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Abstract. As a powerful way of realizing semi-supervised segmentation,
the cross supervision method learns cross consistency based on indepen-
dent ensemble models using abundant unlabeled images. In this work,
we propose a novel cross supervision method, namely uncertainty-guided
self cross supervision (USCS). To avoid multiplying the cost of computa-
tion resources caused by ensemble models, we first design a multi-input
multi-output (MIMO) segmentation model which can generate multiple
outputs with the shared model. The self cross supervision is imposed
over the results from one MIMO model, heavily saving the cost of pa-
rameters and calculations. On the other hand, to further alleviate the
large noise in pseudo labels caused by insufficient representation ability
of the MIMO model, we employ uncertainty as guided information to en-
courage the model to focus on the high confident regions of pseudo labels
and mitigate the effects of wrong pseudo labeling in self cross supervi-
sion, improving the performance of the segmentation model. Extensive
experiments show that our method achieves state-of-the-art performance
while saving 40.5% and 49.1% cost on parameters and calculations.

Keywords: Semi-Supervised Semantic Segmentation · Consistency Reg-
ularization · Multi-Input Multi-Output · Uncertainty.

1 Introduction

Semantic segmentation is a significant fundamental task in computer vision and
has achieved great advances in recent years. Compared with other vision tasks,
the labeling process for semantic segmentation is much more time and labor
consuming. Generally, tens of thousands of samples with pixel-wise labels are
essential to guarantee good performance for such a known data-hungry task.
However, the high dependence of large amounts of labeled data for training
would undoubtedly restrict the development of semantic segmentation. Semi-
supervised semantic segmentation, employing limited labeled data as well as
abundant unlabeled data for training segmentation models, is regarded as an
effective approach to tackle this problem, and has achieved remarkable success
for the task [17, 21, 28, 11, 10].
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Advanced semi-supervised semantic segmentation methods are mainly based
on consistent regularization. It is under the assumption that the prediction for
the same object with different perturbations, such as data augmentation for in-
put images [9, 17], noise interference for feature maps [28] and the perturbations
from ensemble models [6, 14], should be consistent. Among these perturbations,
the one through ensemble models usually provide better performance since it can
learn the consistent correlation from each other adaptively. The earnings of a sin-
gle model acquired from unlabeled images can be improved by cross supervision
between models achieved by forcing consistency of the predictions.

(a) Cross supervision(a) Cross supervision
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Fig. 1. Illustrating the architectures for (a) cross supervision and (b) our method
uncertainty-guided self cross supervision. In our approach, xT means the transformed
image of x; Y T

1 and Y T
2 mean the predictions from a multi-input multi-output model

Fmimo; P1 and P2 mean the pseudo labels for Y T
1 and Y T

2 ; U1 and U2 mean the
uncertainty of P1 and P2, respectively.

Despite impressive performance, the cost of time and memory for cross su-
pervision is usually multiplicatively increased due to the parallel training of
ensemble models with different model architectures or different initializations.
To break this limitation, we propose a Self Cross Supervision method, which
build only one model to obtain different views and significantly reduces the
computation cost while achieving high performance.

Specifically, we impose cross supervision based on a multi-input multi-output
(MIMO) model rather than multiple independent models. Commonly, one model
hard to produce diversity. Thus we implicitly fit two subnetworks within single
basic network utilizing the over-parameterization of neural network, achieve-
ing diversity with single model. Through MIMO, multiple predictions can be
obtained under a single forward pass, and then the purpose can be achieved
almost “free” [13]. In our method, instead of ensemble models, cross supervision
is realized by one MIMO model, which is called Self Cross Supervision.

Compared with multiple independent models, the performance of each sub-
network in one MIMO is compromised when the capacity of the MIMO is limited.
The subnetwork with poor representation ability generate pseudo labels with
large noise, further confusing the training process and making false propagation
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from one subnetwork to others[46, 48, 47]. To suppress the noisy pseudo labels,
we propose employing uncertainty guided the process of learning with wrong
pseudo labels. Uncertainty is used to evaluate the quality of predictions without
ground truth. Generally, regions with large uncertainty represent poor predic-
tion and vice versa [1, 38]. For the task at hand, uncertainty can be used as the
guided information to indicate the confidence of the pseudo labels of unlabelled
samples and supervise the self cross supervision process by reducing the effects of
wrong pseudo labeling, and such proposed method is called Uncertainty-guided
Self Cross Supervision (USCS). The comparisons between cross supervision and
our USCS is shown in Fig.1.

In conclusion, our contributions are:

1. We firstly propose a self cross supervision method with a multi-input multi-
output (MIMO) model. Our method realizes cross supervision through en-
forcing the consistency between the outputs of MIMO, and greatly reduces
the training cost of the model.

2. We propose uncertainty-guided learning for self cross supervision to improve
the performance of the model, which uses the uncertainty information as
the confidence of the pseudo labels and supervises the learning process by
reducing the effects of wrong pseudo labeling.

3. Experiments demonstrate that our proposed model surpasses most of the
current state-of-the-art methods. Moreover, compared with cross supervi-
sion, our method can achieve competitive performance while greatly reducing
training costs.

2 Related work

2.1 Semantic segmentation

Semantic segmentation is a pixel-wise classification task, which marks each pixel
of the image with the corresponding class. Most of the current semantic segmen-
tation models are based on the encoder-decoder structure [2, 26, 30]. The encoder
reduces the spatial resolution generating a high-level feature map, and the de-
coder gradually restores spatial dimension and details. Fully convolutional neural
networks (FCN) [22] is the first encoder-decoder-based segmentation model. The
subsequent works improve the context dependence by dilated convolutions [42, 4],
maintaining high resolution [33, 37], pyramid pooling [44, 41], and self-attention
mechanism [36]. DeepLabv3+ [5] is one of the state-of-the-art methods, which
is employed as the segmentation model in this work.

2.2 Semi-supervised learning

Semi-supervised learning focuses on high performance using abundant unlabeled
data under limited labeled data, so as to alleviate the training dependence on la-
bels [19, 15, 45]. Most of the current semi-supervised learning methods are based
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on empirical assumptions of the image itself, such as smoothness assumption,
and low-density assumption [35].

Based on the smoothness assumption, prior works use the consistent regu-
larization semi-supervised method, which encourage the model to predict the
similar output for the perturbed input. This kind of works tries to minimize the
difference between perturbed samples generated by data augmentations, e.g.,
Mean Teacher [34], VAT [24] and UDA [39]. As for the low-density assumption,
the pseudo label based semi-supervised learning [19, 29, 39] is the representative
method, which realizes the low-density separation by minimizing the conditional
entropy of class probability for the unlabeled data. In order to utilize the merits of
different assumptions, prior works also propose effective methods based on both
or more. Among these methods, joint learning with the pseudo label and consis-
tent regularization is a successful one and has achieved impressive performance,
such as MixMatch [3], FixMatch [32] and DivideMix [20]. Our approach uti-
lizes consistent regularization and the pseudo label to construct semi-supervised
learning.

2.3 Semi-supervised semantic segmentation

As a dense prediction task, semantic segmentation is laborious and time-consuming
in manual annotations. Therefore, using unlabeled images to improve model per-
formance is an effective way for cost reduction. Most of the semi-supervised se-
mantic segmentation approaches are based on the consistent regularization [27,
9, 49, 17].For example, PseudoSeg [49] enforces the consistency of the predictions
with weak and strong data augmentations, similar to FixMatch [32]. CAC [17]
utilizes contextual information to maintain the consistency between features of
the same identity under different environments. CCT [28] maintains the agree-
ment between the predictions from the features with various perturbations. GCT
[14] and CPS [6] adopt different model structures or model initializations to gen-
erate the perturbations of predictions and achieve state-of-the-art performance.
However, the training cost of time and memory for ensemble models is expen-
sive in GCT and CPS. Different from prior works, our approach enforces the
consistency of predictions from a multi-input multi-output network and greatly
reduces the training costs.

3 Method

In the following sections, we first introduce the overview of USCS in Sec. 3.1. The
self cross supervision with MIMO model is proposed in Sec. 3.2. To ameliorate
pseudo label quality, we propose the uncertainty-guided learning in Sec. 3.3.

As a common semi-supervised learning task, a dataset X consisting of la-
beled images Xl with labels Y and unlabeled images Xul is employed to train
a segmentation network. In our USCS, we extra applied transformation T on
unlabeled images Xul got the transformed images X Tul = T (Xul). Both unlabeled
images Xul and transformed images X Tul are employed to construct self cross
supervision.
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Fig. 2. The USCS Framework. We aim to maintain the consistency between the
predictions from a multi-input multi-output (MIMO) model. Since MIMO accepts two
different group images, we adopted transformation consistency to realize the purpose.

3.1 Overview of USCS

The USCS framework is shown in Fig. 2. In contrast to the general cross supervi-
sion method using several independent models, we instead employ a multi-input
multi-output (MIMO) model. Specifically, the MIMO model F has two input and
output branches which can be seen as the subnetworks with shared parameters,
accepting two groups independently sampled data Gk (k ∈ {1, 2}) and output
corresponding segmentation results. In USCS, each group data is denoted as
Gk =

{
xkl , x

Tk

ul

}
(xkl ∈ Xl, x

Tk

ul ∈ X Tul). For k ∈ {1, 2}, x1l and x2l are the labeled

images with different batch sampling order, xT1

ul and xT2

ul are the transformed
images with distinct transformation Tk.

Given an image xk ∈ Gk, the MIMO model F first predicts ŷk = {ŷkl , ŷkul},
where ŷkl = F (xkl ) and ŷ

k
ul = F (xTk

ul ). As common semantic segmentation models,
the prediction ŷkl is supervised by its corresponding ground-truth y ∈ Y as:

Lksup
(
xkl , y

)
=

1

|Ω|
∑
i∈Ω

`ce(ŷ
k
l (i), y(i)), (1)

where `ce(∗) is the standard Cross Entropy loss, and Ω is the region of image
with size H ×W .

To explore the unlabeled images, we repeat the original unlabeled images xul
twice, the MIMO model F makes two groups independent predictions F 1(xul)
and F 2(xul) on the same images xul as shown at the bottom of Fig. 2. Then
the same transformation T1 and T2 are respectively performing on F 2(xul) and
F 1(xul), obtaining p1 = T1(F

2(xul)), p2 = T2(F
1(xul)). Besides, the uncer-

tainties u1 and u2 are estimated for two transformed predictions p1 and p2,
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respectively. Then, p1 guided by the uncertainty u1 is regarded as the pseudo
labels of xT1

ul to supervise ŷ1ul. Similarly, the same operation is used to supervise
ŷ2ul based on p2 and u2. We call the above process uncertainty-guided self cross
supervision. The constraint Luscs and more details are described in Sec. 3.2 and
Sec. 3.3.

Finally, our method for the training of MIMO model F joint the two con-
straints on both the labeled and unlabeled images which can be written as:

L (X ,Y) =
∑
k=1,2

(
1

|Xl|
∑
xk
l ∈Xl

Lksup
(
xkl , y

)
+

1

|Xul|
∑

xul∈Xul

λLkuscs(xul)), (2)

where λ is the trade-off weight to balance the USCS constraint.

3.2 Self Cross Supervision with MIMO Model

The proposed self cross supervision is implemented over the MIMO model. Be-
fore presenting self cross supervision, the MIMO model used in USCS is firstly
introduced. Based on the fact that neural networks are heavily overparameter-
ized models [13], we can train a MIMO model containing multiple independent
subnetworks and acquire multiple predictions of one input under a single for-
ward pass of the model. Different from the single neural network archtiecture,
the MIMO model replaces the single input layer by N input layers, which can
receive N datapoint as inputs. And N output layers are added to make N predic-
tions based on the feature before output layers. Compared with a single model,
the MIMO model obtains the performance of ensembling with the cost of only
a few increased parameters and calculations.

EncoderEncoder ClassifierClassifier

EncoderEncoder

DecoderDecoder

ClassifierClassifier

Shared   Parameters 

Features

Features

Mask

1 Mask−

Mixed Features

1x

2x

1y

2y

Fig. 3. The structure of MIMO segmentation model. The features after the
encoder are fused by the grid mix.

In USCS, we construct a MIMO model with two inputs and outputs, whose
structure is shown in Fig. 3. For better extract object features, the entire en-
coder part is utilized as the input layer of the model (the original MIMO model
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employs the first convolutions layers of the model as the input layer). However,
two independent encoders (the input layer) increase the model parameters and
computation. We share the parameters of two encoders to avoid this problem.
The features of two inputs extracted by the encoder must be fused before enter-
ing the decoder. To effective combines inputs into a shared representation, the
grid mix is adopted to replace the original summing method [13] in MIMO as:

Mgridmix(f1, f2) = 1M � f1 + (1− 1M)� f2, (3)

where f1 and f2 are the features of two inputs, respectively; 1M is a binary grid
mask with grid size g.

The self cross supervision enforces two predictions of MIMO learn from each
other. The output y1 is considered the pseudo label to supervise the output y2,
vice versa. As mentioned previously, two inputs of MIMO are different, while
the self cross supervision is feasible only when the inputs are the same. We
overcome this issue by introducing the transformation consistency regularization
[25], which assumes that the prediction F (T (x)) of the transformed image T (x)
must be equal to the transformed prediction T (F (x)) of the original image x.

As shown in Fig. 2, the MIMO model F predicts two transformed unlabeled
images xT1

ul and xT2

ul , obtaining ŷ
1
ul and ŷ2ul. Self cross supervision expects two

outputs of the MIMO model to supervise each other. However, the semantics of
the outputs ŷ1ul and ŷ

2
ul are different. To achieve the self cross supervision, we in-

put the original unlabeled image xul to the MIMO model, getting two individual
predictions F 1(xul) and F 2(xul) without gradient. We further obtain two trans-
formed predictions p1 = T1(F

2(xul)) and p2 = T2(F
1(xul)) by performing the

transformation T1 and T2, respectively. The transformed predictions p1 should
have the similar semantics with ŷ1ul, thus we regard p1 as the pseudo label of
ŷ1ul. Similarly, the transformed prediction p2 is considered as the pseudo label to
supervise ŷ2ul.

Through the above process, the MIMO model F can realize cross supervision
by itself. The self cross supervision constraint on unlabeled data is defined as:

Lkscs(xul) =
1

|Ω|
∑
i∈Ω

`ce(ŷ
k
ul(i), p

k(i)). (4)

3.3 Uncertainty-guided Learning

The pseudo label obtained from the prediction exists noise, especially when the
capacity of subnetworks in MIMO is limited. The poor model representation
leads to plenty of inaccurate pseudo labels. The noisy pseudo label will mislead
the model and interfere with the optimization direction in self cross supervision.
In addition, the noise caused by one model is likely to propagate to another model
through self cross supervision, resulting in the accumulation and propagation of
errors and hindering the performance. It is necessary to filter the pseudo label
with inferior quality to improve the overall performance of the model.

Uncertainty estimation is an effective method to evaluate noise in predic-
tion [18]. Noise often exists in regions with large uncertainties. Fig. 4 shows
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the uncertainty visualization. Based on this observation, we propose to employ
uncertainty to guide the pseudo label with noise in cross supervision. Firstly,
we estimate the uncertainty of pseudo label through the Shannon Entropy [31],
which is defined as:

U = −
C∑
c=1

p(c) log p(c), (5)

where C is the softmax predicted class related to the category of the dataset,

Images Predictions Ground Truth Noises Uncertainty

Fig. 4. Uncertainty visualization. Highly bright regions represent large uncertain-
ties in the uncertainty map.

p is the softmax predicted vector with C. We normalize U into range (0, 1),
and set Û = 1 − U . Then, the pseudo label can be divided into confident and
uncertain regions by setting a threshold γ. We fully receive the pixels in the
confident region, which are regarded as the true label. As for the uncertain
regions, we assign low loss weights to high uncertain pixels. Thus the model can
also learn from the pixels in the uncertain regions, which avoids the loss of useful
information. We define the uncertainty weight mask as:

W =

{
1 Û ≥ γ

Û/γ Û < γ
(6)
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In the end, we multiply the weight mask W to the self cross supervision
constraint and rewrite the Eq. 4, getting the uncertainty-guided self cross super-
vision constraint:

Lkuscs(xul) =
1

|Ω| ‖W‖1,1

∑
i∈Ω

W (i) · `ce(ŷkul(i), pk(i)), (7)

where ‖W‖1,1 means the Lp,q norm of matrix W .

4 Expermients

4.1 Experimental Setup

Datasets. PASCAL VOC 2012 [8] is the most prevalent benchmark for semi-
supervised semantic segmentation with 20 object classes and one background
class. The standard dataset contains 1464 images for training, 1449 for validation,
and 1456 for testing. Following previous works [6], we adopt the augmented set
provided from SBD [12] as our entire training set, which contains 10582 images.

Implementation details. The results are obtained by training the MIMO
model, modified on the basis of Deeplabv3+ [5]. We regard the backbone of the
segmentation model as the encoder, whose weights are initialized with the pre-
trained model on ImageNet [7]. The other components except the final classifier
are considerd as the decoder which are initialized randomly.

Following the previous works [6], we utilize “poly" learning rate decay policy
where the base learning rate is scaled by (1− iter/max_iter )0.9. Mini-batch
SGD optimizer is adopted with the momentum and weight decay set to 0.9 and
10−4 respectively. During the training, images are randomly cropped to 320×320,
random horizontal flipping with a probability of 0.5, and random scaling with a
ratio from 0.5 to 2.0 are adopted as data augmentation. We train PASCAL VOC
2012 for 3 × 104 iters with batch size set to 16 for both labeled and unlabeled
images. The base learning rates are 0.01 for backbone parameters and 0.001 for
others. The trade-off weight λ is set to 1 after adjustment.

Besides, we found that the MIMO model based on Deeplabv3+ cannot ac-
commodate two independent subnetworks due to the limited capacity. Thus, we
relax independence same as [13] by sampling two same inputs from the training
set with probability ρ, i.e., the input x2 of the MIMO model is set to be equal
to x1 with probability ρ. During the training, we employ CutMix [43] as trans-
formation, same as [6]. We average two outputs of the MIMO model to generate
the final results for evaluation.

Evaluation. We use the mean Intersection-over-Union (mIoU) as the evalua-
tion metric as a common practice. To evaluate training time and memory cost
reduction in USCS, Multiply–Accumulate Operations (MACs) and the number
of parameters are adopted as the metric. Besides, we employ the non overlap
ratio for the outputs of the MIMO model as metric to measure the diversity of
subnetworks. The low non overlap ratio means poor diversity.
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4.2 Results

In this section, we report the results compared with supervised baselines and
other SOTA methods in different partition protocols, i.e., the full training set is
split with 1/16, 1/8, 1/4, and 1/2 ratios for labeled images and the remainder
as unlabeled images.

Improvements over Supervised Baselines. Fig. 5 illustrates the improve-
ments of our approach compared with full supervised learning (trained with the
same partition protocol). Specifically, our method outperforms the supervised
baseline by 5.70%, 4.23%, 2.63%, and 1.30% under 1/16, 1/8, 1/4, and 1/2
partition protocols separately with Resnet-50. On the other settings, the gains
obtained by our approach are also stably: 5.20%,3.32%, 2.03%, and 1.50% under
1/16, 1/8, 1/4, and 1/2 partition protocols separately with Resnet-101.

Fig. 5. Improvements over the supervised baseline on PACAL VOC 2012 with
(a) Resnet-50 and (b) Resnet-101

Comparison with SOTA. The results compared with other semi-supervised
approaches are shown in Tab. 1. Our method performs better than most methods
under different partition protocols with Resnet-50 and Resnet-101 as backbones.
Compared with CAC [17], our approach improves by 2.2%, 2.48%, 2.15% under
1/16, 1/8, and 1/4 partition protocols separately with Resnet-50. Compared
with CPS [6], the advantage of our method is a great reduction in the number
of parameters and calculations as shown in Tab. 2. We acquired 40.5% and 49%
economization on MACs and parameters with Resnet-50, which signify the cost
decrease of training time and memory. Besides, our method only needs twice
forward pass, while CPS needs four times. As for accuracy, our method achieves
around 1% improvement in all cases with Resnet-50.
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Table 1. Comparison with SOTA on PASCAL VOC 2012. All the approachs are
based on Deeplabv3+. The ∗ indicates the approaches re-implemented by [6]. Best
results are in bold; suboptimal results are in italics.

Methods Network 1/16 1/8 1/4 1/2

MT∗[34] 66.77 70.78 73.22 75.41
CutMix-Seg∗[9]

Deeplabv3+
Resnet50

68.90 70.70 72.46 74.49
CCT∗[28] 65.22 70.87 73.43 74.75
GCT∗[14] 64.05 70.47 73.45 75.20
CAC[17] 70.10 72.40 74.00 -
ECS[23] - 70.20 72.60 -
CPS[6] 71.98 73.67 74.90 76.15

Ours 72.30 74.88 76.15 76.45

MT∗[34] 70.59 73.20 76.62 77.61
CutMix-Seg∗[9]

Deeplabv3+
Resnet101

72.56 72.69 74.25 75.89
CCT∗[28] 67.94 73.00 76.17 77.56
GCT∗[14] 69.77 73.30 75.25 77.14
CAC[17] 72.40 74.60 76.30 -
ELN[16] - 75.10 76.58 -
ST++[40] 74.50 76.30 76.60 -

Ours 74.52 76.20 77.09 78.63

4.3 Ablation Study

This section conducts the ablation study to exhibit the roles of self cross super-
vision (SCS) and uncertainty-guided learning (UL) in our method. Besides, the
influences of uncertainty threshold γ, feature fusion methods, and input repeti-
tion probability ρ are reported, respectively. All the experiments are run based
on 1/8 partition protocols on PASCAL VOC 2012.

Table 2. Training cost comparison with CPS [6] and SupOnly in the backbone of
Resnet-50 and Resnet-101.

Methods Resnet-50 Resnet-101 ForwardingsMACs(G)↓ Params(M)↓ MACs(G)↓ Params(M)↓

SupOnly 23.84 39.78 31.45 58.77 1
CPS 95.36 79.56 125.80 117.54 4
Ours 56.74 40.49 71.94 59.48 2

Uncertainty guided self cross supervision. The contribution of self cross
supervision and uncertainty-guided learning are shown in Tab. 3. It is impor-
tant to note that we adopt the result of CPS with CutMix augmentation[6] as
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a baseline to ensure fairness. We report a slight decline in performance after re-
placing CPS with SCS. While, the improvements yielded by UL are 1.23% with
the Resnet-50. We can see that SCS heavily reduces training costs of time and
memory, and UL improves the performance without extra cost.

Table 3. Ablation study of different components under 1/8 partition protocols
on PASCAL VOC 2012.

CPS SCS UL Deeplabv3+ with Resnet-50
mIoU(%)↑ MACs(G)↓ Params(M)↓

X 73.67 95.36 79.56
X 73.65 56.74 40.49
X X 74.88 56.74 40.49

Uncertainty threshold γ. We investigate the influence of threshold γ used
to control the uncertain weight mask as shown in Equation. 6. The results in
Fig. 6(a) show that: with the increase of γ, the model reduces the weight of
learning for noisy pixels in pseudo label and performs best when γ = 0.5. When
the continuous increase of γ, the performance degrades due to the model tends
to regard all pixels in pseudo label as noise, reducing the weight of confident
pixels in pseudo label. We visualize the effect of threshold γ to uncertainty in
Fig. 7.

Fig. 6. The ablation study on (a) uncertainty threshold γ and (b) input repetition
probability ρ.

Input repetition probability ρ. We show the influence of probability ρ on
both accuracy and diversity in Tab. 6. When ρ = 0, the training images are
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Pseudo LabelInput Ground Truth 1 =

0.7 = 0.5 = 0.3 = 0.1 =

Fig. 7. Visual comparison with different uncertainty threshold γ.

sampled independently for both subnetworks, and the MIMO model acquired
great diversity but poor accuracy as it can not contain two independent sub-
networks. As ρ grew, the diversity of the MIMO model gradually decayed, the
independence of the subnetwork is relaxed to release the limited model capacity.
The performance reaches the peak at ρ = 0.4, where get a trade-off between the
diversity and the capacity of the MIMO model.

Table 4. The affects of feature fusion methods on mIoU(%) and non overlap
ratio(%).

Fusion methods Grid mix Summing
1 3 5 7

mIoU(%) 74.88 74.10 73.45 73.64 73.32
Non overlap ratio(%) 2.03 2.53 1.64 1.40 0.94

Feature fusion. We show the influence of feature fusion methods, summing
and grid mix, on both accuracy and diversity in Tab. 4. The block size g of the
grid mix is set as 1, 3, 5, and 7. We can see that the grid mix surpasses the
summing feature fusion method on both mIoU scores and non overlap ratios.
The accuracy of the MIMO model decreases as g increases, while the diversity
reaches the top at g = 3. We use g = 1 in our method for all the experiments.

Qualitative Results. Fig. 8 visualizes some segmentation results on PASCAL
VOC 2012. The supervised results display the bad accuracy caused by the limited
labeled training samples. For example, in the 2-nd row, the supervised baseline
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Input Ground Truth SupOnly Ours

Fig. 8. Qualitative results from Pascal VOC 2012.

mislabels the cow as the horse in many pixels. While our method successfully cor-
rected the wrong annotation. Besides, the segmentation labeled by our method
is more exquisite than the supervised-only method.

5 Conclusions

In this paper, we propose a new cross supervision based semi-supervised seman-
tic segmentation approach, Uncertainty-guided Self Cross Supervision (USCS).
Our method achieves self cross supervision by imposing the consistency between
the subnetworks of a multi-input multi-out (MIMO) model, avoiding high com-
putations from ensemble training. Limited by the model capacity, the subnet-
work representation ability of MIMO is poor, resulting in large pseudo label
noise. In order to alleviate the problem of noise accumulation and propagation
in the pseudo label, we proposed uncertainty-guided learning, utilizing the un-
certainty as guided information to reduce the effects of wrong pseudo labeling.
Experiments show our approach dramatically reduces training costs and achieves
powerful competitive performance.
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