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Abstract. Recent years have witnessed remarkable progress in deep
face recognition due to the advancement of softmax-based methods. In
this work, we first provide the analysis to reveal the working mechanism
of softmax-based methods from the geometry view. Margin-based soft-
max methods enhance the feature discrimination by the extra margin.
Mining-based softmax methods pay more attention to hard samples and
try to enlarge their diversity during training. Both closeness and diver-
sity are essential for discriminative features learning; however, we observe
that most previous works dealing with hard samples fail to balance the re-
lationship between closeness and diversity. Therefore, we propose a novel
approach to tackle the above issue. Specifically, we design a two-branch
cooperative network: the Elementary Representation Branch (ERB) and
the Refined Representation Branch (RRB). ERB employs the margin-
based softmax to guide the network to learn elementary features and
measure the difficulty of training samples. RRB employs the proposed
sampling strategy in conjunction with two loss terms to enhance closeness
and diversity simultaneously. Extensive experimental results on popular
benchmarks demonstrate the superiority of our proposed method over
state-of-the-art methods.

Keywords: Deep face representation · Closeness and diversity · Dif-
ficulty measure · Two-branch cooperative network

1 Introduction

Deep face recognition (FR) has witnessed tremendous progress during recent
years, mainly attributed to the growing scale of publicly available datasets, the
development of convolutional neural network architectures, and the improve-
ment of loss functions. In 2014, DeepFace [30] closely reached the human-level
performance in unconstrained face recognition based on a nine-layer deep neu-
ral network. Subsequently, several successful FR systems such as DeepID2 [26],
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DeepID3 [27], VGGFace [20], and FaceNet [23] demonstrate that well-designed
deep architectures can obtain promising performance.

Besides, the major advance comes from the evolution of loss functions for
training deep convolutional neural networks. Early FR works often adopt meth-
ods based on metric learning, such as Contrastive Loss [3] and Triplet Loss [23].
However, most of them suffer from the combinatorial explosion, especially on
large-scale datasets. Current deep FR approaches are typically based on margin-
based softmax loss functions, such as L-Softmax [16], SphereFace [15], CosFace
[32], AM-Softmax [31], and ArcFace [4]. These methods share a common idea
of introducing a margin penalty between different classes to encourage feature
discrimination. Subsequently, mining-based methods such as MV-Softmax [34]
and CurricularFace [10] demonstrate that margin-based softmax methods fail to
make good use of hard samples. They introduce the hard sample mining strategy
and enlarge the distance between a misclassified sample and its negative class
centers. By contrast, MagFace [18] learns the well-structured within-class feature
distribution by loosening the margin constraint for uncertain samples.

As is well analyzed in several works [8,29], softmax aims to optimize (sn −
sp) to achieve the decision boundary sn − sp = −m(m is the margin), where
sp is the intra-class similarity and sn is the inter-class similarity. Moreover,
the optimization of sp and sn are highly coupled. When mining-based methods
enlarge the optimization strength of sn for hard samples, their sp will also get an
extra tendency to be maximized (see Sec. 3.2). This naturally poses a problem:
mining-based methods can indirectly enhance the within-class closeness while
ignoring that hard samples usually contain much uncertainty and thus should lie
on the edge of the intra-class distribution as is claimed in [18]. Consequently, the
intra-class distribution structure in high dimensional space will be vulnerable,
and the model will tend to overfit on noisy samples.

Based on the observation above, this paper first analyzes the working mech-
anism of softmax-based methods from the view of closeness and diversity in
geometry space. Then we introduce the embedding feature constraint to en-
hance the closeness sp for easy samples to establish robust class centers quickly,
and meanwhile increase the diversity for hard samples to shift the optimization
emphasis from their sp to sn and thus prevent overfitting.

To summarize, our key contributions are as follows:

– We analyze the working mechanism of softmax-based methods from the ge-
ometry view and claim that both closeness and diversity should be simulta-
neously emphasized for discriminative feature learning.

– We propose a two-branch cooperative network to simultaneously learn close-
ness and diversity so that the model can improve both discrimination and
generalization ability.

– We conduct extensive experiments on several publicly available benchmarks.
Experimental results demonstrate the superiority of our proposed method
over state-of-the-art methods.
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2 Related Work

2.1 Margin-based Methods

In deep face recognition, softmax is widely applied to supervise the network
for promoting features’ separability. However, it exceeds softmax’s ability when
facing challenging tasks where intra-class variations get larger. Several margin-
based methods [4,15,16,31,32] are then proposed. L-Softmax [16] first introduces
margin penalty into traditional softmax. SphereFace [15] further normalizes
weight vectors by l2-normalization to learn face representations on a hyper-
sphere. Subsequently, CosFace [32], AM-Softmax [31], and ArcFace [4] introduce
an additive margin penalty on cosine/angle space to further improve the discrim-
inative power of learned face representations. AdaCos [41] employs the adaptive
scale parameter to promote the training supervision in dealing with various fa-
cial samples. MagFace [18] improves the performance of previous margin-based
methods by keeping ambiguous samples away from class centers.

2.2 Mining-based Methods

Hard sample mining strategy is also a critical step to enhance the feature repre-
sentation ability [1,25]. OHEM [25] automatically indicates and emphasizes hard
samples within a mini-batch according to their loss values. Focal Loss [13] re-
duces the weight for easy samples during training by introducing the re-weighting
factor into the standard cross-entropy loss. MV-Softmax [34] emphasizes hard
samples to guide the networks for learning discriminative features by introduc-
ing an extra margin penalty when a sample is misclassified. CurricularFace [10]
employs the Curriculum Learning (CL) strategy to focus on easy samples in the
early training stage and concentrate on hard ones later.

2.3 Contrastive Learning

Traditional contrastive loss functions [6,35] are generally found in early FR
works. However, most of them suffer from the combinatorial explosion when
dealing with large-scale datasets [23,26,28]. Center Loss [36] proposes a joint su-
pervision signal based on softmax to penalize the distances between the samples
and their corresponding class centers. Range Loss [40] is proposed to address
the long-tail problem by reducing within-class variances and enlarging inter-
class differences in each mini-batch. Modern contrastive approaches [2,7,33] show
promising results in the field of unsupervised representation learning. SimCLR
[2] learns deep representations by minimizing the distance between multiple aug-
mented views of the same image in the latent space. MoCo [7] proposes a dynamic
dictionary and a moving-averaged encoder to learn visual representations. Wang
et al. [33] analyze alignment and uniformity on the feature hypersphere to guide
the unsupervised representation learning. Supervised contrastive learning [12]
significantly outperforms the traditional contrastive approaches by incorporat-
ing label information to construct genuine and imposter pairs.
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Fig. 1. The comparison between softmax and its variants from the geometry view(left)
and the distribution view(right). The explanations of the components are listed under
the plot. The distribution view is obtained by training a ResNet18 and evaluated on
IJB-B. Closeness is higher when the boundary value(‘b’ in the figure) is larger. The
boundary value asides the top 80% of positive scores on its right to indicate closeness.
The diversity is higher when the mean of the red distribution is closer to zero and the
variance is smaller.

3 Preliminary

3.1 Understanding Softmax-based Methods

The softmax cross-entropy loss function(denoted as ‘softmax’ for short) can be
formulated as follows:

LCE = − log
efy

efy +
∑C

k=1,k ̸=y e
fk

(1)

The development of softmax variants in FR is mainly attributed to the advance-
ment of the positive logit fy and the negative logit fk.

Let x, wi, and bi denote the feature vector of the input sample, the i-th class
center, and the bias term, respectively. Then the traditional logit is calculated
as fi = wT

i x + bi. It is a common practice to ignore the bias term bi in deep
FR works [4,15,22,32]. The logit can be transformed as wT

i x = ∥wi∥ ∥x∥ cos θi,
where θi is the angle distance between the feature x and the class center wi.
Several works [4,32] further fix ∥wi∥ = ∥x∥ = 1 and scale ∥x∥ to s. Then the
logit can be reformulated as fi = s cos θi.

As well-discussed in several works [8,29,38], the softmax’s constraint can be
decoupled into the pulling force from the same class center and the pushing forces
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Emphasizing Closeness and Diversity 5

from the negative ones. Softmax can thus increase intra-class similarity sp with
the pulling force while reducing the inter-class similarity sn with the pushing
forces. In addition, if the pulling force is enlarged, then the pushing forces will
be amplified as well, and vice versa. To clarify this phenomenon, we provide a
toy example in Sec. 3.2.

Original softmax simply optimizes (sn−sp) to the decision boundary sn−sp =
0. However, the discriminative ability of facial features learned by the original
softmax is limited. Therefore, several works introduce various margin penalties
into softmax to improve feature discrimination. Generally speaking, they employ
the decision boundary sn − sp = −m, and m is called margin.

Compared with original softmax, the positive logit is reformulated as fy =
s cos(θy + m) in ArcFace [4]. As shown on the left side in Fig. 1(b), ArcFace
shrinks the decision boundary towards the positive direction with a constant m.
In this way, it can learn more discriminative face representations, as shown on
the right side in Fig. 1(b). In MV-Softmax, the misclassified sample’s negative
logit is further reformulated as fk = s(t cos θk + t − 1), where t > 1. Based on
ArcFace, MV-Softmax makes the decision boundary more rigorous by introduc-
ing an extra margin penalty on the negative logit for handling hard samples,
as shown on the left side in Fig. 1(c). The right of Fig. 1(c) shows that (1)
the negative distribution of MV-Softmax is more compact than ArcFace, which
illustrates that MV-Softmax improves the diversity with the extra margin; (2)
MV-Softmax has an inferior boundary value, indicating its insufficient closeness.
A possible explanation is that MV-Softmax intends to improve the diversity
for misclassified samples by the extra margin, however, it will indirectly enforce
hard samples containing large uncertainty and noise to get closer to their pos-
itive class centers(see analysis in Sec. 3.2), leading to the overfitting and the
inferior generalization ability.

Besides, another line of works exists, e.g., AdaCos [41], AdaptiveFace [14], and
MagFace [18]. They substitute the constant margin penalty with the adaptive
one to generate more effective supervision during training. MagFace learns well-
structured intra-class features by dynamically adjusting the decision boundaries
based on the feature magnitude. As shown on the left side in Fig. 1(d), Mag-
Face relaxes the decision boundary for hard samples with large uncertainty and
tightens the decision boundary for easy ones with high quality. The right side of
Fig. 1(d) shows that the negative distribution in MagFace is not so compact as
that in ArcFace. A probable reason is that MagFace prevents hard samples from
obtaining excessive sp during training by reducing the margin. Considering that
the optimization of sn and sp are highly coupled in softmax, a suitable sn is not
well-learned.

In summary, MV-Softmax and MagFace adopt different strategies to deal
with hard samples. MV-Softmax enhances the constraint strength for hard sam-
ples. Because MV-Softmax indirectly emphasizes sp for uncertain samples, it
fails to generalize well on challenging tasks during testing. By contrast, Mag-
Face relaxes the constraint for hard samples. Although MagFace can prevent
uncertain samples from obtaining excessive sp, it can not ensure a desirable sn
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for discriminative features learning. Therefore, both of the above methods fail
to emphasize closeness and diversity simultaneously.

3.2 Derivative Analysis

In this subsection, we investigate how the margin penalty affects the pulling
force and the pushing forces of softmax. Specifically, we demonstrate that if the
pulling force is enlarged, the pushing forces will also get increased, and vice
versa. A toy example is additionally provided to explain this phenomenon.

Let us start with the gradient of softmax with respect to the logit fi, which
is calculated as:

∂LCE

∂fi
= 1(i = y) · (pi − 1)︸ ︷︷ ︸

pull

+1(i ̸= y)·pi︸ ︷︷ ︸
push

(2)

where pi = efi∑C
k=1 efk

is the predicted probability of the i-th class, and satisfies∑C
i=1 pi = 1. Eq. 2 contains two parts: (1) the first part aims to pull a sample

towards its positive class center; (2) the second part aims to push a sample away
from its negative class centers. The differences between the two parts lie in that
the pulling force can quickly establish the class center; however, it can hurt the
generalization ability by pulling a noise sample near its class center. The pushing
forces can help to enhance the discrimination ability via encouraging diversity,
but they can not be directly employed to establish the class centers.

Additionally, the pulling and pushing forces are equipped with the oppo-
site signs due to the different relative directions. The gradient summation with
respect to each class always equals to the constant zero:

C∑
i=1

∂LCE

∂fi
= py − 1︸ ︷︷ ︸

pull

+
∑C

i=1,i ̸=y
pi︸ ︷︷ ︸

push

=
∑C

i=1
pi − 1 = 0 (3)

Therefore, if we enlarge either of the two forces by a margin, the other one will
inevitably get increased at the same time.

Fig. 2 exhibits a simplified example to depict the above issue. We assume the
feature vector x and the classifier W are identical among all four cases. Therefore,
we only need to care about the relative changes of the logits and the gradients.
In Fig. 2(a), we assume the positive logit fy takes two units and the negative
logits fk1

and fk2
take one unit. The classifier W makes the right classification

during training with softmax and thus generates limited gradients. Fig. 2(b)
shows that the positive logit fy gets smaller in ArcFace with the margin penalty.
The pulling force is directly enhanced, and the pushing forces are indirectly
enlarged according to Eq. 3.

Based on ArcFace, MV-Softmax introduces a margin penalty on the negative
logits fk1

and fk2
for misclassified samples. The margin penalty directly enlarges

fk1
and fk2

, leading to the enhanced pushing forces. Although MV-Softmax
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(a) Softmax (b) ArcFace

(c) MV-Softmax (d) MagFace

feature vector classifier

positive logit negative logits

ground-truth class negative classes

positive probability negative probabilities

Fig. 2. The comparison between softmax and its variants on a toy example. The blue
bars denote the magnitude of gradients generated by predictions.

intrinsically enhance the diversity for hard samples, it also indirectly magnifies
the pulling force, as shown in Fig. 2(c). By contrast, MagFace adopts a smaller
penalty on fy than ArcFace, leading to both kinds of forces getting smaller, as
shown in Fig. 2(d).

Therefore, the pulling and pushing forces are highly coupled in softmax-
based loss functions. Due to this phenomenon, softmax-based methods dealing
with hard samples tend to get overfitting or underdiscriminative as discussed in
Sec. 3.1.

4 Proposed Method

Based on the analysis in Sec. 3, we propose a two-branch cooperative frame-
work to enhance closeness and diversity simultaneously. The proposed framework
contains three parts: (1) the Hard Sample Mining Scheme for dynamically com-
puting difficulty scores of training samples; (2) the Elementary Representation
Branch (ERB) for learning initial face representations; (3) the Refined Repre-
sentation Branch (RRB) for simultaneous closeness and diversity learning.1

4.1 Hard Sample Mining

Hard samples play an important role in guiding DCNNs to learn discriminative
features. The previous works [10,34] indicate the misclassified samples as hard
ones, but they can not measure the hardness quantitatively. MagFace [18] em-
ploys feature magnitude to determine the difficulty degree, but it lacks intuitive
interpretability. Different from the above works, we employ cosine similarity to
characterize the difficulty degree for its simplicity and effectiveness.
1 Code is available at: https://github.com/Zacharynjust/FR-closeness-and-diversity.
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Fig. 3. The overview of the proposed framework. Overall, it contains three parts: (1)
the Hard Sample Mining Scheme to maintain difficulty scores; (2) the Elementary
Representation Branch(ERB) to learn basic face representations; (3) the Refined Rep-
resentation Branch(RRB) to learn closeness and diversity.

To smooth out short-term fluctuations caused by the sampling sequence, we
calculate the moving average of cosine similarity to characterize the difficulty
degree for each sample:

d(t) = αd(t−1) + (1− α) cos θ(t) (4)

where d represents the moving averaged similarity, when d is smaller the difficulty
degree is higher. t stands for the t-th iteration. θ is the angle between a feature
vector and its positive class center. α is the weight factor.

Based on Eq. 4, we propose two schemes to indicate hard samples: the Hard
Mining Scheme(HMS) and the Soft Mining Scheme(SMS). HMS explicitly di-
vides all training samples into easy/hard groups. SMS does not need the explicit
division; by contrast, it adopts the difficulty degree to balance the weights of
closeness and diversity for each sample in the training stage. In this way, easy
samples can help the network establish robust class centers quickly. By contrast,
hard samples are beneficial for the network to further improve feature discrimi-
nations.

4.2 Loss Design

Both closeness and diversity are indispensable for achieving better results; there-
fore, they should be simultaneously and properly emphasized for specific samples.
Overall, we need to ensure the following conditions: (1) Easy samples should get
enough closeness to ensure robust class centers [18]; (2) Hard samples should
keep a suitable distance from their positive class centers to ensure generalization
ability [18]; (3) Hard samples should also gain enough distance away from their
negative class centers to ensure discrimination ability [34].

Equipped with the above three conditions, we design the following two loss
functions in RRB to emphasize closeness and diversity simultaneously during
training.
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Loss for Closeness. To enhance the closeness, we directly minimize the feature
differences of within-class samples. The loss term with HMS can be formulated
as follows:

LH
closeness = E

(x,y)∼Ppos

∥g(x)− g(y)∥2 (5)

where Ppos stands for the distribution of positive pairs constructed from the
mini-batch. g(·) is the feature encoder with l2-normalization in its output layer.
The loss term with SMS is actually the re-weighted version of Eq. 5:

LS
closeness = E

(x,y)∼Ppos

ϕ (dx, dy) ∥g(x)− g(y)∥2 (6)

where dx and dy are the difficulty degrees of x and y. ϕ(·) is a monotonically
non-decreasing function of dx and dy.

Loss for Diversity. In this part, we design diversity loss to enhance the dis-
crimination and generalization ability. Inspired by the uniform loss format used
in [33], we design loss for enhancing diversity which enlarges the distance be-
tween a sample and its negative class centers. The proposed diversity loss for a
single sample can be formulated as follows:

Li
diversity = log E

wj∼W
(i)
sub

[
emax(0,sgn(cos θj))·s(cos θj)2

]
(7)

where W
(i)
sub stands for the subset of the negative class centers for i-th sample.

s is the scale parameter. sgn(·) is the sign function and max(0, sgn(cos θj)) is
used to truncate the gradient when cos θj is smaller than 0. cos θj = wT

j xi is
the similarity between a sample and its negative class j. For a mini-batch hard
samples, we unite all their subsets of negative class centers and then exclude
their positive labels to construct the final negative class centers for a mini-batch
W, which can be formulated as follows:

W =

N⋃
i=1

W
(i)
sub −W (8)

where N stands for the total number of hard samples within a mini-batch. W
represents the positive class centers of hard samples in a mini-batch. Then the
diversity loss function within a mini-batch using HMS can be further calculated
as follows:

LH
diversity = E

x∼X

[
log E

wj∼W

[
emax(0,sgn(cos θj))·s(cos θj)2

]]
(9)

where X stands for the sample set in a mini-batch. W represents the final negative
class centers for a mini-batch. The proposed diversity loss in conjunction with
SMS is formulated as follows:

LS
diversity = E

x∼X

[
ψ(dx) log E

wj∼W

[
emax(0,sgn(cos θj))·s(cos θj)2

]]
(10)
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where dx is the difficulty degree of x. ψ(·) is a monotonically non-increasing
function of dx.

Because the proposed diversity loss minimizes the cosine similarity between
a sample feature and its negative class centers, it can directly push hard samples
away from their negative class centers. Margin-based softmax actually seeks to
minimize (sn − sp) to achieve the decision boundary sn − sp = −m, when we
reduce sn via diversity loss, we actually shift the optimization emphasis of hard
samples on reducing sn. Therefore, diversity loss can somewhat prevent hard
samples from achieving excessive sp.

4.3 Sampling Strategy

In this subsection, we introduce the proposed sampling strategy for RRB in de-
tail. We construct a mini-batch depending on class labels and difficulty degrees.
The sampling strategy can be formulated as follows:

X = S(y,d) (11)

where y denotes the ground truth labels. d stands for the difficulty degrees of
the whole dataset as introduced in Sec. 4.1.

For HMS, we further select a specific number of easy samples Xe and hard
samples Xh according to the divided easy/hard groups within each class. Then,
the total loss can be formulated as follows:

LH
total(X) = LCE(X) + λ1LH

closeness(Xe) + λ2LH
diversity(Xh) (12)

where LCE is ArcFace in our model. We can also choose other margin-based
softmax loss functions. λ1 and λ2 are weight parameters for closeness and diver-
sity respectively. For SMS, we randomly select N samples within each class and
use their difficulty degrees to calculate the weight functions. Then, the total loss
can be formulated as follows:

LS
total(X,d) = LCE(X) + λ1LS

closeness(X,d) + λ2LS
diversity(X,d) (13)

where d is the difficulty degrees of samples in a mini-batch.

5 Experiment

5.1 Implementation Details

Datasets. We employ MS1MV2 [4] as our training data for a fair comparison
with other methods. MS1MV2 is a semi-automatic refined version of the MS1M
[5], containing about 5.8M images of 85K different identities. For testing, we
extensively evaluate our proposed method and the competed methods on several
popular benchmarks, including LFW [9], CFP-FP [24], CPLFW [42], AgeDB
[19], CALFW [43], IJB-B [37], IJB-C [17], and MegaFace [11].

3439



Emphasizing Closeness and Diversity 11

Table 1. Performance comparisons between the proposed method and state-of-the-art
methods on various benchmarks. * denotes our re-implement results on ResNet100.
[Best, Second Best]

Methods Verification Accuracy IJB MegaFace
LFW CFP-FP CPLFW AgeDB CALFW IJB-B IJB-C Id Ver

Focal Loss* (CVPR16) 99.73 98.19 92.80 98.13 96.01 93.60 95.19 98.09 98.60
SphereFace (CVPR17) 99.42 - - 97.16 94.55 - - - -
CosFace* (CVPR18) 99.78 98.12 92.28 98.11 95.76 94.10 95.51 98.20 98.32
ArcFace* (CVPR19) 99.80 98.27 92.75 98.00 95.96 94.26 95.73 98.34 98.55
MV-Softmax* (AAAI20) 99.80 98.30 92.93 97.98 96.10 94.01 95.59 98.22 98.28
Circle Loss (CVPR20) 99.73 96.02 - - - - 93.95 98.50 98.73
CurricularFace* (CVPR20) 99.82 98.30 93.05 98.32 96.05 94.75 96.04 98.65 98.70
MagFace* (CVPR21) 99.83 98.23 92.93 98.27 96.12 94.42 95.81 98.51 98.64
Ours, HMS 99.83 98.44 93.05 98.20 96.05 94.86 96.25 98.60 98.75
Ours, SMS, Linear 99.82 98.27 93.03 98.18 96.12 94.72 96.03 98.58 98.73
Ours, SMS, Non-Linear 99.82 98.40 93.12 98.37 96.15 95.02 96.35 98.72 98.84

Experimental Setting. We follow the setting in ArcFace [4] to align the images
with five facial key points [39] and normalize the face images to 112 × 112.
ResNet100 is used as the backbone network in our model. We implement our
framework with PyTorch [21]. The models are trained by stochastic gradient
descent. The batchsize is set to 512. The weight decay is set to 5e− 4, and the
momentum is 0.9.

To obtain the difficulty degree of samples, the backbone is firstly trained
with ERB for 4 epochs with the learning rate 0.1. The backbone is then trained
with the joint supervisions of ERB and RRB for extra 21 epochs. The learning
rate is set to 0.1 initially and divided by 10 when the extra epoch is 6, 12 and
18. For the sampling strategy, we choose 64 unique classes for a mini-batch. In
addition, 500 negative class centers of each hard sample are selected to construct
the imposter pairs.

For HMS, λ1 and λ2 are set to 0.5 and 1.0. We divide the top 20% of training
samples into hard groups and collect seven easy samples and one hard sample
within each class. For SMS, λ1 and λ2 are set to 0.5 and 2.0. In addition, we
conduct experiments on both linear and non-linear weight functions. For the
linear functions, we set ϕ(dx, dy) =

dx+dy

2 and ψ(dx) = 1 − dx. For the non-
linear functions, we employ the sigmoid-like function σ(x;µ, γ) = 1

1+e−γ(x−µ) to
conduct non-linear transformation, where we fix µ = 0.5 and γ = 10. We set
ϕ(dx, dy) = σ(

dx+dy

2 ), and ψ(dx) = 1 − σ(dx). We set α to 0.9 to calculate the
difficulty degree.

5.2 Comparisons with SOTA Methods

Results on Small Benchmarks. In this subsection, we conducted experi-
ments on various benchmarks, including LFW [9] for unconstrained face verifi-
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Fig. 4. ROC of 1:1 verification protocol on IJB-B/C.

cation, CFP-FP [24] and CPLFW [42] for cross-pose variations, AgeDB [19] and
CALFW [43] for cross-age variations.

The 1:1 verification accuracy among different methods on the above five
benchmarks is listed in Table 1. According to Table 1, the proposed models
achieve promising results, especially when they are integrated with HMS or SMS
(non-linear). Note that our models give slight improvements on LFW since the
performance of LFW is nearly saturated. Besides, for age/pose invariant face
verification, our proposed method can achieve better results than our competi-
tors.

Results on IJB-B and IJB-C. In this part, we compare our method with the
state-of-the-art methods on IJB. Both IJB-B/C datasets are challenging tasks
containing a considerable number of face images clipped from videos.

Table 1 lists the comparisons on TAR@FAR=1e − 4 between our models
and the competed methods. Without bells and whistles, our models achieve
the leading results among all methods and improve the performance of IJB-B/C
clearly. Among our three models, SMS with non-linearity achieves the top results
on both IJB-B/C. The reason for the improvements is that both closeness and
diversity should be simultaneously emphasized. As well analyzed in Sec 3, both
MV-Softmax and MagFace fail to emphasize closeness and diversity in a proper
way. In addition, our models outperform the other competitors under most FPR
variations, as shown in Fig. 4.

Results on MegaFace. In this subsection, we evaluate the proposed method
and the competed methods in terms of the identification and verification on
MegaFace [11]. In our experiment, MegaFace is used as the gallery set, and
FaceScrub is employed as the probe set.

The results of compared methods are listed in Table 1. “Id” refers to the
rank-1 face identification accuracy with 1M distractors, and “Ver” refers to the
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Fig. 5. The rank-1 face identification accuracy with different distractors on MegaFace.

Table 2. Verification comparisons on several benchmarks under different loss terms and
mining schemes. We conduct ablation experiments on the MS1MV2’s subset containing
10K unique identites with ResNet34.[Best, Second Best]

Model Closeness Diversity Mining Scheme LFW CFP-FP AgeDB IJB-B IJB-C
1 - 99.20 90.94 94.08 82.61 86.32
2 ✓ HMS, T = 20% 99.30 90.79 93.96 82.14 85.91
3 ✓ HMS, T = 20% 99.20 91.68 94.46 83.64 86.82
4 ✓ ✓ HMS, T = 10% 99.25 91.55 94.38 83.50 86.71
5 ✓ ✓ HMS, T = 20% 99.32 91.62 94.63 83.62 86.78
6 ✓ ✓ HMS, T = 30% 99.26 91.65 94.60 83.53 86.87
7 ✓ SMS, γ = 10 99.28 90.92 94.01 82.33 86.10
8 ✓ SMS, γ = 10 99.13 91.46 94.25 83.98 87.20
9 ✓ ✓ SMS, Linear 99.25 91.01 94.10 82.88 86.53
10 ✓ ✓ SMS, γ = 5 99.27 91.55 94.23 83.80 86.95
11 ✓ ✓ SMS, γ = 10 99.30 91.80 94.55 83.92 87.04
12 ✓ ✓ SMS, γ = 15 99.25 91.37 94.61 83.85 87.10

face verification on TAR@FPR=1e − 6. Table 1 shows that our models obtain
the overall best results on both identification and verification tasks. Specifically,
our model with SMS (non-linear) obtains the highest identification/verification
results among all methods. In addition, although the performance will degrade
with the increasing number of distractors, our model can achieve overall superi-
ority over other methods, as shown in Fig. 5.

5.3 Ablation Study

In this part, we conduct experiments under different settings to investigate the
effectiveness of the proposed components.
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Loss Terms. In Table 2, Model 2, 3, 7, and 8 illustrate that it is difficult to
obtain promising results if either closeness or diversity is absent. Model 2 and
7 pay more attention to closeness and achieve desirable results on the simple
benchmark(e.g., LFW). However, their performances are degraded when dealing
with the challenging datasets(e.g., IJB-B/C). Model 3 and 8 enforce diversity
and perform better results on IJB-B/C. However, they have no improvements
compared with Model 1 on LFW.

Division Thresholds for HMS. Here, we evaluate the proposed hard sample
division scheme on several benchmarks. The experimental results of different
division percentages for hard samples are listed in Table 2 (Model 4-6). Table 2
shows that our model achieves the best overall performance by taking 20% of
the training data as hard samples. Besides, our model can also give competitive
results when the hard samples occupy 10% and 30% in training samples.

Non-Linearity Magnitudes γ for SMS. Model 9-12 in Table 2 provide the
experimental results with different magnitudes of non-linearity. Model 9 achieves
limited improvements compared with Model 1, indicating that it is difficult to
achieve closeness and diversity by using the proposed SMS with linear function.
Model 10-12 demonstrate that a suitable non-linearity by adjusting γ(i.e., 10)
is helpful to achieve closeness and diversity. In addition, SMS with a properly
γ can achieve better results on IJB datasets than HMS. The possible reason is
that non-linear function can adjust the weight of samples adaptively based on
different difficulty degrees.

6 Conclusion

This paper has proposed a two-branch cooperative network to learn discrimina-
tive features according to the understanding of margin-based softmax methods
from the geometry view. Softmax-based methods can be considered as the pulling
force from the corresponding class center and the pushing force from the nega-
tive class centers. Based on this, our model further enlarges the pulling force to
enhance closeness and employ pushing force to enforce diversity. Several exper-
imental results demonstrate the superiority of our proposed method over other
competitors.
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