
EAI-Stereo: Error Aware Iterative Network for
Stereo Matching

Haoliang Zhao1,4[0000−0002−3789−7451]†, Huizhou Zhou2,4[0000−0003−1117−2919]†,
Yongjun Zhang1[0000−0002−7534−1219]⋆, Yong Zhao1,3,4[0000−0002−7999−1083],
Yitong Yang1[0000−0001−5855−7248], and Ting Ouyang1[0000−0002−8919−2947]

1 State Key Laboratory of Public Big Data, Institute for Artificial Intelligence,
College of Computer Science and Technology, Guizhou University, Guiyang, 550025,

Guizhou, China
2 School of Physics and Optoelectronic Engineering, Guangdong University of

Technology, Guangzhou 510006, China
3 The Key Laboratory of Integrated Microsystems, Shenzhen Graduate School,

Peking University, China The Key Laboratory of Integrated Microsystems, Shenzhen
Graduate School, Peking University, China

4 Ghost-Valley AI Technology, Shenzhen, Guangdong, China

Abstract. Current state-of-the-art stereo algorithms use a 2D CNN to
extract features and then form a cost volume, which is fed into the fol-
lowing cost aggregation and regularization module composed of 2D or
3D CNNs. However, a large amount of high-frequency information like
texture, color variation, sharp edge etc. is not well exploited during this
process, which leads to relatively blurry and lacking detailed disparity
maps. In this paper, we aim at making full use of the high-frequency
information from the original image. Towards this end, we propose an
error-aware refinement module that incorporates high-frequency infor-
mation from the original left image and allows the network to learn error
correction capabilities that can produce excellent subtle details and sharp
edges. In order to improve the data transfer efficiency between our iter-
ations, we propose the Iterative Multiscale Wide-LSTM Network which
could carry more semantic information across iterations. We demonstrate
the efficiency and effectiveness of our method on KITTI 2015, Middle-
bury, and ETH3D. At the time of writing this paper, EAI-Stereo ranks
1st on the Middlebury leaderboard and 1st on the ETH3D Stereo bench-
mark for 50% quantile metric and second for 0.5px error rate among all
published methods. Our model performs well in cross-domain scenarios
and outperforms current methods specifically designed for generalization.
Code is available at https://github.com/David-Zhao-1997/EAI-Stereo.

1 Introduction

Stereo Matching is a fundamental vision problem in computer vision with direct
real-world applications in robotics, 3D reconstruction, augmented reality, and
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autonomous driving. The task is to estimate pixel-wise correspondences of an
image pair and generate a displacement map termed disparity which can be
converted to depth using the parameters of the stereo camera system.

Generally, traditional stereo matching algorithms [13, 12, 9] perform the fol-
lowing four steps: matching cost computation, cost aggregation, disparity com-
putation and refinement [29]. These algorithms can be classified into global meth-
ods and local methods. Global methods [33, 20, 8, 19] take advantage of solving
the problem by minimizing a global energy function [5], which consumes time in
exchange for accuracy. While local methods [15, 1] only make use of neighbor-
ing pixels, which usually runs faster [44]. However, in open-world environments,
it is difficult for traditional methods to achieve satisfactory results in texture-
less regions and regions with repetitive patterns, while traditional high-precision
algorithms are often limited in terms of computational speed.

Recently, with the continuous research in convolutional neural networks,
learning-based methods are widely used in the field of binocular stereo matching.
Compared with traditional methods, learning-based methods tend to produce
more accurate and smooth [23, 35] disparity maps, and some of them also have
advantages in computational speed [35, 41]. However, to apply algorithms in real
scenarios, there are still some challenges to be solved.

One challenge is that current methods do not perform well in recovering thin
objects and sharp edges. Most current algorithms use a 2D CNN to extract
features and then form a cost volume, which is fed into the following cost ag-
gregation and regularization module composed of 2D or 3D CNNs. During this
process, a large amount of high-frequency information is ignored, which leads to
relatively blurry and lacking detailed disparity maps. However, stereo vision is
often used in areas such as navigation, where it is important to recognize thin
objects such as wires and highly reflective surfaces such as glass.

Another challenge is that current state-of-the-art stereo methods [36, 23, 38]
use an iterative structure based on stock GRU which we found to be a bottleneck
for the iterative model designed for stereo matching. A more efficient iterative
structure is needed for performance improvements.

The other key issue is that learning-based algorithms are often not as effective
as on specific datasets when applied to real-world scenarios due to their limited
generalization capabilities [39].

In this work, we propose EAI-Stereo (Error Aware Iterative Stereo), a new
end-to-end data-driven method for stereo matching.

The major contributions of this paper can be summarized as follows:

1. We propose an error-aware refinement module that combines left-right warp-
ing with learning-based upsampling. By incorporating the original left image
that contains more high-frequency information and explicit calculating error
maps, our refinement module enables the network to better cope with over-
exposure, underexposure as well as weak textures and allows the network
to learn error correction capabilities which allows EAI-Stereo to produce
extreme details and sharp edges. The learning-based upsampling method
in the module can provide more refined upsampling results compared to
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bilinear interpolation. We have carefully studied the impact of the mod-
ule’s microstructure on performance. From our experiments, we find that
the structure improves generalization ability while improving performance.
This approach is highly general and can be applied to all models that produce
disparity or depth maps.

2. We propose an efficient iterative update module, called Multiscale Wide-
LSTM, which can efficiently combine multi-scale information from feature
extraction, cost volume, and current state, thus enhancing the information
transfer between each iteration.

3. We propose a flexible overall structure that can balance inference speed and
accuracy. The tradeoff could be done without retraining the network or even
at run time. The number of iterations can also be determined dynamically
based on the minimum frame rate.

2 Related Works

2.1 Data-driven Stereo Matching

Recently, data-driven methods dominate the field of stereo matching. Zbontar
and LeCun proposed the first deep learning stereo matching method [46]. Mayer
et al. proposed DispNetC [24], the first end-to-end stereo matching network.

In order to improve accuracy, 3D convolution was adopted by various of works
[2, 10, 49, 18, 42]. Chang et al. propose PSMNet [2], a pyramid stereo matching
network consisting of spatial pyramid pooling and several 3D convolutional lay-
ers. Taking advantage of the strong regularization effect of 3D convolution, PSM-
Net outperformed other methods at that time while 3D convolutions are very
computationally expensive. To further increase accuracy, Zhang et al. proposes
GANet [47] which approximates semi-global matching (SGM) [13] by introduc-
ing a semi-global guided aggregation (SGA) layer [47]. The accuracy is improved
by cost aggregation from different directions, which improves the performance in
occluded and textureless regions. However, these networks have limited ability
to generalize across datasets. After training on simulated datasets, these feature
maps tend to become noisy and discrete when the network is used to predict
real-world scenes, and therefore output inaccurate disparity maps. To address
this problem, DSMNet [48] improves the generalization ability of the network
by adding domain normalization and a non-local graph-based filter, which also
improves the accuracy. Shen et al. believe that the large domain differences and
unbalanced disparity distribution across a variety of datasets limit the real-world
performance of the model and propose CFNet [31], which introduces Cascade
and Fused Cost Volume to improve the robustness of the network.

Due to the high computational cost, some methods come up with new ways
to avoid the use of 3D convolutions. Xu et al. proposed AANet [41], which re-
places the computationally intensive 3D convolution and improves the accuracy
by using the ISA module and CSA module. While some researchers proposed a
coarse-to-fine routine [37, 43, 32] to replace 3D convolution in order to further
speed up inference. Tankovich et al. proposed HITNet [35], which introduced
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slanted plane hypotheses that allow performing geometric warping and upsam-
pling operations more accurately which achieve a higher level of accuracy [35].

2.2 Iterative Network

With the development of deep learning, there is a tendency to add more lay-
ers to convolutional neural networks to achieve better accuracy. However, as
the network gets deeper and deeper, the computational cost and the number
of parameters have greatly increased. To address the problem, Neshatpour et
al. proposed ICNN [27] (Iterative Implementation of Convolutional Neural Net-
works) which replaces the single heavy feedforward network with a series of
smaller networks executed sequentially. Since many images are detected in early
iterations, this method draws much less computational complexity.

IRR [16] first introduce a recurrent network for Optic Flow, which uses
FlowNetS [6] or PWC-Net [32] as its recurrent module. This enables IRR to be
able to achieve better performance by increasing its iterations. However, both
FlowNetS and PWC-Net are relatively heavy when used as iterative modules,
which limits the number of iterations. To address this problem, RAFT [36], pro-
posed by Teed et al. uses GRU [3] as its iterative module to update the flow
predictions and achieve state-of-the-art performance in optic flow. It is proved
that RAFT has strong cross-dataset generalization ability while keeping a high
efficiency in inference time [36].

In our work, we found that the stock GRU is becoming a bottleneck for
the iterative model designed for stereo matching. To alleviate this problem, we
proposed an improved iterative module to achieve better performance.

3 Approach

Our network takes a pair of rectified images Il and Ir as input. Then the features
are extracted and injected into the cost volume. The Multiscale Iterative Module
retrieves data from the cost volume and iterates to update the disparity map.
Finally, the iterated 1/4 resolution disparity map is fed into the Error Aware
Refinement module, which can perform learned upsampling and error-aware cor-
rection to obtain the final disparity map.

3.1 Multi-scale Feature Extractor

We use a ResNet-like network [11] as our feature extractor, feature maps of
a pair of images Il and Ir are extracted using two shared-weight extractors
which are used to construct a 3D correlation volume following RAFT-Stereo
[23]. The network consists of a sequence of residual blocks and then followed by
two downsampling layers which are used to provide multi-scale information Fh,
Fm and Fl for the following iterative Wide-LSTM modules. The spatial sizes of
the features maps Fh, Fm and Fl are 1/4, 1/8 and 1/16 of the original input
image size.
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Fig. 1. The overall structure of EAI-Stereo. The left and right images are extracted
by a weight-sharing feature extractor and the features are injected into the multiscale
correlation volume. The following Wide-LSTM Module combines information from cor-
relation volume, the previous iteration and the current disparity map to produce a dis-
parity map and an unsampling mask which are used for our Error Aware Refinement.
The refinement module upsamples the disparity map and then uses it to warp the right
image to the left and calculate the error map. Then the combined information is fed
to the hourglass models to output the final refined disparity map.

3.2 Iterative Multiscale Wide-LSTM Network

For iterative networks, the design of the iteration module has a significant im-
pact on the network performance. For image tasks, most of the models take the
stock GRU [3] as their iterative module. However, in our research, we found that
the performance of the network could be increased by improving the iterative
module. To address this problem, we propose an efficient iterative update mod-
ule named Multiscale Wide-LSTM that can efficiently combine the information
from feature extraction, cost volume, and current state, which also enhances the
information transfer between each iteration. Experiments show that our model
increases performance with a minor computational cost increase.

The network predicts a sequence of disparity maps {d1, . . . , dn} with an ini-
tial disparity map d0 = 0. And the first hidden state h0 is initialized using the
information extracted by feature extractors. For each iteration, the LSTM mod-
ule takes the previous hidden state hi−1, the previous state of the disparity map
di−1, and the information from the feature extraction F as inputs and then out-
puts ∆d which adds to the current disparity: di = di−1 +∆d. After n iterations,
the iteration result dn is fed into the refinement module for the final disparity
map drefined. We supervised our network by the following equation:

Lregress =

n−1∑
i=1

γn−i||dgt − di||1 + ||dgt − drefined||1, where γ = 0.9. (1)

Multiscale Iterative Module. In our study, we found that for image tasks, the
width of information transfer between iterative modules affects the model perfor-
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mance. Therefore, we widen the iterative modules in our design. In our module,
each of the three submodules of different scales establishes two data paths, C
and h with the preceding and following iterative modules. Where h contains the
information to update the disparity map for every iteration. While C extends the
data path and carries extra semantic information between iterations to improve
the efficiency of the iterative network. For the submodules themselves, the three
different scales also interact through upsampling and downsampling to share
data, thus increasing the width of information interaction and thus improving
multiscale performance. Specifically, the lowest resolution mutual Conv-LSTM
Cell is fused across scales by introducing features of the medium resolution, the
medium resolution Conv-LSTM Cell is fused by introducing features of both
low and high resolution, and the highest resolution cell is fused by introducing
features of medium resolution.

The multiscale fusion mechanism follows the following formulas:

Cl, hl = MutualLSTMCell(Clprev , hlprev , ctx, pool(hmprev
)) (2)

Cm, hm = CLSTMCell(Cmprev
, hmprev

, ctx, pool(hhprev
), interp(hlprev )) (3)

Ch, hh = CLSTMCell(Clprev , hlprev , ctx, disp, interp(hmprev
)) (4)

where subscript l, m and h denote low, middle and high resolution respectively.
CLSTMCell is short for Conv-LSTM Cell. The low-resolution MutualLSTM-
Cell not only takes Clprev and hlprev as input but also makes use of the fea-
tures from downsampled middle resolution. The middle-resolution ConvLSTM-
Cell takes advantage of using both downsampled high-resolution features and
upsampled low-resolution features. For the highest resolution, the module not
only makes use of upsampled middle resolution but also takes disp as input.

In general, low-resolution features have a larger perceptual field, which helps
to improve the matching accuracy in textureless regions, while high-resolution
features contain more high-frequency details, the combined use of this informa-
tion can increase the perceptual field without adding much computational cost,
thus improving the results. Another advantage of using multiscale is that we can
use different iterative submodules at each scale, and the lower resolution feature
maps have fewer pixels, which allows relatively time-consuming operations to be
performed. In our model, the Mutual Conv-LSTM Cell is used only in the 1/16
resolution module. Experimental results show that using this module only at low
resolution improves the performance with little change in computational cost.

Mutual Conv-LSTM Cell. To further improve the performance of the itera-
tive network, improvements have also been made to the cells that make up the
iterative module. Currently, the use of iterative networks to process image data
is gaining popularity. However, most of the networks simply use GRU [3] cell
and replace the fully connected layers in them with convolutional layers. How-
ever, according to our observation, widening and increasing the hidden state
of the network can improve the performance very well, so we use the LSTM
[21] which has a performance improvement in this task with little difference in
computational cost as our baseline.
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−

Fig. 2. Structure of Multiscale Iterative Module. Instead of fully connected fusion, our
model transfer information between adjacent resolutions.

In ordinary LSTM [14], the input and hidden states do not interact much,
but simply perform concatenation operations and then followed by various gate
operations, which do not make good use of the input and hidden state informa-
tion. In the field of natural language processing, there are several attempts to
modify the LSTM cell to get better results. Inspired by the Multiplicative LSTM
[21] and the MOGRIFIER LSTM [25], we propose the Mutual Conv-LSTM Cell.

In the Mutual Conv-LSTM Cell, the input xt and the hidden state ht−1

interact following the formulas:

xi
t = δSigmoid(Wconvx

hi−1
t−1)⊙ xi−2

t , for i ∈ {x|x ≤ n, x%2 ̸= 0} (5)

hi
t−1 = δSigmoid(Wconvh

xi−1
t )⊙ xi−2

t−1, for i ∈ {x|x ≤ n, x%2 = 0} (6)

where n denotes the number of interactions between the input and the hidden
state, Wconvx

and Wconvh
denote the weights of the two convolutional layers, δ

denotes a constant to balance the distribution and is set to 2 in our experiments.
As depicted in Figure 3, the convolution-processed feature maps of hi

t−1 are
element-wise multiplied with xi

t to generate a new hidden state. Similarly, the
convolution-processed feature maps of xi

t are element-wise multiplied with hi
t−1

to generate a new input. After interactions, the generated input xi
t and hidden

state hn
t−1 are processed with a procedure similar to a regular LSTM module

following the equations:

ft = Sigmoid(Wf · [ht−1, xt] + bf ) (7)

it = Sigmoid(Wi · [ht−1, xt] + bi) (8)

C̃t = tanh(Wi · [ht−1, xt] + bC) (9)

Ct = ft ∗ Ct−1 + it ∗ C̃t (10)

ot = Sigmoid(Wo · [ht−1, xt] + bo) (11)

ht = ot ∗ tanh(Ct) (12)

The features from the input and hidden state are fully fused by multiple inter-
actions, and the effective part of the features in both are retained and enhanced.

321



8 H. Zhao et al.

In our model, to lower the parameters as well as increase inference speed, the
Mutual Conv-LSTM Cell is only applied to the lowest resolution. Ablation ex-
periments show that the module brings significant performance improvement.

−

−

Fig. 3. Mutual Conv-LSTM Cell. The input and hidden state gate each other with
convolution-processed features for n times. After interactions, the generated input and
hidden state are processed with a procedure similar to a regular LSTM.

3.3 Error Aware Refinement

As we motioned before, a large amount of high-frequency information is ignored
in the former structure of the model. In our refinement model, we aim to make
full use of the former information and incorporate the high-frequency information
from the original left image.

To make full use of the former information, we use learned upsampling to
upsample the 1/4 resolution raw disparity map predicted by the LSTM net-
work. Following RAFT[36], the highest resolution output is fed to a series of
convolutional layers and generates an upsampling mask which is used to provide
information to the convex upsampling. This method is proved to be much more
efficient than bilinear upsampling. After the Learned Upsampling process, we get
the disparity map of the same size as the original image. However, the disparity
map is not error-aware processed at this point.

To incorporate the high-frequency information from the original left image
and alleviate the problem of false matching, in Error Aware Module, we perform
error perception by the following equations:

I
′

l = warp(Ir, disp) (13)

e = I
′

l − Il (14)

Ifuse = Conv3×3([e, Il]) (15)

disp
′
= hourglass([Ifuse, Conv3×3(disp)]) (16)
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where I
′

l denotes the warped right image, e denotes the reprojection error, disp
′

denotes the refined disparity map.
The disparities are the correspondences between the left and right images. By

using the warp method, the reconstructed left image can be calculated using the
right image and the disparity map. Then subtraction is performed to get the error
map which we called explicit error. As we motioned before, a large amount of
high-frequency information is ignored during the former process. To alleviate this
problem, we introduce the left image directly into the module, which composes
of our implicit error. These two different forms of error improve the performance
of our model in different aspects. We analyze them in the subsequent experiment
section. By introducing more high-frequency information from the original left
image, our model is therefore capable of recovering extreme details and sharp
edges. Comparisons with the state-of-the-art methods are shown in Figure 6.

In the Hourglass model, we reduced the number of its same-resolution con-
volution layers to streamline it. We tried deformable convolution [4] and dilation
convolution [45], experimental results show that using deformable convolution
is not as effective as dilation convolution. The reason behind it may be that
deformable convolution is relatively weak for different scenes, while dilation con-
volution has a larger perceptual field and is capable of long-distance modeling.

We have carefully studied the impact of the module’s microstructure on per-
formance. Details are shown in Table 5(a).

Upsample
Mask

Disparity 
Map

I

I

Refined
Disparity 
Map

Fig. 4. Error Aware Refinement. The error map, the left image, and the original dis-
parity map are passed into the hourglass to calculate the refined disparity map.

4 Experiments

EAI-Stereo is implemented in PyTorch and trained with two Tesla A100 GPUs.
All models are trained using AdamW optimizer with a weight decay of 1e−5.
Warm-up takes 1% of the whole training schedule. We used data augmentation
in all experiments. The methods are saturation change, image perturbance, and
random scales. For all the pretraining, we train our model on Scene Flow for
200k iterations with a learning rate of 2e−4.
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We evaluate our EAI-Stereo with different settings using Scene Flow [24],
KITTI-2015 [26], ETH3D [30] and Middlebury [28] datasets.

4.1 Middlebury

EAI-Stereo ranks 1st on the Middlebury test set, with an average error of 1.92%
for all pixels, outperforming the next best method by 8.6%. Our method out-
performs state-of-the-art methods on most of the metrics. See Table 1.

We fine-tune our model on the 23 Middlebury training images with a max-
imum learning rate of 2e-5 for 4000 iterations. Though Middlebury provides
images with different color temperatures, we only use the standard images for
training. Experiments show that EAI-Stereo is robust for various lighting con-
ditions with simple data augmentation methods.

We also evaluate our EAI-Stereo on the Middlebury dataset without any
fine-tuning, results are shown in Table 4, which prove the strong cross-domain
performance of our model.

Table 1. Results on the Middlebury stereo dataset V3 [28] leaderboard.

Method
bad 0.5
nonocc
(%)

bad 1.0
nonocc
(%)

bad 2.0
nonocc
(%)

avgerr
nonocc
(%)

avgerr
all
(%)

LocalExp [34] 38.7 13.9 5.43 2.24 5.13
NOSS-ROB [17] 38.2 13.2 5.01 2.08 4.80
HITNet [35] 34.2 13.3 6.46 1.71 3.29

RAFT-Stereo [23] 27.2 9.37 4.74 1.27 2.71
CREStereo [22] 28.0 8.25 3.71 1.15 2.10

EAI-Stereo (Ours) 25.1 7.81 3.68 1.09 1.92

Fig. 5. Results on Middlebury dataset. Our EAI-Stereo recovers extreme details such
as the spokes of the bicycle, toys on the table, and the subtle structures of plants.
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4.2 ETH3D

For the ETH3D [30] dataset, we did not perform further fine-tune. Since the
images are all in grayscale with many overexposed and underexposed areas.
We use data augmentation to simulate the situation by setting saturation to 0,
adjusting image gamma between 0.5 and 2.0, and adjusting image gain between
0.8 and 1.2.

At the time of writing this paper, EAI-Stereo ranks 1st on the ETH3D Stereo
benchmark for 50% quantile metric and second for 0.5px error rate (see Table 2)
among all published methods.

Table 2. Results on the ETH3D [30] leaderboard.

Method bad 0.5 (%) bad 1.0 (%) 50% quantile

AANet RVC [41] 13.16 5.01 0.16
CFNet [31] 9.87 3.31 0.14
ACVNet [40] 10.36 2.58 0.15
HIT-Net [35] 7.83 2.79 0.10

RAFT-Stereo [23] 7.04 2.44 0.10
EAI-Stereo (Ours) 5.21 2.31 0.09

Fig. 6. Results on ETH3D compared to state-of-the-art methods. Bad 0.5 error is
reported at the corners. EAI-Stereo shows advantages in recovering extreme details
and sharp edges of the scenes such as the detailed structure of the pipes and valves.
Our model is also capable of handling extreme overexposure and underexposure such
as the reflective cardboard and pitch-black pipes on the roof of the top image.
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4.3 KITTI-2015

We trained our model on the Scene Flow dataset and then fine-tuned our model
on the KITTI training set for 6000 iterations with a batch size of 8 and a maxi-
mum learning rate of 2e-5. The images and disparity maps are randomly cropped
with a resolution of 320×1024. We iterate the Multiscale Iterative Module 32
times.

Ground Truth values in the KITTI dataset are sparse and only cover the
lower part of the image. We can observe from Figure 7 that other methods fail
to generalize in the upper part while our method recovers extreme details and
sharp edges which proves the strong generalization performance of our model.

Table 3. Results on the KITTI-2015 [26] leaderboard. Only published results are
included. The best results for each metric are bolded, second best are underlined.

Method D1-all D1-fg D1-bg

AcfNet [49] 1.89 3.80 1.51
AMNet [7] 1.82 3.43 1.53

OptStereo [39] 1.82 3.43 1.50
GANet-deep [47] 1.81 3.46 1.48
RAFT-Stereo [23] 1.96 2.89 1.75

HITNet [35] 1.98 3.20 1.74
CFNet [31] 1.88 3.56 1.54

EAI-Stereo (Ours) 1.81 2.92 1.59

Fig. 7. Results on the KITTI-2015 test set compared to state-of-the-art methods. EAI-
Stereo shows an advantage in recovering extreme details and sharp edges of the scenes.
Zoom in for a better view. RAFT-Stereo[23] is not included in this comparison because
it does not have an official submission to the benchmark.
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4.4 Cross-domain Generalization

Generalization performance is crucial for real-world applications. Towards this
end, we evaluated our model on three public datasets. We train our model on
the Scene Flow dataset using the strategy exactly the same as pretrain and
then use the weight for evaluation directly. In Table 4, we compare our model
with some state-of-the-art methods and some classical methods. The comparison
shows that our method outperforms DSMNet and CFNet, which are specifically
designed for generalization performance, by a notable margin.

4.5 Ablations

We evaluate the performance of EAI-Stereo with different settings, including
different architectures and different numbers of iterations.

Iterative Multiscale Wide-LSTM Network. We observe a significant per-
formance leap (10.14% D1 error decrease on Scene Flow validation set and 4.80%
EPE decrease on KITTI validation set) by using the wide LSTM module. Most
iterative networks use GRUs as their iterative modules. However, we found that
the performance of the network can be increased by refining the iterative mod-
ule. A comparison between the GRU-based network and our iterative multiscale
wide LSTM network is shown in Table 5(c). Using Mutual Conv-LSTM Cell
at the lowest resolution can further improve the performance of the model. As
shown in Table 5(c), this module led to 1.4% D1 error decrease on the Scene
Flow validation set and 2.58% D1 error decrease on the KITTI validation set.

Error Aware Refinement. The Error Aware Refinement module is used to
do the upsampling and refinement work. To verify and analyze the effects of
our Error Aware Refinement module, we evaluate the different structures of the
refinement module, and the results are shown in Table 5(c). Compared with the
Wide LSTM baseline, Dilation Refinement decreases the D1-error by 2.81% on
the Scene Flow validation set and 12.39% EPE (end-point-error) decrease on the
KITTI validation set. Using deformable convolution is not as effective as dilation
convolution, and we think the reason behind it may be that deformable convolu-
tion is relatively weak for different scenes, while dilated convolution has a larger
perceptual field and is capable of long-distance modeling. Detailed comparisons
are shown in Table 5(c).

Number of iterations. Due to the structural improvements of our model,
inference can be accelerated by reducing iterations while maintaining competitive
performance. Since the model requires only a single training, the number of
iterations can be adjusted after training, which increases the flexibility of the
model. In practical applications, the number of iterations can also be inferred in
the running state by giving a minimum frame rate, which is useful for scenarios
with real-time requirements. Details are shown in Table 5(b).
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5 Conclusion

We have proposed a novel error-aware iterative network for stereo matching.
Several experiments were conducted to determine the structure of the module.
Experiment results show that our model performs well on various datasets for
both speed and accuracy while having a strong generalization performance.

Table 4. Cross-domain generalization experiments.

Method
KITTI2015
bad 3.0 (%)

Middlebury
bad 2.0 (%)

ETH3D
bad 1.0 (%)

PSMNet [2] 16.3 39.5 23.8
GANet [47] 11.7 32.2 14.1
DSMNet [48] 6.5 21.8 6.2
CFNet [31] - 28.2 5.8

EAI-Stereo(Ours) 6.1 14.5 3.3

Table 5. Ablations Experiments.

(a) Ablations on refinement microstructures.

Hourglass Error
Left
image

Scene
Flow
D1

KITTI
EPE

KITTI
D1

5.88 0.47 1.11
✓ 5.85 0.47 0.89
✓ ✓ 5.84 0.40 0.85
✓ ✓ 5.76 0.41 0.89
✓ ✓ ✓ 5.74 0.40 0.85

(b) Inference time.

Iters
Scene
Flow
EPE

Scene
Flow
D1

Time
(ms)

5 0.596 7.326 92
7 0.539 6.527 100
10 0.510 6.046 132
16 0.495 5.821 154
32 0.491 5.661 236

(c) Ablations on different structures of the model.

Model
Conv
GRU

Wide
LSTM

Deform
Refine

Dilation
Refine

Mutual
Conv
LSTM

Scene
Flow
D1

KITTI
EPE

KITTI
D1

Baseline ✓ 6.542 0.491 1.290
Wide LSTM ✓ 5.879 0.468 1.108
EAI-Deform ✓ ✓ 5.840 0.410 0.850
EAI-Dilation ✓ ✓ 5.741 0.401 0.854
EAI-Mutual ✓ ✓ ✓ 5.661 0.397 0.832
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