, we add
a skip connection with probability pnblc to the input of the last block CN . Denote by yn
the output of the n-th block and by ◦ the symbol of composition functions, we have:

yn =

{
C1(x), n = 1

Cn ◦ . . . ◦ C1(x), 1 < n < N
(9)

Then the output of the network, denoted by N , is a weighted summation of all paths as
follows:

N (x) = E ◦ [CN ◦ (
N−1∑
n=1

pnblc · yn) + x] (10)

In this way, the search for block numbers is differentiable. As the probability of block
paths {pnblc}

N−1
n=1 converges to a one-hot categorical vector, the depth of the searched

network can be determined.

3.3 Hardware latency estimation

To search for a model that fits a target device, we take the hardware latency as a direct
constraint in the optimization process. Following prior arts [41] 4, we first calculate

4 The DL-based latency prediction model [48,12] can be also easily integrated into our frame-
work, while we use pre-calculated LUT in this work for the purpose of straight latency com-
parison [49] and simplicity.

727

8 X. Zhang et al.

the hardware latency of each operator at different parameter sizes and record it using
a Lookup Table (LUT), as shown in Figure 1. Under our formulation, the latency esti-
mation is naturally differentiable. Specifically, using LUTk[ci, co] to record the latency
of the k-th kernel with input channel ci and output channel co, the latency of the re-
parameterized convolution (Eq. 4) can be calculated as:

Tconv =

C∑
co=1

pcochn · (
C∑

ci=1

pcichn · (
K∑

k=1

pkker · LUTk[ci, co])) (11)

Note that the input channel of the current layer is the output channel of the former layer.
We do not annotate the layer index in the above formula for simplicity.

Similarly, using LUTR[co] and LUTI [co] to record the latency of ReLU and identity
mapping with output channel co, the latency of the re-parameterized activation (Eq. 7)
can be calculated as:

Tact =

C∑
co=1

pcochn · (p0act · LUTR[co] + p1act · LUTI [co]) (12)

Then the latency of the n-th convolution block can be easily obtained as follows:

T (Cn) = Tn
conv + Tn

act (13)

where Tn
conv and Tn

act are the latency of the n-th convolution and activation. The total
latency of the network is the weighted summation of all blocks plus several additional
operators:

T (N) =

N−1∑
n=1

[pnblc · T (Cn)] + Tadd (14)

where Tadd contains the latency of the last convolution, one skip connection and one
PixelShuffle operation.

3.4 Latency constrained optimization

Previous works on LESR search usually contain several stages such as architecture
search, network pruning, and tuning [45,4,5,14,37,24]. Benefiting from our totally dif-
ferential pipeline, we can perform model architecture searching and tuning in just one
single stage, which can greatly reduce the time for hardware adaptation. Denote by ILR

and IHR a pair of LR and HR images, the latency constrained loss function for SR is
defined as follows:

L(N) = ||N (ILR)− IHR||1 + β||T (N)− T0||1 (15)

where N is the network parameters to be optimized, T0 is the required latency on a
target device, and β is a weighting parameter to balance the reconstruction loss and
latency loss.

728

EHANAS for Image Super-resolution on Mobile Devices 9

4 Experiments

In this section, we employ the proposed EHANAS method to search for LESR models
on two typical hardware devices, including the DSP of snapdragon 865 and the GPU
of Dimensity 1000+, under certain latency constraints and compare their performance
with existing state-of-the-art LESR models on five SR benchmark datasets. We also
conduct a comprehensive ablation study to analyze the influence of searching space on
the performance of searched models.

4.1 Datasets and implementation details

We employ the DIV2K dataset [39], which consists of 800 training images, to search
and train our EHANAS models. The DIV2K validation set and four benchmark SR
datasets, i.e., Set5 [3], Set14 [44], BSD100 [32] and Urban [15], are used for model
evaluation and comparison. PSNR and SSIM indexes calculated on the Y channel of
YCbCr color space are used for performance evaluation.

We use bicubic interpolation to obtain LR images and randomly crop 32 patches of
size 64 × 64 from the LR images as input for each training batch. Random rotations
of 90◦, 180◦, and 270◦ are selected as the strategies for data augmentation. Since our
EHANAS is a one-shot architecture, we use two ADAM optimizers for architecture
search and weight tuning concurrently. Two typical hardware devices, i.e., the DSP of
snapdragon 865 and the GPU of Dimensity 1000+, are employed to search hardware-
aware LESR models. The latency look-up tables of different operators are pre-computed
on both devices. We train the model for 500 epochs using a fixed learning rate at 5 ×
10−4. The parameter β for balancing the fidelity score and latency constraint in Eq. 15
is initialized as 1×10−4 for 10 epochs of warm-up, then increased to 3×10−2 linearly.

4.2 Quantitative comparison

We first quantitatively compare the searched models by EHANAS against existing rep-
resentative LESR models, including SRCNN [7], FSRCNN [8], ESPCN [36], ECBSR
[49], VDSR [19], LapSRN [21], CARN-M [1], MoreMNAS-{B, C} [5], FALSR-{B,
C} [4], TPSR-NoGAN [24], EDSR [27], IMDN [16], RLFN [20], FMEN [11] and
EFDN [26]. In Table 1, we summarize the performance comparisons on the DSP of
snapdragon 865 and GPU of dimensity 1000+. For the ×2 up-scaling setting, which is
more computationally intensive than the ×4 setting, we search the EHANAS model on
DSP of snapdragon 865 using three latency constraints, 30ms for real-time speed, 80ms
for nearly real-time speed, and 600ms for better accuracy to verify the scalability of
the proposed method. For ×4 up-scaling, we search a super real-time, a real-time, and
a larger model using 15ms, 30ms, and 150ms as latency constraints, respectively. As
for the model settings on GPU of dimensity 1000+, we use {50ms, 200ms, 1200ms}
and {20ms, 80ms, 400ms} for ×2 and ×4 upscaling tasks, respectively. In addition to
the PSNR/SSIM indexes and latency, we also report some classical proxies such as the
number of network parameters, FLOPs, activation, and convolution layers for reference.

729

10 X. Zhang et al.

Table 1. Performance comparison of different SR models on five benchmarks. PSNR/SSIM
scores on Y channel are reported on each dataset. #Params, #FLOPs, #Acts, #Conv, and #Lat
represent the total number of network parameters, floating-point operations, activation, convolu-
tion layers, and inference latency, respectively. The #FLOPs and #Acts are measured under the
setting of generating an SR image of 1280×720 resolution on both scales. The #Lat is measured
by generating an SR image of 1920 × 1080 resolution using the DSP of Snapdragon 865 and
GPU of Dimensity 1000+. The best results of each group are highlighted in bold.

Scale Model #Params (K) #FLOPs (G) #Acts (M) #Conv
#Lat (s)

Set5 [3] Set14 [44] B100 [32] Urban100 [15] DIV2K [39]
DSP GPU

× 2

Bicubic — — — — — — 33.68/0.9307 30.24/0.8693 29.56/0.8439 26.88/0.8408 32.45/0.9043
SRCNN [7] 24.00 52.70 89.39 3 1.591 0.890 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 34.61/0.9334
ESPCN [36] 21.18 4.55 23.04 3 0.072 0.080 36.83/0.9544 32.40/0.9060 31.29/0.8870 29.48/0.8948 34.63/0.9335
FSRCNN [8] 12.46 6.00 40.53 8 0.114 0.076 36.98/0.9556 32.62/0.9087 31.50/0.8904 29.85/0.9009 34.74/0.9340
MOREMNAS-C [5] 25.00 5.50 269.11 49 — — 37.06/0.9561 32.75/0.9094 31.50/0.8904 29.92/0.9023 34.87/0.9356
ECBSR-M4C16 [49] 10.20 2.34 19.35 6 0.033 0.046 37.33/0.9580 32.81/0.9100 31.66/0.8931 30.31/0.9091 35.15/0.9380
TPSR-NoGAN [24] 60.00 14.00 50.69 14 — — 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119 —
EHANAS-GPU-50ms 11.90 2.74 35.02 8 — 0.049 37.42/0.9585 32.95/0.9122 31.71/0.8940 30.36/0.9092 35.23/0.9383
EHANAS-DSP-30ms 35.40 8.13 44.97 7 0.029 — 37.63/0.9593 33.15/0.9137 31.89/0.8960 30.98/0.9168 35.51/0.9408
IMDN-RTC [16] 19.70 4.57 65.20 28 1.101 1.076 37.51/0.9590 32.93/0.9122 31.79/0.8950 30.67/0.9120 35.34/0.9398
LapSRN [21] 813.00 29.90 223.03 14 4.395 1.624 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 35.31/0.9400
VDSR [19] 665.00 612.60 1121.59 20 8.946 3.379 37.53/0.9587 33.05/0.9127 31.90/0.8960 30.77/0.9141 35.43/0.9410
CARN-M [1] 412.00 91.20 649.73 42 0.884 1.195 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 35.62/0.9420
MOREMNAS-B [5] 1118.00 256.90 987.96 79 — — 37.58/0.9584 33.22/0.9135 31.91/0.8959 31.14/0.9175 35.46/0.9402
FALSR-B [4] 326.00 74.70 372.33 49 — — 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191 35.58/0.9408
FALSR-C [4] 408.00 93.70 379.70 34 — — 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187 35.57/0.9407
EDSR-R5C32 [27] 130.80 30.31 111.51 13 0.150 0.653 37.61/0.9590 33.06/0.9127 31.87/0.8959 30.90/0.9162 35.45/0.9407
ECBSR-M10C32 [49] 94.70 21.81 82.02 12 0.062 0.203 37.76/0.9595 33.26/0.9136 32.04/0.8970 31.25/0.9190 35.68/0.9421
EHANAS-GPU-200ms 127.90 29.47 92.16 10 — 0.208 37.80/0.9597 33.31/0.9147 32.05/0.8972 31.32/0.9191 35.72/0.9425
EHANAS-DSP-80ms 99.40 22.89 89.40 10 0.077 — 37.83/0.9596 33.33/0.9152 32.04/0.8974 31.36/0.9198 35.73/0.9426
ECBSR-M16C64 [49] 596.00 137.31 251.60 18 0.513 0.786 37.90/0.9600 33.34/0.9153 32.10/0.8982 31.71/0.9250 35.79/0.9430
EDSR-R16C64 [27] 1334.90 307.89 546.51 37 1.447 2.372 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 35.85/0.9436
IMDN [16] 660.30 152.04 406.43 34 10.610 12.792 37.99/0.9603 33.39/0.9156 32.14/0.8993 32.03/0.9279 35.87/0.9436
EHANAS-GPU-1200ms 1336.3 307.89 376.93 18 — 1.175 38.00/0.9605 33.53/0.9174 32.15/0.8995 32.00/0.9275 38.85/0.9435
EHANAS-DSP-600ms 1188.90 273.91 487.53 34 0.583 — 38.05/0.9611 33.60/0.9180 32.18/0.8998 32.05/0.9280 35.89/0.9437

× 4

Bicubic — — — — — — 28.43/0.8113 26.00/0.7025 25.96/0.6682 23.14/0.6577 28.10/0.7745
SRCNN [7] 57.00 52.7 89.39 3 1.583 0.896 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 29.25/0.8090
ESPCN [36] 24.90 1.44 6.45 3 0.026 0.032 30.52/0.8647 27.42/0.7516 26.87/0.7100 24.39/0.7211 29.32/0.8100
FSRCNN [8] 12.00 5.00 10.81 8 0.032 0.028 30.70/0.8657 27.59/0.7535 26.96/0.7128 24.60/0.7258 29.36/0.8110
ECBSR-M4C16 [49] 11.90 0.69 5.53 6 0.011 0.028 31.04/0.8785 27.78/0.7645 27.09/0.7200 24.79/0.7422 29.62/0.8187
TPSR-NoGAN [24] 61.00 3.60 13.13 15 — — 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456 29.77/0.8200
EHANAS-GPU-20ms 21.00 1.21 9.22 10 — 0.022 31.25/0.8812 28.03/0.7680 27.20/0.7248 25.01/0.7480 29.80/0.8221
EHANAS-DSP-15ms 66.60 3.87 17.63 10 0.014 — 31.57/0.8855 28.23/0.7725 27.31/0.7255 25.34/0.7595 29.94/0.8260
IMDN-RTC [16] 21.00 1.22 16.99 28 0.318 0.287 31.22/0.8810 27.92/0.7660 27.18/0.7217 24.98/0.7477 29.76/0.8200
VDSR [19] 665.00 612.60 1121.59 20 9.036 3.365 31.35/0.8838 28.02/0.7678 27.29/0.7252 25.18/0.7525 29.82/0.8240
LapSRN [21] 813.00 149.40 264.04 27 5.378 5.801 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.88/0.8250
EDSR-R5C32 [27] 241.80 14.15 50.69 13 0.101 0.567 31.46/0.8845 28.07/0.7682 27.27/0.7250 25.21/0.7561 29.87/0.8251
ECBSR-M10C32 [49] 98.10 5.65 21.20 12 0.017 0.063 31.66/0.8880 28.15/0.7725 27.34/0.7283 25.41/0.7650 29.98/0.8275
EHANAS-GPU-80ms 194.5 11.20 23.04 7 — 0.079 31.73/0.8885 28.33/0.7759 27.39/0.7300 25.43/0.7651 30.05/0.8281
EHANAS-DSP-30ms 177.70 10.45 47.89 26 0.027 — 31.75/0.8887 28.34/0.7758 27.42/0.7302 25.45/0.7653 30.05/0.8283
CARN-M [1] 412.00 46.10 222.11 43 0.170 0.362 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 30.10/0.8311
ECBSR-M16C64 [49] 602.90 34.73 63.59 18 0.071 0.209 31.92/0.8929 28.34/0.7756 27.48/0.7323 25.81/0.7780 30.15/0.8315
EDSR-R16C64 [27] 1778.00 102.85 181.56 37 0.527 1.639 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.21/0.8336
IMDN [16] 667.40 38.41 102.30 34 2.782 2.672 32.03/0.8929 28.42/0.7783 27.48/0.7320 25.96/0.7804 30.22/0.8336
EHANAS-GPU-400ms 1513.2 87.16 105.98 20 — 0.395 32.02/0.8930 28.50/0.7802 27.53/0.7334 26.00/0.7844 30.22/0.8336
EHANAS-DSP-150ms 1269.9 73.15 129.95 36 0.148 — 32.11/0.8941 28.60/0.7814 27.58/0.7357 26.05/0.7850 30.25/0.8337
RLFN [20] 317.2 17.31 70.35 39 0.893 0.192 32.07/0.8927 28.59/0.7808 27.56/0.7349 26.09/0.7842 30.43/0.8367
FMEN [11] 341.1 19.58 63.36 34 0.874 0.303 32.01/0.8925 28.56/0.7808 27.55/0.7346 26.00/0.7818 30.44/0.8367
EFDN [26] 276.2 14.70 97.65 65 1.005 1.070 32.05/0.8920 28.57/0.7801 27.54/0.7342 25.99/0.7805 30.44/0.8365

730

EHANAS for Image Super-resolution on Mobile Devices 11

Fig. 4. Qualitative comparison of real-time and nearly real-time SR models on Urban100 for × 4
upscaling tasks. The searched EHANAS models can restore richer and sharper details than other
competing models.

One can see that the searched models by EHANAS obtain clearly better perfor-
mance than previous LESR models under most settings. Specifically, under the real-
time setting of ×2 up-scaling, our EHANAS-DSP-30ms model improves the PSNR by
more than 0.3 dB on both the Set5 and DIV2K validation set compared to the second-
best candidate ECBSR-M4C16. As for the nearly real-time setting of ×2 up-scaling,
EHANAS-DSP-80ms outperforms the second-best model ECBSR-M10C32 on all five
datasets at comparable latency. One can see that our EHANAS-DSP-80ms model can
obtain close PSNR/SSIM indexes to IMDN and EDSR-baseline, but it is more than 18
and 137 times faster than them on the DSP hardware. Furthermore, our larger model,
EHANAS-DSP-600ms, achieves the best results among the five benchmarks, while it
is around 2 and 18 times faster than EDSR-baseline and IMDN on DSP hardware, val-
idating the scalability of our EHANAS method.

Similar observations can be made under the setting of ×4 up-scaling, where the
EHANAS-DSP-15ms, EHANAS-DSP-30ms and EHANAS-DSP-150ms models obtain
higher PSNR and SSIM indexes on all datasets with less or comparable resources com-
pared to their competitors. These results validate the effectiveness of using the pro-
posed EHANAS method to search LESR models. Noted that the computational capac-
ity of GPU of dimensity 1000+ is much lower than DSP of snapdragon 865, while
our EHANAS method can also successfully search the desired models, achieving better
PSNR/SSIM indexes than previous methods with lower computational cost and hard-
ware resources.

We also compare our method with the top-ranking LESR designs in NTIRE 2022
[26], including RLFN [20], FMEN [11] and EFDN [26]. Our EHANAS-DSP-150ms

731

12 X. Zhang et al.

is slightly better except for the DIV2K, it may be that all of the three methods are
specifically trained and tuned for this benchmark. Our EHANAS series have huge ad-
vantages over them on DSP hardware, it is because the three methods incorporate multi-
branch design and DSP-unfriendly operations (e.g., PReLU, LReLU, and ESA) which
may introduce a huge amount of memory access cost. Since the GPU hardware is pro-
grammable and computationally bounded, the above-mentioned drawbacks could be
eased. Both RLFN and FMEN achieve promising efficiency. The three designs can be
further enhanced on mobile scenarios by EHANAS, we will leave it as future research.

4.3 Qualitative comparison

In Figure 4, we qualitatively compare the SR results of several real-time and nearly
real-time models under the ×4 up-scaling setting by using two example images from
the Urban100 dataset. Specifically, we compare our searched EHANAS-DSP-30ms,
EHANAS-DSP-80ms, EHANAS-GPU-50ms, and EHANAS-GPU-200ms models with
FSRCNN [8], ESPCN [36], ECBSR-M4C16 [49] and ECBSRM10C32 [49]. The bicu-
bic upsampling and ground truth HR patches are also included as references. As can
be seen from the figure, previous real-time SR models like ESPCN, FSRCNN, and
ECBSR-M4C16 tend to recover blurry and smooth texture around long edges in “img039“,
while our EHANAS-GPU-50ms and EHANAS-DSP-30ms can reproduce more de-
tails and well preserve the edge structure to some extent. On image “img053“, our
EHANAS-DSP-30ms, EHANAS-DSP-80ms, EHANAS-GPU-50ms, and EHANAS-GPU-
200ms models successfully generate sharper and clearer edge details than other com-
peting methods.

In Figure 5, we provide the qualitative comparison of SR results among several
representative and more complicated models, including CARN-M [1], EDSR-R16C64
[27] and IMDN [16]. On image “Barbara“ from Set14, EHANAS-GPU-400ms and
EHANAS-DSP-150ms well preserve the long edge structure, while other methods pro-
duce blurry or artificial details around edges. On image “img052“, most of the compared
methods yield either blurry or inaccurate edges and textures, while our EHANAS-DSP-
150ms can restore more accurate and sharper details.

Table 2. Ablation studies on the search space. The baseline results are from ECBSR-M4C16 [49].
By default, the kernel type, channel dimension, block number and activation are set to 3×3, 32,
8, ReLU, respectively, when they are not searched.

Method Kernel Channel #Block Act. #Lat(s) Set5 [3] Set14 [44] B100 [32] Urban100 [15] DIV2K [39]
Baseline 0.033 37.33/0.9580 32.81/0.9100 31.66/0.8931 30.31/0.9091 35.15/0.9380
EHANAS ✓ ✓ 0.034 37.46/0.9586 32.98/0.9121 31.76/0.8944 30.56/0.9117 35.31/0.9393
EHANAS ✓ ✓ 0.035 37.51/0.9588 33.03/0.9130 31.80/0.8950 30.69/0.9131 35.37/0.9398
EHANAS ✓ ✓ 0.035 37.53/0.9588 33.03/0.9126 31.78/0.8949 30.65/0.9126 35.33/0.9395
EHANAS ✓ ✓ ✓ 0.031 37.60/0.9592 33.12/0.9136 31.85/0.8958 30.91/0.9154 35.46/0.9401
EHANAS ✓ ✓ ✓ ✓ 0.029 37.63/0.9593 33.15/0.9137 31.89/0.8960 30.98/0.9168 35.51/0.9408

4.4 Search cost comparison

In this section, we compare the computation and memory cost by using the state-of-the-
art DNAS method [41] and our proposed EHANAS to search SR models of different

732

EHANAS for Image Super-resolution on Mobile Devices 13

Fig. 5. Qualitative comparison of larger models for × 4 upscaling tasks on “Barbara“ and
“Img052“ from B100 and Set14, respectively. The searched EHANAS models can restore clearer
edges and structures than other competing models.

complexity. Specifically, we use the five kernel candidates as described in Sec. 3.1, set
the maximum channel dimension to 64, and vary the number of blocks from 5 to 25
with step-length 5. The memory cost (measured in GB) and computing time of 100
training iterations (measured in seconds) of different settings are plotted in Figure 6.

One can see that both the memory and computation cost of DNAS is about 3 times
as much as our proposed EHANAS. This is because the DNAS method uses multiple
independent convolution branches, while our EHANAS employs only one shared con-
volution. As the cost increases linearly with the number of network blocks, EHANAS
can save a lot of computation and time, especially when the SR models are to be de-
ployed on multiple hardware devices with different latency constraints.

4.5 Ablation study

We conduct a series of ablation studies to investigate the influence of network search
space on the searched model. Specifically, we conduct ablation experiments by using
different combinations of the four variables, i.e., kernel type, channel dimension, acti-
vation type, and the number of blocks. Since one single variable can be directly deter-
mined for a certain latency, we search for at least two variables in each experiment. All
models are searched under the ×2 up-scaling task with a 30ms latency constraint. For
network searching, the maximum channel dimension and number of blocks are set to 64

733

14 X. Zhang et al.

and 8, respectively. When not searched, the kernel type, channel dimension, block num-
ber, and activation are set to 3×3, 32, 8, and ReLU, respectively, following prior arts.
The results of different model variants are reported in Table 2. The results of ECBSR-
M4C16 [49], which is the state-of-the-art among manually design LESR models at the
same latency level, are also reported for comparison.

As can be seen, all the searched model variants significantly outperform their base-
lines, which validates the advantage of the proposed EHANAS method over manual
design. When performing searching with two variables, the combination of kernel type
and block number (kernel+block for short) obtains the best performance, followed by
channel+block. Searching with three variables, i.e., kernel+channel+block, obtains bet-
ter performance than all variants of searching with two variables. Searching with all
four variables further improves the performance. These results indicate that a larger
search space can generally lead to a better model.

Fig. 6. Comparison of searching costs between the existing DNAS method [41] and our proposed
EHANAS. (a) Memory cost (measured in GB) comparison of the entire model during the model
searching process. (b) Computational cost (measured in second) comparison of training 100 iter-
ations during the model searching process.

5 Conclusion and discussions

In this paper, we proposed an efficient hardware-aware neural architecture search (EHA-
NAS) method to automatically search light-weight and efficient SR models on mobile
devices. EHANAS could finish the searching of both macro and micro-network topolo-
gies within one GPU day. Experiments on two typical hardware devices, GPU of Di-
mensity 1000+ and DSP of Snapdragon 865, validated the effectiveness of EHANAS
in searching SR models under desired latency constraints. The searched SR models
could work in real-time or nearly real-time while exhibiting much better accuracy than
previously manually designed and automatically searched models.

While EHANAS is very efficient by benefiting from the proposed masking and
re-parameterization strategy, the shared weights may slightly condense the searching
space. In addition, an individual model has to be searched for each device under each
latency constraint. In the future, we will study how to search for shared SR models that
can be easily adapted to different hardware devices.

734

EHANAS for Image Super-resolution on Mobile Devices 15

References

1. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cas-
cading residual network. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 252–268 (2018) 2, 3, 9, 10, 12

2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. arXiv preprint arXiv:1611.02167 (2016) 3

3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-
image super-resolution based on nonnegative neighbor embedding (2012) 9, 10, 12

4. Chu, X., Zhang, B., Ma, H., Xu, R., Li, Q.: Fast, accurate and lightweight super-resolution
with neural architecture search. In: 2020 25th International Conference on Pattern Recogni-
tion (ICPR). pp. 59–64. IEEE (2021) 2, 4, 6, 8, 9, 10

5. Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architec-
ture search. In: European Conference on Computer Vision. pp. 99–113. Springer (2020) 2,
4, 6, 8, 9, 10

6. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single
image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 11065–11074 (2019) 1

7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional
networks. IEEE transactions on pattern analysis and machine intelligence 38(2), 295–307
(2015) 1, 9, 10

8. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural net-
work. In: European conference on computer vision. pp. 391–407. Springer (2016) 2, 3, 9,
10, 12

9. Dong, P., Wang, S., Niu, W., Zhang, C., Lin, S., Li, Z., Gong, Y., Ren, B., Lin, X., Tao,
D.: Rtmobile: Beyond real-time mobile acceleration of rnns for speech recognition. In: 2020
57th ACM/IEEE Design Automation Conference (DAC). pp. 1–6. IEEE (2020) 4

10. Dong, X., Yang, Y.: Searching for a robust neural architecture in four gpu hours. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
1761–1770 (2019) 5

11. Du, Z., Liu, D., Liu, J., Tang, J., Wu, G., Fu, L.: Fast and memory-efficient network towards
efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 853–862 (2022) 9, 10, 11

12. Gao, Y., Gu, X., Zhang, H., Lin, H., Yang, M.: Runtime performance prediction for deep
learning models with graph neural network. Tech. rep., Technical Report MSR-TR-2021-3.
Microsoft (2021) 7

13. Gong, Y., Zhan, Z., Li, Z., Niu, W., Ma, X., Wang, W., Ren, B., Ding, C., Lin, X., Xu, X.,
et al.: A privacy-preserving-oriented dnn pruning and mobile acceleration framework. In:
Proceedings of the 2020 on Great Lakes Symposium on VLSI. pp. 119–124 (2020) 4

14. Guo, Y., Luo, Y., He, Z., Huang, J., Chen, J.: Hierarchical neural architecture search for
single image super-resolution. IEEE Signal Processing Letters 27, 1255–1259 (2020) 2, 4,
6, 8

15. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-
exemplars. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. pp. 5197–5206 (2015) 9, 10, 12

16. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information
multi-distillation network. In: Proceedings of the 27th ACM International Conference on
Multimedia. pp. 2024–2032 (2019) 2, 3, 9, 10, 12

17. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information
distillation network. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 723–731 (2018) 2, 3

735

16 X. Zhang et al.

18. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144 (2016) 5

19. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolu-
tional networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1646–1654 (2016) 1, 9, 10

20. Kong, F., Li, M., Liu, S., Liu, D., He, J., Bai, Y., Chen, F., Fu, L.: Residual local feature net-
work for efficient super-resolution. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 766–776 (2022) 9, 10, 11

21. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast
and accurate super-resolution. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 624–632 (2017) 9, 10

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) 1
23. Lee, R., Dudziak, L., Abdelfattah, M., Venieris, S.I., Kim, H., Wen, H., Lane, N.: Journey

towards tiny perceptual super-resolution. ECCV (2020) 2
24. Lee, R., Dudziak, Ł., Abdelfattah, M., Venieris, S.I., Kim, H., Wen, H., Lane, N.D.: Journey

towards tiny perceptual super-resolution. In: European Conference on Computer Vision. pp.
85–102. Springer (2020) 4, 8, 9, 10

25. Li, Y., Gu, S., Zhang, K., Van Gool, L., Timofte, R.: Dhp: Differentiable meta pruning via hy-
pernetworks. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part VIII 16. pp. 608–624. Springer (2020) 2, 4

26. Li, Y., Zhang, K., Timofte, R., Van Gool, L., Kong, F., Li, M., Liu, S., Du, Z., Liu, D.,
Zhou, C., et al.: Ntire 2022 challenge on efficient super-resolution: Methods and results. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
1062–1102 (2022) 3, 9, 10, 11

27. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single
image super-resolution. In: Proceedings of the IEEE conference on computer vision and
pattern recognition workshops. pp. 136–144 (2017) 1, 9, 10, 12

28. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical represen-
tations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017) 3

29. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-
resolution. In: European Conference on Computer Vision. pp. 41–55. Springer (2020) 2,
3

30. Ma, X., Guo, F.M., Niu, W., Lin, X., Tang, J., Ma, K., Ren, B., Wang, Y.: Pconv: The miss-
ing but desirable sparsity in dnn weight pruning for real-time execution on mobile devices.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 5117–5124
(2020) 4

31. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712 (2016) 5

32. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
vol. 2, pp. 416–423. IEEE (2001) 9, 10, 12

33. Niu, W., Ma, X., Lin, S., Wang, S., Qian, X., Lin, X., Wang, Y., Ren, B.: Patdnn: Achieving
real-time dnn execution on mobile devices with pattern-based weight pruning. In: Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. pp. 907–922 (2020) 4

34. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network de-
sign spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10428–10436 (2020) 2

736

EHANAS for Image Super-resolution on Mobile Devices 17

35. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier ar-
chitecture search. In: Proceedings of the aaai conference on artificial intelligence. vol. 33,
pp. 4780–4789 (2019) 3

36. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.:
Real-time single image and video super-resolution using an efficient sub-pixel convolutional
neural network. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1874–1883 (2016) 2, 3, 9, 10, 12

37. Song, D., Xu, C., Jia, X., Chen, Y., Xu, C., Wang, Y.: Efficient residual dense block search for
image super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34, pp. 12007–12014 (2020) 2, 4, 6, 8

38. Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., Marculescu,
D.: Single-path nas: Device-aware efficient convnet design. arXiv preprint arXiv:1905.04159
(2019) 4

39. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on
single image super-resolution: Methods and results. In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops. pp. 114–125 (2017) 9, 10, 12

40. Vu, T., Van Nguyen, C., Pham, T.X., Luu, T.M., Yoo, C.D.: Fast and efficient image quality
enhancement via desubpixel convolutional neural networks. In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops. pp. 0–0 (2018) 2

41. Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen, K.,
et al.: Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 12965–12974 (2020) 3, 4, 5, 7, 12, 14

42. Wang, L., Dong, X., Wang, Y., Ying, X., Lin, Z., An, W., Guo, Y.: Exploring sparsity in
image super-resolution for efficient inference. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 4917–4926 (2021) 2

43. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.:
Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 10734–10742 (2019) 3

44. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In:
International conference on curves and surfaces. pp. 711–730. Springer (2010) 9, 10, 12

45. Zhan, Z., Gong, Y., Zhao, P., Yuan, G., Niu, W., Wu, Y., Zhang, T., Jayaweera, M., Kaeli,
D., Ren, B., et al.: Achieving on-mobile real-time super-resolution with neural architecture
and pruning search. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 4821–4831 (2021) 2, 4, 6, 8

46. Zhang, K., Danelljan, M., Li, Y., Timofte, R., Liu, J., Tang, J., Wu, G., Zhu, Y., He, X.,
Xu, W., et al.: Aim 2020 challenge on efficient super-resolution: Methods and results. In:
European Conference on Computer Vision. pp. 5–40. Springer (2020) 2, 3

47. Zhang, K., Gu, S., Timofte, R., Hui, Z., Wang, X., Gao, X., Xiong, D., Liu, S., Gang, R.,
Nan, N., et al.: Aim 2019 challenge on constrained super-resolution: Methods and results.
In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). pp.
3565–3574. IEEE (2019) 3

48. Zhang, L.L., Han, S., Wei, J., Zheng, N., Cao, T., Yang, Y., Liu, Y.: nn-meter: towards ac-
curate latency prediction of deep-learning model inference on diverse edge devices. In: Pro-
ceedings of the 19th Annual International Conference on Mobile Systems, Applications, and
Services. pp. 81–93 (2021) 7

49. Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time super res-
olution on mobile devices. In: Proceedings of the 29th ACM International Conference on
Multimedia. pp. 4034–4043 (2021) 2, 3, 5, 6, 7, 9, 10, 12, 14

737

18 X. Zhang et al.

50. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very
deep residual channel attention networks. In: Proceedings of the European conference on
computer vision (ECCV). pp. 286–301 (2018) 1

51. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578 (2016) 3

52. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable
image recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 8697–8710 (2018) 3

738

