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Abstract. The objective of this work is to learn an object-centric video
representation, with the aim of improving transferability to novel tasks,
i.e., tasks different from the pre-training task of action classification. To
this end, we introduce a new object-centric video recognition model based
on a transformer architecture. The model learns a set of object-centric
summary vectors for the video, and uses these vectors to fuse the visual
and spatio-temporal trajectory ‘modalities’ of the video clip. We also
introduce a novel trajectory contrast loss to further enhance objectness
in these summary vectors.
With experiments on four datasets—SomethingSomething-V2, Somethin-
gElse, Action Genome and EpicKitchens—we show that the object-centric
model outperforms prior video representations (both object-agnostic and
object-aware), when: (1) classifying actions on unseen objects and unseen
environments; (2) low-shot learning of novel classes; (3) linear probe to
other downstream tasks; as well as (4) for standard action classification.

1 Introduction

Visual data is complicated—a seemingly infinite stream of events emerges from
the interactions of a finite number of constituent objects. Abstraction and reason-
ing in terms of these entities and their inter-relationships—object-centric reason-
ing—has long been argued by developmental psychologists to be a core building
block of infant cognition [1], and key for human-level common sense [2]. This
object-centric understanding posits that objects exist [3], have permanence over
time, and carry along physical properties such as mass and shape that govern
their interactions with each other. Factorizing the environment in terms of these
objects as recurrent entities allows for combinatorial generalization in novel set-
tings [2]. Consequently, there has been a gradual growth in video models that
embed object-centric inductive biases, e.g., augmenting the visual stream with
actor or object bounding-box trajectories [4,5,6,7], graph algorithms on object
nodes [8,9], or novel architectures for efficient discovery, planning and interac-
tion [10,11,12].

The promise of object-centric representations is transfer across tasks. Due
to the shared underlying physics across different settings, knowledge of object
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Fig. 1. Do Object-Centric video representations transfer better? To induce ob-
jectness into visual representations of videos, we learn a set of object-centric vectors—
which are tied to specific objects present in the video, as well as context vectors—
which reason about relations and context. The representation is built by fusing the
two modality streams of the video—the visual stream, and the spatio-temporal object
bounding-box stream. We train the model on the standard action recognition task, and
show that using the object and context vectors can lead to SOTA results when eval-
uated for transfer to unseen objects, unseen environments, novel classes, other tasks
and also standard action classification.

properties like shape, texture, and position can be repurposed with little or no
modification for new settings [13], much like infants who learn to manipulate
objects and understand their properties, and then apply these skills to new
objects or new tasks [14,15].

In this paper we investigate this promise by developing an object-centric
video model and determining if it has superior task generalization performance
compared to object-agnostic and other recent object-centric methods. In a sim-
ilar manner to pre-training a classification model on ImageNet, and then using
the backbone network for other tasks, we pre-train our object-centric model on
the action recognition classification task, and then determine its performance on
downstream tasks using a linear probe.

We consider a model to be object-centric if it learns a set of object summary
vectors, that explicitly distil information about a specific object into a particular
latent variable. In contrast, in object-agnostic [16,17,18,19] or previous state-of-
the-art object-centric video models [4,5,20], the object information is de-localized
throughout the representation.

To this end, we introduce a novel architecture based on a transformer [21]
that achieves an object-centric representation through its design and its train-
ing. First, a bottleneck representation is learned, where a set of object query
vectors [22] tied to specific constituent objects, cross-attend in the manner of
DETR [23] to visual features and corresponding bounding-box trajectories. We
demonstrate this cross-attention based fusion is an effective method for merging
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the two modality streams [24,4,5]—visual and geometric—complementing the
individual streams. We call this ‘modality’ fusion module an Object Learner.
Second, a novel trajectory contrast loss is introduced to further enhance object-
awareness in the object summaries. Once learnt, this explicit set of object sum-
mary vectors are repurposed and refined for downstream tasks.

We evaluate the task generalization ability of the object-centric video repre-
sentation using a number of challenging transfer tasks and settings:

1. Unseen data: Action classification with known actions (verbs), but novel
objects (nouns) in the SomethingElse dataset [20]; Action classification with
known actions (verbs and nouns), but unseen kitchens in EpicKitchens [25].

2. Low-shot data: Few-shot action classification in SomethingElse; Tail-class
classification in EpicKitchens.

3. Other downstream tasks: Hand contact state estimation in Somethin-
gElse, and human-object predicate prediction in ActionGenome [26].

Note, task 3 uses a linear probe on pre-trained representations for rigorously
quantifying the transferability. In addition to evaluating the transferability as
above, we also benchmark the learned object-centric representations on the stan-
dard task of action classification. In summary, our key contributions are:

1. A new object-centric video recognition model with explicit object repre-
sentations. The object-centric representations are learned by using a novel
cross-attention based module which fuses the visual and geometric streams,
complementing the two individually.

2. The object-centric model sets a new record on a comprehensive set of tasks
which evaluate transfer efficiency and accuracy on unseen objects, novel
classes and new tasks on: SomethingElse, Action Genome and EpicKitchens.

3. Significant gains over the previous best results on standard action recognition
benchmarks: 74.0%(+6.1%) on SomethingSomething-V2, 66.6%(+6.3%) on
Action Genome, and 46.3%(+0.6%) top-1 accuracy on EpicKitchens.

2 Related Work

Object-centric video models. Merging spatio-temporal object-level informa-
tion and visual appearance for video recognition models has been explored exten-
sively. These methods either focus solely on the human actors in the videos [6,27,7],
or more generally model human-object interactions [28,29,30,31]. The dominant
approach involves RoI-pooling [32,33] features extracted from a visual backbone
using object/human bounding-boxes generated either from object detectors [34],
or more generally using a region proposal network (RPN) [6,35,27,36,8,37] on
each frame independently, followed by global aggregation using recurrent mod-
els [38]. The input to these methods is assumed to just be RGB pixels, and
the object boxes are obtained downstream. A set of object-centric video mod-
els [4,20,5] assume object boxes as input, and focus on efficient fusion of the two
streams; we follow this setting. Specifically, ORViT [4] is an object-aware vision
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transformer [39] which incorporates object information in two ways: (1) by at-
tending to RoI-pooled object features, and (2) by merging encoded trajectories
at several intermediate layers. STIN [20] encodes the object boxes and identity
independently of the visual stream, and merges the two through concatenation
before feeding into a classifier. STLT [5] uses a transformer encoder on object
boxes, first across all objects in a given frame, and then across frames, before
fusing with appearance features. We adopt STLT’s hierarchical trajectory en-
coder, and develop a more performant cross-attention based fusion method.

Multi-modal fusion. Neural network architectures which fuse multiple modal-
ities, both within the visual domain, i.e., images and videos [40] with optical
flow [24,41], bounding-boxes [6,35,27,36,8,37], as well as across other modali-
ties, e.g., sound [42,43] and language [44,45,46,47], have been developed. The
dominant approach was introduced in the classic two-stream fusion method [24]
which processes the visual and optical flow streams through independent en-
coders before summing the final softmax predictions. Alternative methods [41]
explore fusing at intermediate layers with different operations, e.g., sum, max,
concatenation, and attention-based non-local operation [48]. We also process
the visual and geometric streams independently, but fuse using a more recent
cross-attention based transformer decoder [49] acting on object-queries [22]. An
alternative to learning a single embedding representing all the input modali-
ties, is to learn modality encoders which all map into the same joint vector
space [50,51,44]; such embeddings are primarily employed for retrieval.

Benchmarks with object annotations. Reasoning at the object level lies at
the heart of computer vision, where standard benchmarks for recognition [52],
detection and segmentation [53,54], and tracking [55,56,57,58] are defined for cat-
egories of objects. Traditionally, bounding-box tracking of single [55,56] or multi-
ple objects [57,58], or more spatially-precise video object segmentation [59,60,61,62]
were the dominant benchmarks for object-level reasoning in videos. More re-
cently, a number of benchmarks probe objects in videos in other ways, e.g., Ac-
tionGenome [26] augments the standard action recognition with human/object
based scene-graphs, SomethingElse [20] tests for transfer of action recognition
on novel objects, CATER [63] evaluates compositional reasoning over synthetic
objects, and CLEVERER [64] for object-based counterfactual reasoning.

Object-oriented reasoning. There is a large body of work on building in
and reasoning with object-level inductive biases across multiple domains and
tasks. Visual recognition is typically defined at the object-level both in im-
ages [54,65,66,67] and videos [34,68,26,69]. Learning relations, expressed as edges,
between entities/particles, expressed as nodes in a graph has been employed
for amortizing inference in simulators and modelling dynamics [70,11]. Such
factorized dynamics models conditioned on structured object representations
have been employed for future prediction and forecasting [71,72,73]. Object-
conditional image and video decomposition [74,75,10,76] such as Monet [77] and
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Fig. 2. The object-centric video transformer model architecture. The Visual
Encoder module ingests the RGB video and produces a set of object agnostic spatio-
temporal tokens. The Trajectory Encoder module ingests the bounding boxes, and
labels them with object ID embedddings D, to produce object-aware trajectory spatio-
temporal tokens. The Object Learner module fuses the visual and trajectory streams
by querying with the object IDs D, and outputs object summaries which contains both
visual and trajectory information. An object-level auxiliary loss is used to encourage
each object summary vector to be tied to the object in the query. Finally, the Classi-
fication module ingests the outputs from the Object Learner to predict the class. The
model is trained with cross-entropy losses applied to class predictions from the dual
encoders and Object Learner, together with an auxiliary loss.

Genesis [78] and generation [79,80,81,82,83,84] methods benefit from composi-
tional generalization. Finally, object-level world-models have been used to con-
strain action-spaces, and states in robotics [85,86] and control domains [87,12,88].

3 An Object-Centric Video Action Transformer

We first describe the architecture of the object-centric video action recognition
model for fusing visual and trajectory streams. We then describe the training
objectives for action classification and for learning the object representations.
Finally, we discuss our design choices, and the difference between our model and
previous fusion methods, and explain its advantages.

3.1 Architecture

The model is illustrated in Figure 2, and consists of four transformer-based mod-
ules. We briefly describe each module, with implementation details in section 4.

Video Encoder. The encoder ingests a video clip F of RGB frames F =
(f1, f2, . . . , ft), where fi ∈ RH×W×3. The clip F is encoded by a Video Trans-
former [49] which tokenizes the frames by 3D patches to produce downsampled
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feature maps. These feature maps appended with a learnable CLS token are
processed by self-attention layers to obtain the spatio-temporal visual represen-
tations V ∈ RT×H′W ′×C and video-level visual embedding Cvisual. We take the
representation V from the 6th self-attention layer to be the visual input of the
Object Learner, and Cvisual from the last layer to compute the final loss in
eq. (2).

Trajectory Encoder. The encoder ingests the bounding box coordinates Bt =
(bt1, b

t
2, . . . , b

t
o) of O number of annotated objects in the tth frame, where each

box bti is in format [x1, y1, x2, y2]. These boxes are encoded into corresponding
box embeddings Φt = (Φt

1, Φ
t
2, . . . , Φ

t
o) through an MLP. Object ID embeddings

D = {di}Oi=1 are added to Φ to produce the sum Φin, This is to keep the ID
information persistent throughout the video length T; Φin serves as the input
to the Trajectory Encoder, which is a Spatial Temporal Layout Transformer
(STLT) of [5]. STLT consists of two self-attention Transformers in sequence – a
Spatial Transformer and a Temporal Transformer. First, the Spatial Transformer
encodes boxes in every frame separately. It takes a learnable CLS token and box
embeddings Φt

in ∈ RO×C from frame t as the input into the self-attention layers,
and output a frame-level representation lt ∈ R1×C and spatial-context-aware
box embeddings Φt

out ∈ RO×C respectively. The Temporal Transformer models
trajectory information over frames, it applies self-attention on the frame-level
embeddings L = (l1, l2, l3, . . . , lT ) from the Spatial Transformer with another
learnable CLS token. Its output are temporal-context-aware frame embeddings
Lout ∈ RT×C and a video-level trajectory representation Ctraj ∈ R1×C . Ctraj is
used to compute the final loss in eq. (2), while Lout ∈ RT×1×C is concatenated
with the Φout ∈ RT×O×C from the Spatial Transformer to be the spatio-temporal
trajectory embeddings G ∈ RT×(O+1)×C , which are used as trajectory input to
the Object Learner. (See Supp. for detailed architecture.)

Object Learner. The Object Learner module is a cross-attention Transformer [21]
which has a query set Q = {qi}O+K

i=1 made up of O learnable object queries
and K learnable context queries. The same ID embeddings D from the Trajec-
tory Encoder are added to the first O queries to provide object-specific iden-
tification, while the remaining K context queries can be learnt freely. We con-
catenate the visual feature maps V ∈ RT×H′W ′×C and trajectory embeddings
G ∈ RT×(O+1)×C as keys and values in the cross-attention layers. Note the query
latents are video level (i.e., common across all frames), and attend to the fea-
tures from the visual and trajectory encoders using cross-attention. The Object
Learner outputs summary vectors S = {si}O+K

i=1 , O of which are object centric,
and the remaining K carry context information. The output is independent of
the number of video frames, with the visual and trajectory information distilled
into the summary vectors. Figure 3 presents a schematic of the module.

Classification Module. This is a light-weight cross-attention transformer that
ingests the summary vectors output from the the Object Learner, together with
a learnable query vector Cobj . The vector output of this module is used for a
linear classifier for the actionss prediction.
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Fig. 3. Object Learner and auxiliary loss. The Object Learner is a cross-attention
transformer, that outputs object-level summary vectors by attending to tokens from
both the visual and trajectory encoders. These summary vectors are used for down-
stream tasks like classification. An auxiliary loss is added where the object summary
vectors are tasked with distinguishing GT and shuffled trajectory embeddings.

3.2 Objectives

We apply two types of losses to train the model. One is an object-level auxiliary
loss on the object summary vectors S = (s1, s2, . . . , so) to ensure object-centric
information is learned in these vectors. The other is a standard cross-entropy
loss on action category prediction.

Object-level Trajectory Contrast loss. The aim of this loss is to encourage
the object specific latent queries in the Object Learner to attend to both the
trajectory and visual tokens, and thereby fuse the information from the two
input modalities. The key idea is to ensure that the video-level object queries do
not ignore the identity, position encodings, and trajectory tokens. The loss is a
contrastive loss which encourages discrimination between the correct trajectories
and others that are randomly perturbed or from other video clips in the batch.
This is implemented using an InfoNCE [89] loss, with a small transformer encoder
used to produce vectors for each of the trajectories. This encoder only consists
of two self-attention layers that encode the object trajectories into vectors.

In more detail, for an object j, the transformer takes its ground-truth tra-
jectory Bj ∈ RT×4 and outputs the embedding zj ∈ RC as the positive to be
matched against the summary vector ŝj ∈ RC . For negatives, other trajectories
in the same batch as well as n new ones generated by temporally shuffling Bj

1982



8 C. Zhang et al.

encoded into zshufflej are used.

Laux = −
∑
j

[
log

exp(ŝ>j · zj)∑
k exp(ŝ>j · zk) +

∑
k exp(ŝ>j · z

shuffle
k )

]
(1)

Final objective. We use two MLPs as classifiers for the CLS vectors from visual
and trajectory backbones and the Object Learner. The first classifier f1(.) is
applied to concatenated Cvisual and Ctraj CLS vectors, and the second, f2(.), is
applied to the CLS vector Cobj from the Object Learner. The total loss is the
sum of the cross-entropy loss for the two classifiers and the auxiliary loss:

Ltotal = LCE(f1(Cvisual;Ctraj), gt) + LCE(f2(Cobj), gt) + Laux, (2)

The final class prediction is obtained by averaging the class probabilities from
the two classifiers.

Discussion: Object Learner and other fusion modules. Prior fusion meth-
ods can be categorized into three main types: (a) RoI-Pooling based methods like
STRG [8], where visual features are pooled using boxes for the downstream tasks;
(b) Joint training methods like ORViT [4] where the two modalities are encoded
jointly from early stages; and (c) Two stream methods [5,20] with dual encoders
for the visual and trajectory modalities, where fusion is in the last layer. The
RoI-pooling based methods explicitly pool features inside boxes for downstream
operations, omitting context outside the boxes. In contrast, our model allows the
queries to attend to the visual feature maps freely. Joint training benefits from
fine-grained communication between modalities, but this may not be as robust
as the two-stream models under domain shift. Our method combines the two,
by keeping the dual encoders for independence and having a bridging module
to link the information from their intermediate layers. Quantitative comparisons
are done in Section 5.

4 Implementation details

Model architecture. We use Motionformer [49] as the visual encoder, oper-
ating on 16 frames of size 224×224 pixels uniformly sampled from a video; the
3D patch size for tokenization is 2×16×16. We use STLT [5] as the trajectory
encoder which takes normalized bounding boxes from 16 frames as input. Our
Object Learner is a Cross-Transformer with 6 layers and 8 heads. We adopt the
trajectory attention introduced in [49] instead of the conventional joint spatio-
temporal attention in the layers. The Classification Module has 4 self-attention
layers with 6 heads. We set the number of context queries as 2 in all the datasets,
and number of object queries as 6 in SomethingElse, SomethingSomething and
EpicKitchens, 37 in ActionGenome.
Training We train our models on 2 Nvidia RTX6k GPUs with the AdamW [90]
optimizer. Due to the large model size and limited compute resources, we are
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not able to train the full model end-to-end with a large batch size. Instead, we
first train the visual backbone for action classification with batch size 8, and
then keep it frozen while we train the rest of the model with batch size 72. More
details on architecture and training are in the supplementary material.

5 Experiments

We conduct experiments on four datasets, namely SomethingSomething-V2,
SomethingElse, Action Genome and EpicKitchens. We first train and evaluate
our model on the standard task of action recognition on these datasets, and
then test its transferability on novel tasks/settings including action recognition
on unseen objects, few-shot action recognition, hand state classification, and
scene-graph predicate prediction. We first introduce the datasets and the met-
rics. Followed by a comparison of our method with other fusion methods, and
then ablations on the design choices in the proposed Object Learner. Finally, we
compare with SOTA models on different tasks and analyze the results.

5.1 Datasets and Metrics

SomethingSomething-V2 [91] is a collection of 220k labeled video clips of
humans performing basic actions with objects, with 168k training videos and
24k validation videos. It contains 174 classes, these classes are object agnostic
and named after the interaction, e.g, ‘moving something from left to the right’.
We use the ground-truth boxes provided in the dataset as input to our networks.

Something-Else [20] is built on the videos in SomethingSomething-V2 [91] and
proposes new training/test splits for two new tasks testing for generalizability:
compositional action recognition, and few-shot action recognition. The compo-
sitional action recognition is designed to ensure there is no overlap in object
categories between 55k training videos and 58k validation videos. In the few-
shot setting, there are 88 base actions (112k videos) for pre-training, 86 novel
classes for fine-tuning. We use the ground-truth boxes provided in the dataset.

Action Genome [26] is a dataset which uses videos and action labels from
Charades [92], and decomposes actions into spatio-temporal scene graphs by an-
notating human, objects and their relationship in them. It contains 10K videos
(7K train/3k val) with 0.4M objects. We use the raw frames and ground-truth
boxes provided for action classification over 157 classes on this dataset.

Epic-Kitchens [25] is a large-scale egocentric dataset with 100-hour activities
recorded in kitchens. It provides 496 videos for training and 138 videos for val,
each video has detected boudning boxes from [93]. We use an offline tracker [94]
to build association between the boxes and use them as input. We use the de-
tected boxes provided in the dataset as input to our networks.
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5.2 Ablations

Comparison with other fusion methods. For a fair comparison, we im-
plement other fusion methods using our (i.e., the same) visual and trajectory
backbones. We choose LCF (Late Concatenation Fusion) and CACNF (Cross-
Attention CentralNet Fusion) as they are the two best methods among seven in
the latest work [5]. We also compare against a baseline method where the class
probabilities from the encoders trained independently are averaged.

Visual

Enc.

Traj.

Enc.

Fusion SthSth-V2

Method Parametric Top1 Top5

Motionformer - - - 66.5 90.1

- STLT - - 57 85.2

Motionformer STLT

avg prob 7 67.5 90.9

CACNF [5] 3 69.7 93.4

LCF [5] 3 73.1 94.2

OL(ours) 3 74.0 94.2

Table 1. Different fusion methods with the same
visual backbone. We show the performance of Motion-
former and STLT alone on SthSth-V2, and compare the
classification performance with different fusion methods
on them, namely averaged class probabilities, LCF and
CACNF and our Object Learner (OL).

We implement CACNF
with the same number
of cross-attention layers
and attention heads as in
our Object Learner. Ta-
ble 1 summarizes the re-
sults. The results show
that the above fusion
methods work better than
the baseline, and our
model achieves better re-
sults than other para-
metric methods. Perfor-
mance for Motionformer
with other trajectory en-
coders, or STLT with
other visual encoders,
has been explored in previous works [4,5,20]—more comparisons are in Table 2.

Ablating trajectory contrast loss. We compare the performance of training
with and without the trajectory contrast loss on different transfer tasks in Ta-
ble 3. Having the object-level auxiliary loss (Equation (1)) brings improvement
in performance in 3 out of 4 tasks. The improvement is 1% in hand state classi-
fication in SomethingElse, 2% in scene-graph prediction and 1.7% on standard
classification in Action Genome. The results show the auxiliary loss helps in both
task transfer as well as standard action recognition. Figure 4 also shows the vi-
sualization of attention scores in the Object Learner – object queries trained
with auxiliary loss are more object-centric when attending to the visual frames.

5.3 Results

We present the experiment results on a wide range of tasks organized into sec-
tions by the dataset used. In each dataset, we first compare the results from
different models on standard action recognition, and then introduce the transfer
tasks and discuss the performance.
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Fig. 4. Trajectory contrast loss induces object-centric attention. Object Learn-
ers’s attention from various heads when trained with (left) and without (right) the
trajectory contrast loss Equation (1). In both cases, attention is on individual objects,
indicating objectness in the model. However, there is a notable difference: without the
trajectory contrast loss, there is no attention on the hands(first row). Hence, the tra-
jectory contrast loss induces enhanced objectness in the object summary vectors.

5.3.1 SomethingSomething-V2 and SomethingElse
Standard Action Recognition. We evaluate on the regular train/val split
on SomethingSomething-V2 for the performance on (seen) action recognition.
The accuracy of our model is 5.9% higher than ORViT and 7.1% higher than
STLT [5], showing the advantage is not only on transfer tasks but also on stan-
dard action classification.

Transfer to Unseen Objects. Compositional action recognition is a task in
Something-Else where the actions are classified given unseen objects (i.e., objects
not present in the training set). Thus it requires the model to learn appearance-
agnostic information on the actions. Our object-centric model improves the vi-
sual Motionfomer by 10.9%, and outperforms the joint encoding ORViT model
by a margin of 3.9 %, showing that keeping the trajectory encoding independent
from the visual encoder can make the representations more generalizable.

Data-efficiency: Few-shot Action Recognition. We follow the experiment
settings in [20] to freeze all the parameters except the classifiers in 5-shot and
10-shot experiments on SomethingElse. Again, models that are using both vi-
sual and trajectory modalities have an obvious advantage over visual only ones.
The performance boost is more obvious in a low data regime, with a 4.7% and
0.3% improvement over R3D, STLT in 5-shot and 10-shot respectively. It’s worth
noting that while the raw classification results from the backbone and Object
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Model
Video
Input

Box
Input

GFLOP
SthSth-V2 SomethingElse

Action Recognition
Compositional Action

(Unseen Objects)
Few Shot

Top 1 Top5 Top 1 Top 5 5 shot 10 shot

I3D [16] 3 7 28 61.7 83.5 46.8 72.2 21.8 26.7
SlowFast,R101 [40] 3 7 213 63.1 87.6 45.2 73.4 22.4 29.2
Motionformer [49] 3 7 369 66.5 90.1 62.8 86.7 28.9 33.8

STIN [20] 7 3 5.5 54.0 79.6 51.4 79.3 24.5 30.3
SFI [37] 7 3 - - - 44.1 74 24.3 29.8
STLT [5] 7 3 4 57.0 85.2 59.0 86 31.4 38.6

STIN+I3D [20] 3 3 33.5 - - 54.6 79.4 28.1 33.6
STIN,I3D [20] 3 3 33.5 - - 58.1 83.2 34.0 40.6

SFI [37] 3 3 - - - 61.0 86.5 35.3 41.7
R3D,STLT(CACNF) [5] 3 3 48 66.8 90.6 67.1 90.4 37.1 45.5

ORViT [4] 3 3 405 73.8 93.6 69.7 91 33.3 40.2

Motionformer+STLT(baseline) 3 3 373 72.8 94.1 72.0 92.3 38.9 44.6
Motionformer+STLT+OL(Ours) 3 3 383.3 74.0 94.2 73.6 93.5 40.0 45.7

Table 2. Comparison with SOTA models on Something-Else and
SomethingSomething-V2. We report top1 and top5 accuracy on three action clas-
sification tasks, including compositional and few-shot action recognition on Somehing-
Else, and action recognition on SomethingSomething-V2. From top to bottom: we show
the performance of SOTA visual models, trajectory models, and the models which takes
both modalities as input. In the last section we list the classification performance from
the backbone baseline without an Object Learner(OL) and our model with an Object
Learner(OL), Our model outperforms other methods by a clear margin on all the tasks.

Method Aux Loss

Something-Else Action Genome

Compositional Action Hand Contact State Action Predicate

Top1 Top5 Per-video Per-class mAP R@10 R@20

ORViT - 69.7 91.0 70.2 66.0 - - -

MFormer+STLT(baseline) - 72 93.2 66.8 43.3 66.0 78.3 83.5

MFormer+STLT+OL(ours) 7 73.5 93.5 77.5 68.5 64.9 78.9 83.8

MFormer+STLT+OL(ours) 3 73.6 93.5 78.2 69.7 66.6 80.9 85.4

Table 3. Ablate auxiliary loss and Object Learner (OL) on compositional
action, hand state classification and predicate prediction. We show linear probe
results on the backbone CLS token.

Learner classifiers only have a 0.1% difference, averaging the two together gives
more than 1% improvement. It suggests that our Object Learner has captured
complementary information through combining the two streams.

Transfer to Hand State Classification. We further evaluate the object-level
representations (pre-trained with standard action recognition) on hand contact
state classification using a linear probe. We extract hand state labels using a
pre-trained object-hand detector from [93] as ground truth, and design a 3-way
classification task on SomethingElse. Specifically, the three classes are ‘no hand
contact’, ‘one hand contact’ (one hand contacts with object) or ‘two hands con-
tact’ (both hands contact with object). In our experiments, we average-pool the
object summary vectors, train a linear classifier on the training set, and test on
the validation set. We conduct the linear probe on summaries trained with and
without the auxiliary loss in Equation (1), and also on the baseline backbone
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classifier. Video-level top-1 accuracy and class-level top-1 accuracy are reported
in Table 3. Our model is better than the baseline by 11.4 % in per-video accu-
racy and 26.4 % in per-class accuracy. Object summaries trained with auxiliary
losses on trajectories outperform the one without by about 1%.

5.3.2 Epic-Kitchens
Standard Action Recognition. Table 4 shows the results of action recog-
nition in Epic-Kitchens, With the Object-Learner, our model is 0.6-4.0% more
accurate in action prediction than other methods that use both visual stream
and trajectory stream as input, and 1.7% more accurate than the Late Concate-
nation Fusion (LCF) method without an Object-Learner.

Classification on Tail Classes and Unseen Kitchens. In Table 4 we also
present the classification results on tail classes and videos from unseen kitchens.
In average, Object-centric models are better than visual-only models by 4.8%
on tail actions, and by 0.4% on unseen kitchens. Among all the models with
objectness, our model with Object Learner achieves the best action classification
accuracy on both tail classes and unseen kitchens.

5.3.3 Action Genome Standard Action Recognition. In Action Genome,
each action clip is labelled with object bounding boxes and their categories. We
follow the experiment settings in [5], train and evaluate our model with RGB
frames and ground truth trajectory as input. Table 5 shows the classification
results. By using our Object Learner trained with auxiliary loss, we achieve the
best result 66.6% mAP, outperforming other fusion methods using the same
backbone. We also compare to SGFB [26], which uses scene graphs as input, our
model is better by 6.3% without access to the relationship between objects.

Methods Box input
Overall Tail Classes Unseen Kitchens

Action Verb Noun Action Verb Noun Action Verb Noun

SlowFast [40] N 38.5 65.5 50.0 18.8 36.2 23.3 29.7 56.4 41.5

ViViT-L [95] N 44.0 66.4 56.8 - - - - - -

MFormer [49] N 43.1 66.7 56.5 - - - - - -

MFormer-HR [49] N 44.5 67.0 58.5 19.7 34.2 28.4 34.8 58.0 46.6

MFormer-HR+STRG Y 42.5 65.8 55.4 - - - - - -

MFormer-HR+STRG+STIN Y 44.1 66.9 57.8 24.7 39.9 34.4 34.8 59.5 48.1

MFormer-HR-ORVIT [4] Y 45.7 68.5 57.9 - - - - - -

MFormer-HR+STLT(baseline) Y 44.6 67.4 58.8 23.3 38.5 34.1 35.1 59.7 49.6

MFormer-HR+STLT+OL(ours) Y 46.3 68.7 59.4 25.7 39.9 35.3 35.4 59.7 48.3

Table 4. Action Classification results on Epic-Kitchens. Our model achieves
the best results compared to other methods using the same backbone. MFormer uses
224x224 resolution input and MFormer-HR uses 336x336 resolution input.
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Backbone Method Boxes SG Aux loss # Frames
Action CLS. Predicate Pred.

mAP R@10 R@20

I3D [5] Avgpool N N - 32 33.5 - -

MFormer [49] CLS token N N - 16 36.5 76.4 82.6

STLT [5] CLS token Y N - 16 56.7 79.0 84.1

STLT [5] CLS token Y N - 32 60.0 - -

I3D+STLT [5] CACNF [5] Y Y - 32 61.6 - -

MFormer+STLT CACNF [5] Y N - 16 64.2 - -

R101-I3D-NL [96] SGFB [26] Y Y - 32+ 60.3 - -

MFormer+STLT LCF(baseline) Y N - 16 66.0 78.3 83.5

MFormer+STLT OL(ours) Y N N 16 64.9 78.9 83.8

MFormer+STLT OL(ours) Y N Y 16 66.6 80.9 85.4

Table 5. Action recognition and human-object predicate prediction results
on Action Genome. In action classification, our model outperforms others with the
same frame and boxes input, and even SGFB with scene graph (SG) input. When
linear-probing the output features for predicate prediction, our Object Learner fuses
the visual and trajectory streams in an efficient way and is 2.6% higher than baseline
LCF in recall@10. We also show the object-centric representations learned with the
auxiliary loss is better than the ones learned without the auxiliary loss in both tasks.

Transfer to scene graph predicate prediction. We transfer the trained
model on action classification to scene graph predicate prediction by linear prob-
ing. In this task, the model has to predict the predicate (relationship) between
human and object when the bounding boxes and categories are known. Given
the object id, we concat one-hot object id vectors with the classification vector
from the frozen models, and train a linear classifier to predict the predicate. As
shown in Table 5, the result from object summaries trained with the auxiliary
loss is 2.6% higher than linear probing the concatenated CLS tokens (LCF) from
two backbones, and 2.0% higher than the one trained without auxiliary loss.

6 Conclusion

We set out to evaluate whether objectness in video representations can aid vi-
sual task transfer. To this end, we have developed an object-centric video model
which fuses the visual stream with object trajectories (bounding-boxes) in a
novel transformer based architecture. We indeed find that the object-centric
representations learned by our model are more transferrable to novel tasks and
settings in video recognition using a simple linear probe, i.e., they outperform
both prior object-agnostic and object-centric representations on a comprehensive
suite of transfer tasks. This work uses a very coarse geometric representation of
objects, i.e., bounding-boxes, for inducing object awareness in visual representa-
tions. In the future more spatially precise/physically-grounded representations,
e.g., segmentation masks or 3D shape, could further enhance the transferability.
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