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Abstract. Convolutional sparse coding model has been successfully used
in some tasks such as signal or image processing and classification. The
recently proposed supervised convolutional sparse coding network (CSC-
Net) model based on the Minimum Mean Square Error (MMSE) approx-
imation shows the similar PSNR value for image denoising problem with
state of the art methods while using much fewer parameters. The CSC-
Net uses the learning convolutional iterative shrinkage-thresholding algo-
rithms (LISTA) based on the convolutional dictionary setting. However,
LISTA methods are known to converge to local minima. In this paper we
proposed one novel algorithm based on LISTA with dry friction, named
LISTDFA. The dry friction enters the LISTDFA algorithm through prox-
imal mapping. Due to the nature of dry friction, the LISTDFA algorithm
is proven to converge in a finite time. The corresponding iterative neural
network preserves the computational simplicity of the original CSCNet,
and can reach a better local minima practically.

Keywords: Image denoising · Convolutional sparse coding · Iterative
shrinkage thresholding algorithms · Dry Friction.

1 Introduction

Noise is the pollution of image in the process of acquisition, compression and
transmission, which is easy to cause the loss of image information and bring
adverse effects on image processing[13, 27]. Image denoising is the process of re-
moving noise from the image polluted by noise and restoring the original image.
In recent years, it has been paid attention as the basis of other image processing
and is one of the key issues in the field of image processing. In order to achieve
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Funds Guiding the Local Science and Technology Development (Basic Research
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image denoising, we must know the prior information of the original signal. Im-
age priors, also known as image models, involve the mathematical description of
the true distribution of images. Convolutional sparse coding (CSC) is a popular
and important prior model in the field of signal processing and machine learn-
ing [29]. CSC with the banded convolutional structure constrained forms has a
solid theoretical foundation and an uniqueness of the solution. CSC has many
applications in the field of image processing, such as inverse problems [21], image
reconstruction [20, 31, 36, 37], image denoising [28, 30], image inpainting [16, 20,
37] and so on. Along with the application of deep learning, some advanced image
reconstruction methods based on convolutional neural networks have achieved
excellent performance in image denoising [10, 33–35]. In state of the art stud-
ies, the improvement of neural network module makes the reconstruction model
more interactive in industrial and commercial scenarios [17, 18].

Iterative neural network [7] is a kind of unfold network based on the iterative
algorithm. Iterative neural network combines a forward neural network and an
iterative algorithm, leading to good generalization capability over an iterative al-
gorithm. For example, an iterative threshold shrink algorithm (ISTA) is a simple
algorithm for the sparse representation problem. The learning iterative thresh-
old shrink algorithm (LISTA) [15] is an iterative neural network that can be
trained through supervised learning. Moreover, a convolutional iterative thresh-
old shrink algorithm is a simple algorithm for the CSC problem. The learning
convolutional iterative threshold shrink algorithm, named learning convolutional
sparse coding, is an corresponding iterative neural network [24]. Similarly, a deep
coupled ISTA network is proposed for multi-modal image super-resolution prob-
lem [9]. A deep convolutional sparse coding network is proposed for jpeg artifacts
reduction [14]. A deep coupled convolutional sparse coding network is proposed
for pan-sharpening CSC problem [32]. Inspired by multilayer neural network,
a multilayer ISTA is proposed and a multilayer ISTA network is proposed for
classification [26].

Recently, a supervised convolution sparse coding network (CSCNet) is pro-
posed for image denoising problem [22]. CSCNet is based on the ISTA algorithm
and LISTA network [15, 24]. It is trained via stochastic gradient-descent using
self-supervised form. Thus, naturally CSCNet can learn the convolutional dictio-
nary over very large datasets. Although it first answers a problem why the CSC
model denoise natural images poorly, there are some problems in CSCNet. The
ISTA iterative algorithm tends to jump into a local minima, leading to CSCNet
producing the worse results for the application in the noise measurements.

In order to jump out of a local minimal of the ISTA algorithm, an iterative
shrinkage-thresholding with dry friction algorithms (ISTDFA) is proposed. It is
an improved proximal gradient algorithm with forward-backward splitting based
on the a heavy ball system with dry friction [1]. The nature of dry friction can
make the system reach a stable state in a finite time. Dry friction enters into the
algorithm based on the proximal mapping. The proposed ISTDFA algorithm
can effectively reduce the value of objective function of the ISTA algorithm.
However, dry friction has a certain effect on the update of the convolution dic-
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tionary. The back propagation algorithms commonly used in deep learning do
not take into account the effect of dry friction. The ISTDFA algorithm solves the
problem throughout the recently proposed variance regularization [12]. It makes
the update of the convolution dictionary independent of dry friction. Moreover,
ISTDFA is extended to a learned iterative shrinkage-thresholding with dry fric-
tion algorithms (LISTDFA) based on iterative neural network. The novel itera-
tive neural network, named CSCNet-DF, is proposed. CSCNet-DF includes an
encoder and a decoder. The encoder uses LISTDFA to produce the coding from
input images. The decoder is used to reconstruct the images. The minimum mean
square error between the input images and output images is used to update the
convolution dictionary by the back propagation algorithms.

Finally, the experimental results show that the proposed CSCNet-DF net-
work is superior to CSCNet.

2 Related Work

2.1 Convolutional Sparse Coding Model

This sparse coding model assumes that a signal y = DΓ is a linear combination
of atoms, where D ∈ RN×M is a dictionary and Γ ∈ RM is a sparse vector. For
a given signal y and dictionary D, the sparse representation of y is solved by
the following optimization problem:

min
Γ

F (Γ) = min
Γ

1

2
∥y −DΓ∥22 + λ∥Γ∥1 . (1)

The solution of this sparse coding problem (1) is unique and can be obtained
by many classical algorithms, such as the Orthogonal Matching Pursuit (OMP)
[5], and Basis Pursuit (BP) [6]. The corresponding classical dictionary learning
methods include MOD [11], trainlets [25], online dictionary learning [19], K-SVD
[2], and so on. If D is a shift-invariant convolutional dictionary, this problem (1)
is changed as the convolutional sparse coding problem. The solution is obtained
by the Fourier-based fast methods [4, 21]. But the Fourier-based signal represen-
tation loses signal localization.

Assume that a signal y can be expressed as y = DΓ =
∑N

i=1 P
T
i DLαi. All

shifted version of the local dictionary DL ∈ Rn×m compose the convolutional
dictionary D. And all sparse vectors αi compose the sparse vector Γ. The slice si
is defined as si = DLαi, represents the i-th slice. The PT

i represents the opera-
tion that put DLαi in the i-th position of the signal. The slice-based convolution
sparse coding is proposed [20], which can be reformulated as

min
αi

1

2
∥y −

n∑
i=1

PT
i si∥22 + λ

n∑
i=1

∥αi∥1 . (2)

As far as we know, K-SVD [2] is one of the method to resolve the CSC. Both
SBDL [20] and LoBCoD [37] are effective algorithms to solve the CSC problem
(2). All of them have great dependence on alternating optimization algorithm,
which makes the algorithms have more iterations.
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2.2 Convolutional Sparse Coding Network

We believe that the CSC model is suitable for processing texture signals, leading
to Gabor-like non-smooth filters. It is used in some problems, such as cartoon
texture separation, image fusion or single image super-resolution to model the
texture part of an image. However, the CSC model cannot cope with image de-
noising or other inverse problems involving noisy signals. In other words, the
CSC model can only be used to model noise-free images. Simon et al. [23] argue
that a convolutional dictionary with high coherence over-fits the noisy signal, so
the CSC model is not suitable for the natural image denoising problem. This is
because the filters in the CSC model cannot simultaneously meet the conditions
of low global cross-correlation and low auto-correlation. To solve this problem,
a new idea has been proposed [23]. To suppress the dictionary coherence and
obtain the optimal solution, a larger stride size in the convolutional dictionary
should be chosen. Unlike the basic CSC model with q = 1, the filters can be
partially overlap when the stride q is chosen in the range of 1 ≤ q ≤ n and q
is large enough. In this case, the convolutional dictionary is guaranteed to be
mutually consistent even for the smooth filters. A CSCNet network is proposed
for the image denoising problem [22]. CSCNet is an iterate neural network that
unfolds the ISAT algorithm [24], which is a supervised denoising model. CSCNet
first replicates the input noisy images q2 times to obtain the possible q2 shifted
versions. Then the sparse coefficients is computed by CSCNet. Finally, the de-
noised reconstructed image is obtained by calculating the average image of all
the shifted reconstructed images. The convolutional dictionary and network pa-
rameters are updated by back-propagation algorithm based on the minimization
of the mean square error between the clean and denoised images. Experimental
results show that CSCNet not only obtains similar denoising performance to
SOTA supervised methods, but also uses only fewer neural network parameters.

2.3 Variance Regularization

The goal of convolution sparse coding is to find the corresponding sparse vector
Γ and convolution dictionary D on the premise of a given signal y. For any
positive constant c, we can obtain the same reconstruction from the re-scaled
convolutional dictionary D′ = cD and sparse vector Γ′ = Γ/c. If c > 1 holds,
then we can get the same reconstruction from a smaller ℓ1 norm of Γ′ than Γ.
If there is no upper limit on the values of the convolution dictionary D, which
means the values of the needles can be arbitrarily small, leading to the collapse of
the ℓ1 norm of the sparse vector. In order to avoid the collapse of ℓ1 regularization
of sparse vector, it is often necessary to restrict convolution dictionary D in
optimization problems. In practice, the column of the convolution dictionary D
is often limited to a constant ℓ2 norm. However, this is a very challenging thing
to expand to a network.

In recent work, the variance principle [3] is presented, which uses a regular-
ization term on the variance of the embeddings on each dimension individually
to avoid the collapse of the sparse vector. Similar to this method, Yann et al.
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[12] add a regularization term to the minimized objection function to neutralize
the effect of D’s weights, which ensures the latent sparse vector components
have greater variances than a fixed threshold over the sparse representations for
given inputs. This strategy also plays a role in one iterative neural network be-
cause the variance regularization term is independent from the dictionary D’s
architecture.

3 Proposed CSCNet-DF Network

3.1 Iterative Shrinkage-Thresholding with Dry Friction Algorithm

Throughout this section H is a real Hilbert space, and the associated norm ∥·∥.
The minimized objective function has the following form f + g, where the non-
convex smooth function f : H → R represents a L-Lipschitz continuous function,
and the convex non-smooth function g : H → R∪ {+∞} denotes a proper lower
semi-continuous function.

For the non-smooth non-convex potential function f + g, we can get the
corresponding heavy ball with dry friction system [1]

x′′ (t) + γx′ (t) + ∂ϕ (x′ (t)) +▽f (x (t)) + ∂g (x (t)) ∋ 0 . (3)

The system contains two different kinds of damping:

(1) Viscous damping: γx′ (t) is viscous damping, and γ is a viscous damping
coefficient satisfying γ > 0.

(2) Dry friction damping: ∂ϕ (x′ (t)) represents dry friction. ϕ is the dry
friction potential function, which has the following properties: ϕ is a convex and
lower semi-continuous function, and ϕ has a sharp minimum at the origin, that
is, minξ∈H ϕ (ξ) = ϕ (0) = 0.

According to the properties of dry friction ϕ, we assume that ϕ(x) = r ∥x∥1,
and r is the dry friction coefficient satisfying r > 0. From the definition of the
function ϕ, the dry friction properties are satisfied with B (0, r) ⊂ ∂ϕ (0).

The time discretization of Equation (3) with a fixed time step size h > 0 is
given as follows

(xk+1−xk)−(xk−xk−1)
h2 +

γ(xk+1−xk)
h + ∂ϕ

(
xk+1−xk

h

)
+▽f

(
xk

)
+ ∂g

(
xk+1

)
∋ 0 .

(4)
Equation (4) relates the classical dynamics method to the proximal gradient
methods: the smooth function f is implicit in Equation (4), corresponding to the
gradient step of the proximal gradient method; similarly, non-smooth functions
g and ϕ are explict in Equation (4), corresponding to the proximal step of the
proximal gradient method.

For each k ∈ N, let’s introduce the auxiliary convex function defined by

ϕk

(
xk + hx

)
:= hϕ (x) . (5)
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Then, we have ∂ϕk

(
xk+1

)
= ∂ϕk

(
xk + hxk+1−xk

h

)
= ∂ϕ

(
xk+1−xk

h

)
. And then

we can induce that from (4)

1
h2

(
xk+1 − 2xk + xk−1

)
+ γ

h

(
xk+1 − xk

)
+∂ϕk

(
xk+1

)
+▽f

(
xk

)
+ ∂g

(
xk+1

)
∋ 0

. (6)

Since ϕ is continuous, we have ∂ϕk + ∂g = ∂ (ϕk + g), which implies

1+γh
h2 xk+1 + ∂ (g + ϕk)

(
xk+1

)
∋ 2+γh

h2 xk − 1
h2x

k−1 −▽f
(
xk

)
. (7)

We finally get the iterative shrinkage-thresholding with dry friction algorithm
(ISTDFA),

xk+1 = prox h2

1+γh (g+ϕk)

(
xk+1/2 − h2

1 + γh
▽ f

(
xk

))
, (8)

where xk+1/2 = xk + 1
1+γh

(
xk − xk−1

)
, and the proximal map is defined as

follows:

proxηp (x) := argmin
ξ∈H

{
ηp (ξ) +

1

2
∥x− ξ∥2

}
. (9)

Theorem 1. Suppose that the parameters h > 0, γ > 0 satisfy h < 2γ
L . Then

for the sequence
{
xk

}
genereted by the algorithm (ISTDFA) we have:

(1)
∑

k

∥∥xk+1 − xk
∥∥ < +∞, and therefore limk x

k = x∗ exists for the strong
topology of H.
(2) The vector x∗ satisfies 0 ∈ ∂ϕ (0) +▽f (x∗) + ∂g (x∗).
(3) Suppose that H is finite dimensional, and suppose that − (▽f (x∗) + ∂g (x∗)) ∈
int (∂ (0)). Then, the sequence

{
xk

}
is finitely convergent.

3.2 Application ISTDFA to CSC Model

Consider the novel minimization problem for CSC model via local processing
and variance regularization as follows:

argmin
{αl,i}N

i=1

1

2

I∑
l=1

∥∥∥∥∥
N∑
i=1

PT
i DLαl,i−yl

∥∥∥∥∥
2

2

+λ
I∑

l=1

N∑
i=1

∥αl,i∥1+β
N∑
i=1

[(
T−

√
Var(α·i)

)
+

]2
,

(10)
where DL is the local convolutional dictionary which has n rows and m columns;
αl,i is the sparse coding of each component i of each sample l; PT

i which has N
rows and n columns is the operator that puts DLαl,i in the i-th position and
pads the rest of the entries with zero; yl is the nosiy signal; ∥·∥2 stands for vector
of ℓ2 norm or Frobenius norm of matrix; λ is the super parameter. When a noisy
signal yl = xl + vl ∈ RN is at hand, seeking for its sparse representation α̂l,i,
leads to an estimation of the original signal via x̂l = PT

i DLα̂l,i.
In order to keep the variance of each potential code component remains above

a preset threshold, a regularization term is added in (10). For the non-smooth
convex optimization model, we define f and g as follows:
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f (αl,i) =
1

2

I∑
l=1

∥∥∥∥∥
N∑
i=1

PT
i DLαl,i − yl

∥∥∥∥∥
2

2

+ β

N∑
i=1

[(
T −

√
Var (α·i)

)
+

]2
, (11)

g (αl,i) = λ

I∑
l=1

N∑
i=1

∥αl,i∥1 . (12)

The first item in (11) is the reconstruction term. The second item in (11) is over
squared hinge terms involving the variance of each latent component α·i ∈ Rn

across the batch where Var (α·i) = 1
I−1

∑I
l=1 (αl,i − µi)

2
and µi is the mean

across the i-th latent component, namely µi =
1
I

∑I
l=1 αl,i. The hinge terms are

non-zero for any latent dimension whose variance is below the fixed threshold of√
T .
For solving the CSC problem, we extended the LISTA to the learning ISTDFA.

We proposed convolutional learning ISTDFA algorithm to approximate the con-
volutional sparse coding model, which is presented in Algorithm 1. The input
of the proposed convolutional learning ISTDFA algorithm are the noise signal
yl, the dictionary DL. Some parameters are firstly initialized. Going into the
algorithm, we first compute the gradient of f and the local Lipschitz constant
respectively, then αk+1

l,i can be updated by the proximal mapping.
Next we can induce the gradient of f ,

▽f=


DT

LPb

(
N∑
i=1

PT
i DLαa,i−ya

)
− 2β

I−1

(
T−

√
Var(α·b)

)
√

Var(α·b)
(αa,b−µb),

√
Var(α·b)<T

DT
LPb

(
N∑
i=1

PT
i DLαa,i − ya

)
, otherwise

.

(13)
Now, let us analyze the computation of proximal function. From the definition
of ϕ and the relationship of ϕ and ϕk, we induce that ϕk (x) = r ∥x− a∥1, where
a = xk.

Setting λ = h2

1+γh , from the definition of proximal mapping, we can induce
that

proxλ(ϕk+g) (x) = argmin
u

1

2
∥x− u∥2 + λ ∥u∥1 + λr ∥u− a∥1 . (14)

By noticing that proxλ(ϕk+g) is a separable optimization problem, it can be
reduced to the computation component-wise of a one dimensional optimization
problem. For each a ∈ R , set

Ta (x) = argmin
u

1

2
(u− x)

2
+ λr |u− a|1 + λ |u|1 . (15)

Observe that Ta (x) = −T−a (−x). So, we just need to consider the case a ≥ 0.
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Using the discontinuous but differentiable of ℓ1 regularization, we can get
that λr∂ |u− a|1 + λ∂ |u|1 ∋ x− u.

(1) When u > a, ∂ |u− a|1 = 1, ∂ |u|1 = 1, then u = proxλ(ϕk+g) (x) =
x− λ (1 + r) > a;

(2) When a < u < 0, ∂ |u− a|1 = −1, ∂ |u|1 = 1, then a < u = proxλ(ϕk+g) (x) =
x− λ (1− r) < 0;

(3) When u < 0, ∂ |u− a|1 = −1, ∂ |u|1 = −1, then u = proxλ(ϕk+g) (x) =
x+ λ (1 + r) < 0;

(4) When u = a, ∂ |u− a|1 = {−1, 1}, ∂ |u|1 = 1, then u = proxλ(ϕk+g) (x) =
x− λ (1 + r {−1, 1}) = a;

(5) When u = 0, ∂ |u− a|1 = 1, ∂ |u|1 = {−1, 1}, then u = proxλ(ϕk+g) (x) =
x− λ ({−1, 1}+ r) = 0;

Through the above analysis, we can get that the unique solution of Ta (x) is

Ta (x) =


x− λ (1 + r) x > λ (1 + r) + a

a λ (1− r) + a < x < λ (1 + r) + a
x− λ (1− r) λ (1− r) < x < λ (1− r) + a

0 −λ (1 + r) < x < λ (1− r)
x+ λ (1 + r) x < −λ (1 + r)

. (16)

This is a threshold operator with two critical values a and 0. Consequently, for

each i = 1, 2, ..., n, we have
(
proxλ(ϕk+g) (x)

)
i
is

(
proxλ(ϕk+g) (x)

)
i
=

{
Tai (xi) ai ≥ 0

−T−ai (−xi) ai ≤ 0
, (17)

with ai the i-th component of the vector a = xk and λ = h2

1+γh .

The iterative shrinkage-thresholding with dry friction algorithm for the CSC
model is proposed in Algorithm 1.

Algorithm 1 Iterative shrinkage-thresholding with dry friction algorithm for CSC.

Input: noised signal yl, local convolutional dictionary DL.

Output: Estimated coding αk
l,i.

Initialization: α0
l,i = α1

l,i, γ > 0, h < 2γ
L

For iteration k= 0:K − 1

compute ▽f
(
αk

l,i

)
using 13,

α
k+1/2
l,i = αk

l,i +
1

1+γh

(
αk

l,i −αk−1
l,i

)
,

αk+1
l,i = prox h2

1+γh
(ϕk+g)

(
α

k+1/2
l,i − h2

1+γh
▽ f

(
αk

l,i

))
,

end for
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3.3 Convolutional Sparse Coding Network with Dry Friction

Through Algorithm 1, the update formula of needles can be written as:

αk+1
l,i = prox h2

1+γh (ϕk+g)

(
αk

l,i +
1

1 + γh

(
αk

l,i −αk−1
l,i

)
− h2

1 + γh
▽ f

(
αk

l,i

))
,

(18)

where 1
1+γh

(
αk

l,i −αk−1
l,i

)
represents the inertia item.

The CSCNet network with dry friction (CSCNet-DF) is proposed based on
(18) in the Algorithm 1. The network diagram of CSCNet-DF is presented in
Fig. 1. Generally speaking, convergence requires a lot of times to achieve, which
will bring great computational burden. In order to overcome this burden, we
adopt the calculation idea of LISTA algorithm by learning the parameters A
and B of the nonlinear recursive encoder strictly following (18), where A is
a convolution operator and B is a transposed-convolution operation. Once the
needles are at hand, the estimated clean image is then obtained by a linear
transposed-convolutional decoder, x̂ = CΓ, where Γ is a matrix composed of
needles αl,i. In this paper, matrices A,B and C are constructed as a set of
bounded shift invariant filters, and self-supervised learning is carried out together

with thresholds h2

1+γh .

��,�
�

��,�
�

��,�
���

��,�
� �

Fig. 1. The CSCNet-DF network. The encoder is LISTDFA Iteration. The decoder is
Deconv(C) module.

Our proposed network structure is based on the CSCNet structure. The input
is the noised image, which is duplicated many times using a shifted version.
The output is denoised image, which is a simple average of the estimates of
all the shifts. The main body of the network structure is the encoder and de-
coder. The encoder is the iterative network unfolded by the LISTDFA algorithm.
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10 Y. Zhang et al.

The decoder is the reconstruction process of an image. Compared with CSC-
Net, CSCNet-DF has the same decoder, while they have the different encoder
unfolded by the LISTA and LISTDFA, respectively. In detail, our proposed net-
work has some different unit, such as, gradient weighting, inertia weighting and
threshold modules. Compared with CSCNet, our proposed network adds a gra-
dient weight module and an inertia weight module. In a way, CSCNet is a special
case of our proposed network without dry friction.

In order to improve the efficiency of the network, we use the back propagation
algorithm to update the convolution dictionary by minimizing the loss function.
The loss function is the Mean Square Error (MSE) between the reconstructed
signal ŷk

l = PT
i DLα̂

K
l,i and the original signal yl:

LMSE =
1

I

I∑
l=1

∥∥yl − ŷK
l

∥∥2
2
, (19)

where ŷk
l represents the reconstruction result of k-th iteration, and yl represents

the l-th of the original signal y.

4 Experiments and Results

This section provides numerical results for image denoising on the Set12, BSD68
and color-BSD68 datasets to analyse the performances of the proposed CSCNet-
DF based on the ISTDFA algorithm. All the experiments were run using Python
and Pytorch in Linux system. The experimental settings are the same as the
literature [22]. The experimental set of CSCNet-DF is γ = 50, β = 1, T = 0.5,
r = 0.1, h = 0.1, which are selected by the grid search. In order to illustrate that
ISTDFA have faster convergence than ISTA, we first compared ISTA algorithm
and ISTA-DF algorithm on the reconstruction experiments on City dataset [20].
The experimental results are shown in Fig.2 in terms of objective function values
changing at each iteration. In the case of the same objective function value,
ISTDFA algorithm needs fewer iterations than ISTA algorithm, which indicates
that ISTDFA algorithm has faster convergence speed.

The above image reconstruction experiments have demonstrated the con-
vergence of the ISTDFA algorithm. In the following, we will mainly verify the
performance of the proposed CSCNet-DF network according to the ISTDFA
algorithm in image denoising experiments. Tab.1 presents the denoising per-
formance (PSNR) results of the CSCNet [22] and CSCNet-DF networks on
the Set12 datasets. Due to limited space, we do not show the learned filters.
We observe Tab.1 and know that the proposed CSCNet-DF network outper-
forms CSCNet. To further validate the proposed iterative neural networks, Tab.2
presents the PSNR results of CSCNet, CSCNet-DF, the well-known BM3D [8]
and DnCNN [34] models on the BSD68 dataset. Tab.3 presents the PSNR results
of two CSCNet networks and the well-known BM3D [8], DnCNN [34], AdmFM-
Net [18], SwinIR [17] models on color-BSD68 dataset. Experimental results on
BSD68 and color-BSD68 datasets show that our proposed CSCNet-DF network
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Fig. 2. Performance comparison of ISTDFA and ISTA in terms of objective function
values changing at each iterations.

outperforms the BM3D, CSCNet and DnCNN. Experimental results on color-
BSD68 dataset show that our proposed CSCNet-DF network outperforms the
AdaFM-Net. The performance of our proposed network is slightly worse than
that of SwinIR using Swin transformer, but relatively speaking, our network is
simpler, with less parameters and less computation. Through the comparative
analysis of the PSNR of the denoised images using different models, it can be
found that the performance of CSCNet-DF is better than BM3D, CSCNet and
DnCNN in practice. In addition, in order to make the experiment more convinc-
ing, we conducted a denoising experiment on the Set12 dataset, and the images
are shown in Fig.3. It can be seen that compared with CSCNet, our proposed
network texture is clearer and achieves better denoising performance.

Table 1. Denoising performance (PSNR) on the Set12 dataset.

σ CSCNet ours

15 31.23 32.66
25 28.73 30.24
50 25.32 27.14
75 23.28 25.35
time 1.67s 0.79s

Finally, we design an ablation experiment to illustrate the role of dry friction in
the network. We compare the image denoising performance with different dry
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Table 2. PSNR performance on the BSD68 dataset.

σ BM3D CSCNet DnCNN ours

15 31.07 31.57 31.72 32.15
25 28.57 29.11 29.22 29.39
50 25.62 26.24 26.23 26.41
75 24.21 24.77 24.64 25.76

Table 3. PSNR performance on the color-BSD68 dataset.

σ BM3D CSCNet DnCNN AdaFM-Net SwinIR ours

15 33.52 31.81 33.89 34.10 34.42 34.14
25 30.71 29.30 31.23 31.35 31.78 31.39
50 27.38 26.37 27.92 27.95 28.56 28.08
75 25.74 24.87 24.47 26.35 26.45 26.38

(a) original image (b) noised image (c) CSCNet (d) CSCNet-DF

Fig. 3. Illustration of images denosing by CSCNet and CSCNet-DF. (a) The original
image, (b) the noising image, (c) the denoising image using CSCNet, (d) the denoising
image using CSCNet-DF.

friction coefficients on color datasets which is shown in Tab.4. The results show
that dry friction can improve the network performance to a certain extent.

5 Conclusion

In this paper the iterative neural network based on the convolutional sparse
coding model using the learned ISTDFA algorithm is proposed. Introduce of the
dry friction, achieves fast convergence and low values of objection function for
image denoising problem. The forward process of the proposed CSCNet-DF net-
work includes encoder and decoder, giving the sparse coding and reconstructed
signal. The backward process uses back propagation algorithms to update the
convolutional dictionary. The experimental results on three dataset show that
the CSCNet-DF network is superior to the CSCNet. In the future, the Nesterov
accelerated method with dry friction will be studied.
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Table 4. Comparison of PSNR performance under different dry friction coefficients on
the color-BSD68 dataset (σ = 15).

r 0 0.01 0.05 0.1

PSNR(dB) 31.81 32.85 33.45 34.14
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