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Unsupervised self-rehabilitation exercises and physical training can cause serious
injuries if performed incorrectly. We introduce a learning-based framework that identi-
fies the mistakes made by a user and proposes corrective measures for easier and safer
individual training. Our framework does not rely on hard-coded, heuristic rules. Instead,
it learns them from data, which facilitates its adaptation to specific user needs. To this
end, we use a Graph Convolutional Network (GCN) architecture acting on the user’s
pose sequence to model the relationship between the the body joints trajectories. To
evaluate our approach, we introduce a dataset with 3 different physical exercises. Our
approach yields 90.9% mistake identification accuracy and successfully corrects 94.2%
of the mistakes. Our code and dataset are available at https://github.com/Jacoo-Zhao/
3D-Pose-Based-Feedback-For-Physical-Exercises.

1 Introduction

Being able to perform exercises without requiring the supervision of a physical trainer
is a convenience many people enjoy, especially after the COVID-19 pandemic. How-
ever, the lack of effective supervision and feedback can end up doing more harm than
good, which may include causing serious injuries. There is therefore a growing need
for computer-aided exercise feedback strategies.

A few recent works have addressed this problem [1,2,3,4,5,6]. However, they focus
only on identifying whether an exercise is performed correctly or not [1,6], or they
rely on hard-coded rules based on joint angles that cannot easily be extended to new
exercises [2,3,4]. In this work, we therefore leverage recent advances in the fields of
pose estimation [7,8,9], action recognition [10,11] and motion prediction [12,13,14] to
design a framework that provides automated and personalized feedback to supervise
physical exercises.

Specifically, we developed a method that not only points out mistakes but also offers
suggestions on how to fix them without relying on hard-coded, heuristic rules to define
what a successful exercise sequence should be. Instead, it learns from data. To this
end, we use a two-branch deep network. One branch is an action classifier that tells
users what kind of errors they are making. The other proposes corrective measures.
They both rely on Graph Convolutional Networks (GCNs) that can learn to exploit the
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relationships between the trajectories of individual joints. Fig. 1 depicts the kind of
output our network produces.

b) Lunges

a) Squats

Feet too wide Knees inward Not low enough Front bent

Not low enough Knee passes toe Arched back Hunch back

c) Planks

Fig. 1. Example results from our framework depicting frames from the a) squat, b) lunge,
and c) plank classes. The red poses correspond to the exercises performed incorrectly while the
green poses correspond to our corrections. Note that although we display a single pose from each
mistake type, our framework operates on entire sequences.

To showcase our framework’s performance, we recorded a physical exercise dataset
with 3D poses and instruction label annotations. Our dataset features 3 types of exer-
cises; squats, lunges and planks. Each exercise type is performed correctly and with
mistakes following specific instructions by 4 different subjects. Our approach achieves
90.9% mistake recognition accuracy on a test set. Furthermore, we use the classification
branch of our framework to evaluate the performance of the correction branch, consid-
ering the correction to be successful if the corrected motion is classified as “correct”.
Under this metric, our approach successfully corrects 94.2% of users’ mistakes. We will
make our code and dataset publicly available upon acceptance.

2 Related Work

Our work is at the intersection of several sub-fields of computer vision: (i) We draw
inspiration from GCN based human motion prediction architectures; (ii) we identify
the users’ mistakes in an action recognition fashion; and (iii) we address the task of
physical exercise analysis. We therefore discuss these three topics below.
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2.1 Human Motion Prediction

Human motion prediction is a complex task due to the inherent uncertainty in forecast-
ing into the future. In recent years, many deep learning methods based on recurrent neu-
ral networks (RNNs) [15,16,17,18,19,20,14], variational auto encoders (VAEs) [21,22,23,24],
transformers [12], and graph convolutional networks (GCNs) [25,26,13,27] have been
proposed. We focus our discussion on GCN based ones, as we also exploit the graph-
like connections of human joints with GCNs in our approach.

In [25], Mao et al. proposed to exploit a GCN to model the relationships across
joint trajectories by representing them with Discrete Cosine Transform (DCT) coeffi-
cients. The approach was in [13] by integrating an attention module, and in [27,28] by
using cross-subject attention for multi-person motion prediction. In [26], the input co-
efficients to the GCN were extracted via an inception module instead of the DCT. Our
motion correction branch is inspired by [25], but instead of forecasting future motion,
we predict correctly performed exercises.

2.2 Action Recognition

Although there is a vast literature on image-based action recognition, here we focus
on its skeleton-based counterpart, as our approach also processes 3D poses. Early deep
learning based approaches to skeleton-based action recognition mostly relied on RNNs
[29,30,31,32,33]. Li et al. [10] used convolutional neural networks (CNNs) to extract
features hierarchically by first finding local point-level features and gradually extract-
ing global spatial and temporal features. Zhang et al. [34] designed CNN and RNN
networks that are robust to viewpoint changes.

Recently, [35,36,11] employed GCNs for action recognition. Specifically, Tang et
al. [35] designed a reinforcement learning scheme to select the most informative frames
and feed them to a GCN. Li et al. [36] developed a GCN framework that not only
models human joint connections, but also learns to infer “actional-links”, which are
joint dependencies learned from the data.

Zhang et al. [11] designed a two-module network, consisting of a first GCN-based
module that extracts joint-level information and a second frame-level module capturing
temporal information via convolutional layers and spatial and temporal max-pooling.
Our classification branch borrows ideas from Mao et al.’s [25] and Zhang et al.’s [11] ar-
chitectures. It is composed of graph convolutional blocks as proposed by Mao et al. [25]
combined with the frame-level module architecture proposed by Zhang et al. [11].

2.3 Physical Exercise Analysis

Physical exercise analysis aims to prevent injuries that may arise when a person per-
forms motions incorrectly. In its simplest form, such an analysis amounts to detecting
whether the subject performs the exercise correctly or not. This was achieved several
works [1,6,5] by exploiting 2D poses extracted from the input images. In particular,
Dittakavi et al. [5] detected which joints need to be fixed by finding the overall joint an-
gle distribution of the dataset and detecting poses in which a joint angle is an anomaly.
This framework operates on single frames, as opposed to our method which operates
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on entire sequences. In [37], Zell et al. represented the human body as a mass-spring
model and analyzed the extension torque on certain joints, allowing them to classify
whether a motion is performed correctly or not. While useful, such classification-based
approaches offer limited information to the user, as they do not provide them with any
feedback about the specific type of mistakes they made. Moreover, most of existing
works operate on 2D pose inputs [1,2,3,6,5]. Similar to [4], we also design our frame-
work to work with 3D poses enabling us to be robust to ambiguities found in 2D poses.

While a few works took some steps toward giving feedback [2,3,4], this was achieved
in a hard-coded fashion, by thresholding angles between some of the body joints. As
such, this approach relies on manually defining such thresholds, and thus does not easily
extend to new exercises. Furthermore, it does not provide the user personalized correc-
tive measures in a visual manner, by demonstrating the correct version of their perfor-
mance. We address this by following a data driven approach able to automatically learn
the different “correct” forms of an exercise, and that can easily extend to different types
of exercises and mistakes. To the best of our knowledge, our framework is the first to
both identify mistakes and suggest personalized corrections to the user.

3 Methodology

Before we introduce our framework in detail, let us formally define the tasks of motion
classification and correction. Motion classification seeks to predict the action class c of
a sequence of 3D poses from t = 1 to t = N , denoted as P1:N . We can write this as

c = Fclass(P1:N ) ,

where Fclass is the classification function.
We define motion correction as the task of finding the “correct” version of a se-

quence, which can be written as

P̂1:N = Fcorr(P1:N ) ,

where Fcorr is the correction function and P̂1:N is the corrected sequence. Ideally, the
corrected sequence should be of class “correct”. We can use the classification function
to verify that this is the case, i.e.,

ccorrect = Fclass(P̂1:N ) ,

where ccorrect is the label corresponding to a correctly performed exercise.
Given these definitions, we now describe the framework we designed to address

these tasks and discuss our training and implementation details.

3.1 Exercise Analysis Framework

Our framework for providing exercise feedback relies on GCNs and consists of two
branches: One that predicts whether the input motion is correct or incorrect, specifying
the mistake being made in the latter case, and one that outputs a corrected 3D pose
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sequence, providing a detailed feedack to the user. We refer to these two branches as
the “classifier” and “corrector” models, respectively.

Inspired by Mao et al. [25], we use the DCT coefficients of joint trajectories, rather
than the 3D joint positions, as input to our model. This allows us to easily process se-
quences of different lengths. The corrector model outputs DCT coefficient residuals,
which are then summed with the input coefficients and undergo an inverse-DCT trans-
form to be converted back to a series of 3D poses.

To reduce the time and space complexity of training the classifier and the corrector
separately and to improve the accuracy of the model, we combine the classification and
correction branches into a single end-to-end trainable model. Figure 2 depicts our over-
all framework. It takes the DCT coefficients of each joint trajectory as input. The first
layers are shared by the two models, and the framework then splits into the classification
and correction branches.

Furthermore, we feed the predicted action labels coming from the classification
branch to the correction branch. We depict this in Figure 2 as the “Feedback Module”.
Specifically, we first find the label with the maximum score predicted by the classifica-
tion branch, convert this label into a one-hot encoding, and feed it to a fully-connected
layer. The resulting tensor is concatenated to the output of the first graph convolutional
blocks (GCB) of the correction branch. This process allows us to explicitly provide la-
bel information to the correction module, enabling us to further improve the accuracy
of the corrected motion.

GCL-BN

ReLu

PredictionPrediction

One hot labels

InputInput
3J*K3J*K ReLu Dropout

GCL-BN

GCB
GCL

OutputOutput
3J*K3J*K+

GCB

Concat

Classification 
Branch

Correction 
Branch

Feedback
Module

Corrected 
Action 

Sequences

SMP
DropoutCNN

Fig. 2. Our framework consists of a classification and a correction branch. They share several
graph convolutional layers are then split such that the classification branch identifies the type
of mistakes made by the user and the correction branch outputs a corrected pose sequence. The
result of the classification branch is fed to the correction branch via a feedback module.
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Implementation and Training Details. We primarily use GCB similar to those pre-
sented in [25] in our network architecture, depicted in Figure 3. These modules allow us
to learn the connectivity between different joint trajectories. Each graph convolutional
layer is set to have 256 hidden features. Additionally, our classification branch borrows
ideas from Zhang et al.’s [11] action recognition model. It is a combination of GCB
modules and the frame-level module architecture of [11] consisting of convolutional
layers and spatial max-pooling layers.

We train our network in a supervised manner by using pairs of incorrectly per-
formed and correctly performed actions. However, it is not straightforward to find these
pairs of motions. The motion sequences are often of different lengths, and we face the
task of matching incorrectly performed actions to the closest correctly performed action
from the same actor. To do so, we make use of Dynamic Time Warping (DTW) [38],
which enables us to find the minimal alignment cost between two time series of dif-
ferent lengths, using dynamic programming. We compute the DTW loss between each
incorrect and correct action pair candidate and select the pair with the smallest loss
value.

We use the following loss functions to train our model.

– Ecorr: The loss of the correction branch, which aims to minimize the soft-DTW [39]
loss between the corrected output sequence and the closest correct motion se-
quence, determined as described previously. The soft-DTW loss is a differentiable
version of the DTW loss, implemented by replacing the minimum operation by a
soft minimum.

– Esmooth: The smoothness loss on the output of the correction branch, to ensure the
produced motion is smooth and realistic. It penalizes the velocities of the output
motion by imposing an L2 loss on them.

– Eclass: The loss of the classification branch, which aims to minimize the cross en-
tropy loss between the predicted logits and the ground-truth instruction label.

We combine these losses into

Eloss = wcorrEcorr + wclassEclass + wsmoothEsmooth, (1)

where Eloss is the overall loss and wcorr, wclass, wsmooth are the weights of the correction,
classification, and smoothness losses, respectively. For our experiments we set wcorr =
1, wclass = 1, and wsmooth = 1e− 3.

During training, we use curriculum learning in the feedback module: Initially the
ground-truth instruction labels are given to the correction branch. We then use a sched-
uled sampling strategy similar to [40], where the probability of using the ground-truth
labels instead of the predicted ones decreases from 1 to 0 linearly as the epochs in-
crease. In other words, the ground-truth labels are progressively substituted with the
labels predicted by the classification branch, until only the predicted labels are used.
During inference, only the predicted labels are given to the correction branch.

We use Adam [41] as our optimizer. The learning rate is initially set to 0.01 and
decays according to the equation lr = 0.01 · 0.9i/s, where lr is the learning rate, i is
the epoch and s is the decay step, which is set to 5. To increase robustness and avoid
overfitting, we also use drop-out layers with probability 0.5. We use a batch size of 32
and train for 50 epochs.
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Fig. 3. Graph Convolutional Block (GCB) consisting of graph convolutional layers, batch nor-
malization layers, ReLUs and drop-outs.

4 EC3D Dataset

Existing sports datasets such as Yoga-82 [42], FineGym [43], FSD-1O[44], and Div-
ing48 [45] often include correct performances of exercises but do not include incor-
rect sequences. They are also not annotated with 3D poses. Therefore to evaluate our
approach, we recorded and processed a dataset of physical exercises performed both
correctly and incorrectly, and named the “EC3D” (Exercise Correction in 3D) dataset.

Specifically, this dataset contains 3 types of actions, each with 4 subjects who re-
peatedly performed a particular correct or incorrect motion as instructed. We show the
number of sequences per action and the instructions for each subject in Table 1. The
dataset contains a total of 132 squat, 127 lunge, and 103 plank action sequences, split
across 11 instruction labels.

The videos were captured by 4 GoPro cameras placed in a ring around the subject,
using a frame rate of 30 fps and a 1920 × 1080 image resolution. Figure 4 depicts
example images taken from the dataset with their corresponding 2D and 3D skeleton
representation. The cameras’ intrinsics were obtained by recording a chessboard pattern
and using standard calibration methods implemented in OpenCV [46].

Exercise
Instruction
Label

Subject 1 Subject 2 Subject 3 Subject 4
Total
(per instruction)

Total
(per action)

Squats

Correct 10 10 11 10 41

132
Feet too wide 5 8 5 5 23
Knees inward 6 7 5 5 23
Not low enough 5 7 5 4 21
Front bent 5 6 6 7 24

Lunges
Correct 12 11 11 12 46

127Not low enough 10 10 10 10 40
Knee passes toe 10 10 11 10 41

Planks
Correct 7 8 11 7 33

103Arched back 5 5 11 9 30
Hunch back 10 10 11 9 40

Table 1. The EC3D dataset with the number of sequences per instruction of each subject, the to-
tal number of sequences per instruction and the total number of sequences per action. We reserve
Subjects 1, 2, and 3 for training and 4 for testing.
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Camera 1 Camera 2 Camera 3 Camera 4

Subject 1
Squat

Subject 2
Lunge

Subject 3
Plank

a)

Subject 1
Squat

Subject 2
Lunge

Subject 3
Plank

b)

Fig. 4. Examples images from the EC3D dataset, depicting images from the SQUAT, lunge, and
plank classes with their corresponding 3D pose visualizations. a) Images for each exercise type
from the dataset from each camera viewpoint, with the 2D poses overlayed. b) The corresponding
3D poses, visualized from two different viewpoints.

We annotated the 3D poses in an automated manner, whereas the action and in-
struction labels were annotated manually. Specifically, the 3D pose annotation was per-
formed as follows: First, the 2D joint positions were extracted from the images captured
by each camera using OpenPose [47], an off-the-shelf 2D pose estimation network. We
then used bundle adjustment to determine the cameras’ extrinsics. For the bundle ad-
justment algorithm to converge quickly and successfully, additional annotations were
made on static landmarks in 5 frames. Since the cameras were static during recording,
for each camera, we averaged the extrinsics optimized for each of these frames. After-
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wards, these values were kept constant, and we triangulated the 2D poses to compute
the 3D poses.

During the triangulation process, we detected whenever any joint had a high repro-
jection error to catch mistakes in the 2D pose estimates. Such 2D pose annotations were
discarded to prevent mistakes in the 3D pose optimization. The obtained 3D pose values
were afterwards smoothed using a Hamming filter to avoid jittery motion. Finally, we
manually went through the extracted 3D pose sequences in order to ensure that there
are no mistakes and that they are consistent with the desired motion.

To make the resulting 3D poses uniform, we further normalized, centred and rotated
them. As the different heights and body sizes of the different subjects cause differences
in skeletal lengths, a random benchmark was selected to normalize the skeletal lengths
while maintaining the connections between joints. Furthermore, we centered all poses
on their hip joint and rotated them so that the spine was perpendicular to the ground and
all movements performed in the same direction.

5 Evaluation

5.1 Dataset and Metrics

We use the EC3D dataset to evaluate our model performance both quantitatively and
qualitatively. We use subjects 1, 2, and 3 for training and subject 4 for evaluation.

We use top-1 classification accuracy to evaluate the results of the instruction clas-
sification task, as used by other action classification works [10,11]. For the motion
correction task, we make use of the action classifier branch: If the corrected motion is
classified as “correct” by our classification branch, we count the correction as success-
ful. We report the percentage of successfully corrected motions as the evaluation metric
for this task.

5.2 Quantitative Results

We achieve an average mistake recognition accuracy of 90.9% when classifying se-
quences in EC3D, as shown by the detailed results for each specific exercise instruction
in Table 2. In the same table, we also show that 94.2% of the corrected results are
classified as “correct” by our classification model. The high classification accuracy and
correction success show that our framework is indeed capable of analyzing physical
exercises and giving useful feedback.

As no existing works have proposed detailed correction strategies, we compare our
framework to a simple correction baseline consisting of retrieving the closest “correct”
sequence from the training data. The closest sequence is determined as the sequence
with the lowest DTW loss value to the input sequence. In Table 3, we provide the DTW
values between the incorrectly performed input and the corrected output. The DTW
loss acts as an evaluation of the accuracy of joint positions, as it is an L2 loss on the
time aligned sequences. For this metric, the lower, the better, i.e., the output motion
should be as close as possible to the original one while being corrected as necessary.
Our framework yields a high success rate of correction together with a lower DTW loss
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Exercise Mistake Label
Classification
Accuracy (%)

Correction
Success (%)

Squats

Correct 90.0 100
Feet too wide 100 100
Knees inward 100 100
Not low enough 100 100
Front bent 57.1 85.7

Lunges
Correct 66.7 100
Not low enough 100 60.0
Knee passes toe 100 90.0

Planks
Correct 85.7 100
Arched back 100 100
Hunch back 100 100

Average 90.9 94.2
Table 2. Results of our classification and correction branches on the EC3D dataset. We
achieve 90.9% recognition accuracy on average and successfully correct 94.2% of the mistakes.

than the baseline, thus supporting our claims. Note that we do not evaluate the baseline’s
correction success percentage because it retrieves the same sequences that were used to
train the network, to which the classification branch might have already overfit.

5.3 Qualitative Results

In Figure 5, we provide qualitative results corresponding to all the incorrect motion
examples from each action category. Note that the incorrect motions are successfully
corrected, yet still close to the original sequence. This makes it possible for the user to
easily recognize their own motion and mistakes.

5.4 Ablation Studies

We have tried various versions of our framework and recorded our results in Table 4.
In this section, we present the different experiments, also depicted in Figure 6, and the
discussions around these experiments.

Separated models. We first analyze the results of separated classification networks.
According to Table 4, our separated classification branch architecture is denoted as
“separated classification.” We have also evaluated a simpler, fully GCN based sepa-
rated action classifier branch, denoted as “separated classification (simple)”. We show
that the results of the classification branch degrade slightly when separated from the
correction branch. This indicates that the classification branch also sees a minor bene-
fit from being part of a combined model. The simpler classification network performs
worse than our architecture inspired by [11], showing that the pooling module improves
the classification accuracy.

Afterwards, we analyze the results of a separated correction network, denoted as
“separated correction”. Here the difference is quite profound; we see that separating
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a) Squat, feet too wide

d) Squat, front bent

h) Plank, hunched back

g) Plank, arched back

e) Lunge, not low enough

f) Lunge, knee passes toe

b) Squat, knees inward 

c) Squat, not low enough

Fig. 5. Qualitative results from our framework depicting incorrect input motions and corrected
output motions from categories a-d) squats, e-f) lunges, g-h) planks. We present the incorrect in-
put sequences (red) in the top row. The corrected sequences (green) overlaid on top of the incor-
rect input sequences (red) are presented in the bottom row. The most significant corrections are
highlighted with a yellow bounding box. We find that our proposals are successful in correcting
the incorrect sequences. This figure is best viewed in color and zoomed in on a screen.
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Separated Classifier

Separated Corrector

SMP CNN

GCL-
BN

ReLu Dropout

Conv2d with kernal siz e =(1,3)

In p u tIn p u t
3J * K3J * K ReLu

GCL-
BN

Dropout

Spatial  MaxPoolingSMPCNN

GCB

In p u tIn p u t
3J * K3J * K

GCL-
BN

DropoutReLu

GCB GCL

O u tp u tO u tp u t
3J * K3J * K+

Combined w/o feedback

Classificat ion 
Branch

In p u tIn p u t
3J * K3J * K

GCL-
BN

DropoutReLu

Correct ion Branch

GCB GCB GCL

O u tp u tO u tp u t
3J * K3J * K

SMP CNN

GCL-
BN

ReLu Dropout

In p u tIn p u t
3J * K3J * K

GCL-
BN

ReLu Dropout

GCL-
BN

ReLu Dropout

Separated  Classifier (Simple)

a)

b)

c)

Fig. 6. Ablation study frameworks. We depict the different architectures we evaluated for the
ablation studies: a) Separated classifier (simple) and separated classifier. b) Separated corrector.
c) Combined model without feedback. This model does not include a “Feedback Module”, the
classification branch’s results are not explicitly fed to the correction branch.
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Exercise Mistake Label Retrieval Baseline Our Framework

Squats

Correct 1.28 0.56
Feet too wide 4.23 1.46
Knees inward 1.61 0.66
Not low enough 1.83 0.61
Front bent 4.74 2.53

Lunges
Correct 1.94 1.82
Not low enough 1.86 1.31
Knee passes toe 2.27 1.48

Planks
Correct 2.41 1.79
Arched back 12.20 1.53
Hunch back 4.10 1.09

Average 3.49 1.35
Table 3. DTW results of the correction branch. We compare our framework to a simple base-
line retrieving the best matching “correct” sequence from the training dataset depending on the
classification label. We report the DTW loss between the input and the output sequences (lower is
better). Our framework successfully corrects the subject’s mistakes, while not changing the input
so drastically that the subject would not be able to recognize their own performance.

the correction model from the classification model degrades correction success signif-
icantly. We note that 50 epochs was not enough for the separated corrector framework
to converge, therefore we trained it for a total of 150 epochs.

Combined models. We train our framework without the feedback module (“com-
bined w/o feedback”), and without the smoothness loss (“combined w/o smoothness”).
We find that these perform worse than our model with the feedback module and with the
smoothness loss in terms of correction success. This shows that using the classification
results as feedback as well as the smoothness loss for training is useful for more suc-
cessful corrections. We notice that our framework trained without smoothness loss has
higher classification accuracy, despite having a lower correction success. We believe
this is due to the fact that the smoothness loss acts as a regularizer on the framework,
therefore causing slight performance losses to the classification branch. However, the
results of the correction success are significantly higher with the smoothness loss. We
also evaluate our trained model by passing random incorrect instruction labels to the
correction branch instead of the labels predicted by the classification branch (“com-
bined with random incorrect feedback”). The correction success drops significantly,
showing that the classification results are indeed very useful for the correction branch.

Further qualitative and quantitative results are presented in the supplementary ma-
terial.

5.5 Limitations and Future Work

While our current results are quite impressive, there is still room for improvement in
terms of performance. In particular, our framework struggles in correcting specific types
of motions, such as not low enough lunges. We plan to explore different additions to
our framework, such as an attention module, to better correct these types of mistakes.
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Classification
Accuracy (%)

Correction
Success (%)

Separated

Separated classification (simple) 88.6 -
Separated classification 89.8 -
Separated correction - 83.5

Combined
Combined w/o feedback 82.3 85.3
Combined with random incorrect feedback 90.9 87.3
Combined w/o smoothness 93.4 87.5
Ours 90.9 94.2

Table 4. Results of the ablation studies with several variations of our framework. We report the
classification accuracy (%) and the correction success rate (%), where higher is better for both
metrics. Our framework benefits greatly from combining the two tasks in a end-to-end learn-
ing fashion, from using a feedback module, and from using a pooling layer in the classification
branch. The smoothness loss causes slight degradation in classification accuracy but is greatly
beneficial for the correction success.

Our future work will consist of expanding the dataset to include more action se-
quences and more types of mistakes, performed by a larger set of subjects. We believe
that this will allow us to further improve our framework and add components that ad-
dress the shortcomings we will discover using such a dataset.

6 Conclusion

We have presented a 3D pose based feedback framework for physical exercises. We
have designed this framework to output feedback in two branches; a classification
branch to identify a potential mistake and a correction branch to output a corrected se-
quence. Through ablation studies, we have validated our network architectural choices
and presented detailed experimental results, making a strong case for the soundness
of our framework design. We have also introduced a dataset of physical exercises, on
which we have achieved 90.9% classification accuracy and 94.2% correction success.
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