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Abstract. In recent years, cross-modal hashing has attracted an in-
creasing attention due to its fast retrieval speed and low storage require-
ments. However, labeled datasets are limited in real application, and
existing unsupervised cross-modal hashing algorithms usually employ
heuristic geometric prior as semantics, which introduces serious devi-
ations as the similarity score from original features cannot reasonably
represent the relationships among instances. In this paper, we study the
unsupervised deep cross-modal hash retrieval method and propose a nov-
el Semantic Graph Evolutionary Hashing (SGEH) to solve the above
problem. The key novelty of SGEH is its evolutionary affinity graph con-
struction method. To be concrete, we explore the sparse similarity graph
with clustering results, which evolve from fusing the affinity informa-
tion from code-driven graph on intrinsic data and subsequently extends
to dense hybrid semantic graph which restricts the process of hash code
learning to learn more discriminative results. Moreover, the batch-inputs
are chosen from edge set rather than vertexes for better exploring the
original spatial information in the sparse graph. Experiments on four
benchmark datasets demonstrate the superiority of our framework over
the state-of-the-art unsupervised cross-modal retrieval methods. Code is
available at: https://github.com/theusernamealreadyexists/SGEH.

Keywords: Cross-modal Hashing · Visual-text Retrieval · Sparse Affin-
ity Graph · Semantic Graph Evolution.

1 Introduction

Cross-modal retrieval aims to search the related results of other different modal-
ities from a query term of one modal, e.g., using a caption to retrieve the related
pictures in database. With the explosive growth of multimedia data, hashing
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technology, which encodes continuous features into common hash space where
relative samples have similar binary codes, is widely used in cross-modal re-
trieval technology due to its few storage, low Hamming distance computational
complexity and fast retrieval speed [8,6,30,7,10,27,31,18,15].

Recently, [25] proposes an unsupervised deep cross-modal hashing method
that learns hash codes via Laplacian constraint in objective function to preserve
the neighborhood information from code-driven dense semantic graph. However,
a significant shortcoming is that it only preserves the original relationship from
different modalities, while integrating the affinity information from instances into
a unified structure in advance can improve affinity relation construction, which
brings a better performance. Then [32] adopts Generative Adversarial Network
(GAN) to train cross-modal hash training. With the intention to preserve the cor-
relation from inter-modal and intra-modal in the latent hash space, this method
maintains a manifold structure across the attributes of different modalities. In
their algorithm, hash code plays a significant role for both the generator and the
discriminator. Based on CycleGAN, [34,26] proposed a new method to learn hash
codes via unpaired instances. [21] proposes Deep Joint-Semantics Reconstruct-
ing Hashing (DJSRH) which fuses the semantic similarities into a unified matrix
to explore the latent relevance for the input multi-modal instances. Though im-
pressive progress the above methods have made, several challenges still exist in
this task. Therefore, our study is motivated according to the following issues.

(1) The difficulty of excavating non-label relationships from intra-
modal and inter-modal. Unsupervised hashing cross-modal methods usually
have no access to accurate relationship among instances. Based on co-occurrence
information, recent unsupervised techniques [33,21,12,32,11,28,23] usually adopt
Attention Mechanism or GAN to generate affinity graph structure which aims
to aggregate neighborhood information.

(2) The semantic gap of different modality. Given that each modality
has its own geometric prior, each modal have its own affinity code-driven graph.
the different between multi-graph may confuse the training process. Thus, com-
ing up with a semantic-unified graph is necessary for conducting the task.

(3) The impossibility to utilize the adjacency matrix as the feature
space of large graph. Graph embedding methods can be utilized to fix out the
huge storage consumption of large adjacency matrix. However, graph embedding
loses a lot of original information during dimension reduction process, which may
lead to a sub-optimal performance and fail to preserve the similarity information.

In this paper, to tackle the aforementioned issues, we propose a novel un-
supervised method called Semantic Graph Evolutionary Hashing (SGEH). We
define a graph evolutionary module which extends the sparse affinity graph to
a dense semantic graph, the core idea of which is illustrated in Fig. 1. Specifi-
cally, we first take the code-driven similarity graph of both visual modality and
textual modality built upon geometric prior and fuse them in a automatically
updated weight. Then, after keeping updating the fused graph, we generate a
sparse semantic graph which can be shared by both image modal and text modal
and relief the problem of lacking label. Our fuse method is inspired by [22] and
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Fig. 1. The process of semantic graph evolution. Sparse graph evolves with the sim-
ilarity information on geometrical priority. O means object which composes of visual
information and caption, and Oi means i-th object in train set.

preserves similarity information hidden in original data from both two modali-
ties. Subsequently, to maximize the use of the spatial information in the sparse
graph, we randomly select samples from the connected node pairs in the sparse
graph to construct the input of the convolutional neural network. In addition,
on one hand, it is impossible to employ the huge adjacency matrix as the feature
space for the input of deep network; on the other hand, focusing on neighboring
sample pairs can avoid the interference of non-neighboring sample pairs. Hence,
we evolve the spares affinity graph to a dense manner by taking the local geo-
metric characters. To map data from different modalties into one common latent
hash space, we try to reduce the distance between binary hash codes of the same
instance from two modalities, which is reflected in our objective function. In
summary, this method has the following main contributions:

– We propose a novel SGEH method by evolving the joint sparse graph ob-
tained by cross-modal clustering into a dense semantic graph that can be
used for mini-batch deep learning, which enables hash learning to obtain
rich semantic associations among examples.

– We propose a graph evolutionary mechanism to learn a hybrid semantic
graph structure from sparse to dense. Instead of directly using dense graphs
constructed according to the geometric characteristics of the samples, the
graph evolutionary mechanism first learn a sparse affinity graph, and sub-
sequently extend it to a dense form by fusing the dense relation built upon
the geometric graph.

– Comprehensive experiments are conducted on four popular datasets, and the
results show the priority of the proposed model.

2 Methodology

2.1 Preliminaries

The overall pipeline of SGEH is shown in Fig. 2. We first introduce several
definitions in our methods. Let F I ∈ Rm×dI and F T ∈ Rm×dV denotem training
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Fig. 2. The framework of our proposed Semantic Graph Evolutionary Hashing (SGEH).

visual and textual instance features respectively.mmeans the amount of instance
in the whole training set. With n equals to the amount of instances in each batch,
the visual and textual features in each batch are denoted as XI ∈ Rn×dI and
XT ∈ Rn×dV respectively. Here dI and dT represent the dimensions of image
and caption features respectively. Furthermore, we aim to generate binary hash
codes BI and BT by embedding continuous features into common latent hash
space, where BH ∈ Rn×b, (H ∈ {I, T}) and b is hash code length.

Utilizing hash code that preserve the neighborhood information can greatly
improve the performance of retrieval task. specifically, previous methods can be
grouped into two categories in terms of how to guide hashing learning based on
original features. The first category methods preserve the information of original
features and use them to learning hash codes directly, they share the following
common loss function:

LH =
∥∥XIW I −BI

∥∥2
F
+
∥∥XTW T −BT

∥∥2
F
,

s.t.Bg ∈ {+1,−1}n×l, (Bg)TBg = nI,
(1)

where W g is learning parameter matrix and g ∈ {I, T}. Eq. 1 aims to reduce
the gap between features and hash codes. The second constraint (Bg)TBg = nI
aims to generate mutually independent hash codes.

Evolved from the first category, the second category typically generates sim-
ilarity structure from the features in two modalities, and further combines with
the method of graph optimization or graph fusion methods to obtain joint-
semantic affinity matrices. Both the design of construing matrices and the s-
trategy of employing the matrices in training stage have an impact on the final
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performance. To be specific, the common formulation is as following:

LG = ‖S −Q‖2F ,
s.t.S = g1(X

I ,XT ) ∈ {+1,−1}n×n,Q = g2(B
I ,BT ) ∈ {+1,−1}n×n,

(2)

where m is the batch size, S preserves the affinity information of samples in each
batch and is used for hash learning. Q represent the affinity matrix generated
by hash codes. g1 and g2 means two similarity calculating functions. However,
Graph structure is a typical non-euclidean structure data. Generally, building
adjacency matrix based on euclidean distance not only causes similarity infor-
mation loss but also calculates unrealistic similarity which confuses the training
process. For instance, image feature XI

i and XI
j are unrelated but may got a

few similarity score in a mini-batch, which misleads the process of hash code
training. As demonstrated in [23], the sparse graph distilling knowledge from
geometric and semantic information of the whole training set can save the most
useful similarity information hidden in the data samples to avoid useless or in-
terfering information. Then the unified semantic graph is kept updated based on
these features from two modalities, which is defined as Z = f(F I ,F T ), where
f(·) is neighborhood information fusion function, the solution of which will be
demonstrated in Subsection 2.2, from Eq. 18 to Eq. 23.

2.2 Unified Sparse Affinity Graph

Clustering results provided by pre-computed global graph can solve the prob-
lem of lacking label information to a certain degree. Therefore, in this stage,
we need to generate two similarity-induced graphs from both visual and textual
modalities which are used to learn a fusion semantic graph Z ∈ [0, 1]m×m. And
Z should keep samples with smaller distance responding to a larger similarity
score, and ones with larger distance responding to a smaller similarity score. Fi-
nally, Z need to produce clustering results for better hash learning. What‘s more,
it is desirable to update the similarity-induced graphs and fusion semantic graph
at the same time for strengthening the accuracy of clustering result. As demon-
strated in [22,23], sparse structure has strong anti-noise ability and friendly to

storage. Thus, we first use Gaussian Kernel S(FH
i ,F

H
j ) = exp(

−
∥∥FHi − FHj ∥∥22

2σ2
)

to define the weight of two instances from same modal, where σ is the width pa-
rameter of the function and controls the radial range of the function, and lately
keep k nearest neighborhoods of each vertex to keep graph sparse. Thus, we get
SI ∈ [0, 1]m×m and ST ∈ [0, 1]m×m, where SH is the similarity-induced graph
and H ∈ {I, T}. SGEH mimics GMC [22] loss function and translated it into
double-modal expression.

min
{SI ,ST }

∑
H∈{I,T}

m∑
i,j=1

∥∥FH
i − FH

j

∥∥2
2
SHij + λ1

∑
H∈{I,T}

m∑
i

∥∥SHi ∥∥22 ,
s.t.SHii = 0,SHij ≥ 0,1TSHi = 1,

(3)
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and the optimal solution of SI and ST can be written in closed-form as Eq. (4)
with Lagrange Multiplier Method, which is proved in [22].

SHij =


bi,p+1 − bij

pbi,p+1,−
∑p
h=1 bih

j ≤ p,

0 j > p,
(4)

where p is a hyper parameter which adjusts the number of neighbors kept in
graph and

∥∥FH
i − FH

j

∥∥2
2
is simplified as bij .

Then we need to learn a sparse fusion semantic graph Z to represent the
similarity connection in both visual and textual modalities. We design the loss
function describing the distance between Z and SH as:

min
Z

∑
H∈{I,T}

wH
∥∥Z − SH

∥∥2
F
, s.t.Zij ≥ 0,1TZi = 1, (5)

where wH is the weight of similarity-induced graph. As deliberated in Section 1,
it is desirable to weight both visual modal and textual modal automatically.

The last problem we need to figure out is how to produce clustering result
directly on Z. This can be tackled be adding an rank constraint on the graph
Laplacian matrix of Z as

min
D

Tr
(
DTLD

)
, s.t.DTD = I, (6)

where L is the Laplacian matrix of Z and D ∈ Rm×c is the embedding matrix
composed by cluster center vectors. It comes from a theorem that if a matrix
is non-negative, then the dimension of the nullspace of Laplacian matrix of the
graph of this matrix is the number of connected components of the graph. Thus,
let c denotes the number of connected components of Z, if rank(L)=m− c, the
vertexes in Z can be divided into C clusters. However, rank(L)=m−c is difficult
to achieve. Given that L is positive semi-definite, the constraint rank(L)=m− c
can be achieved if the summation of top-c eigenvalue of L equals to zero. Ky
Fan’s Theorem [4] told us

∑c
i=1 vi = minTr

(
DTLD

)
, s.t.DTD = I, where vi

is the ith smallest eigenvalue of L. Then based on the above fact, this problem
can be further tackled by restricting Tr

(
DTLD

)
= 0 . Mathematically, we got

the loss function of producing sparse fusion semantic graph U as:

LA =
∑

H∈{I,T}

m∑
i,j=1

∥∥FH
i − FH

j

∥∥2
2
SHij + λ1

∑
H∈{I,T}

m∑
i

∥∥SHi ∥∥22
+

∑
H∈{I,T}

wH
∥∥Z − SH

∥∥2
F
+ 2λ2Tr

(
DTLD

)
,

s.t.SHii = 1,SHij ≥ 0,1TSHi = 1,Zij ≥ 0,1TZi = 1,DTD = I,

(7)

where H ∈ {I, T}, Si ∈ Rn×1, Ui ∈ Rn×1, wH is the weight of similarity-induced
graph, L is the Laplacian matrix of Z and D ∈ Rm×c is the clustering center
matrix. The optimization of above problem will be solved in section 2.5.
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2.3 Semantic Graph Evolution

Although the matrix we obtained at this time can more accurately reflect the
relationship between instances, we need to use mini-batch method in the neural
network model, which means that in each batch, similarity matrix composed
of randomly selected samples tends to be sparse for each instance only have p
neighbors. In the hash learning stage, the semantic similarity matrix is utilized
to constrain the hash similarity matrix generated by the hash code. However,
sparse matrices are incompetent to guide the hash learning process. For example,
two pairs of data whose similarity is 0 in the sparse semantic matrix are not also
0 in the hash similarity matrix. At the same time, the sparse matrix has the
problem of information loss. Thus, in order to solve the problem of sparse, we
need to evolve the similarity matrix into a denser form.

To be specific, suppose there are t edges in εZ , which is the edge set of Z,
and n (t+1 < n ≤ 2t) related vertexes for each batch. Then we use V and E to
represent its vertex set and edge set respectively. And subsequently we constructs
a local sparse graph A = (V,E) on batch-inputs. The features of vertexes in V
can be denoted as XI and XT , which are defined above respectively. We define
the similarity matrices in mini batch from visual and textual modalities as:

SHij = XH
i (XH

j )
T
/(
∥∥XH

i

∥∥∥∥XH
j

∥∥), (8)

where SHij ∈ [−1,+1], H ∈ {I, T}. XH
i means the i-th row in XH and XH

j

stands for the j-th row in XH . We employ SI and ST to integrate the original
similarity information in image and text modal. Then unified sparse affinity
graph A is evolved from spare to dense by fusing the information from SI and SI .
Then we get hybrid semantic affinity matrix U = G(A,SI ,ST ) ∈ [−1,+1]n×n

to describe the affinity structure in both two modalities, with Uij describing the
captured fusion semantic affinity information between the input samples ei and
ej . The hybrid semantic affinity matrix is calculated as:

U = G1(A,SI ,ST ) = (1− λ3)[λ4SI + (1− λ4)ST ] + λ3A, (9)

where λ3 adjust the importance of clustering result and λ4 balances the weights
between affinity structure information of visual modality and textual modality.
The manner of constructing U combines the similarity information across both
clustering result and original affinity structure in two modalities. Given that
samples selected in batch are highly related, U refines the affinity more accurate
than randomly training samples in mini-batch, which makes it capturing more
effective latent common similarity relationship over multi-modal perspective. In
another word, U reflects the original affinity connection among input samples,
after which we can subsequently learn binary hash code that are employed to
achieve cross-modal retrieval task. Alternatively, following the form of combina-
tion in [21], we can make A evolved in the form as:

S = λ4SI + (1− λ4)ST ,U = G2(A,SI ,ST ) = λ3A+ (1− λ3)(
SS

T

n
). (10)
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2.4 Hash-Code Learning

In this subsection, we utilize the accurate semantic matrix U , which represents
the original affinity relations of the input instances, to restrict the generation
stage of hash code. In latent hash hypercube, adjacent vertices share small Ham-
ming distance and more similar hash codes. Thus, hash codes can be understood
as discrete features. To calculate the similarity with neighborhoods in Hamming
space, the similarity function can be defined as:

Z(BH
i ,B

H
j ) = BH

i (BH
j )

T
/(
∥∥BH

i

∥∥∥∥BH
j

∥∥), (11)

where H ∈ {I, T}, BH
i means the i-th row in BH and BH

j means the j-th
row in BH . The result of Eq.(11) is the cosine affinity score which representing
the angular connection among discrete features. We adopt manner of Eq.(2)
that minimize the reconstruction error between the similarity matrix of hash
code and the affinity matrix U of continuous features to keep their similarity
consistency. Therefore, we define pairwise cosine similarity matrices as Q and
QHH
ij = Z(BH

i ,B
H
j ). Then, we employ

LBHH = min
BH

∥∥αU −Z(BH
i ,B

H
j )
∥∥2
F
, (12)

as the formulation to compute the difference between U and QHH
ij . In Eq. (12),

α is a hyper-parameter which makes reconstruction more flexible, as discussed
in [21]. Given that U ∈ [−1,+1]n×n, αU ∈ [−α,+α]n×n. For example, supposed
that Uij = 0.8, which means that ith instance and jth instance got 0.8 similarity
score, then the similarity score of corresponding hash codes calculated from
Hamming space need to be close to 0.8. α > 1 means the similarity score of hash
codes pair need to lager than 0.8 and accordingly make the nodes in Hamming
space dense, while α < 1 means the similarity score of hash codes pair need to
smaller than 0.8 and accordingly make the nodes in Hamming space sparse. We
empirically find that it is beneficial to threshold α > 1. And this phenomenon can
be attributed to the fact that cosine similarity measures the similarity between
two vectors by measuring the cosine of the angle between them. The result is
not related to the length of the vector, but only related to the direction of the
vector. Setting α > 1 means we force the binary hash code close to the latent
clustering center in Hamming space in direction than it should be, which bring a
better performance as we are trying to Increase the distance between categories
and reduce the distance within category.

Given that each instance is still represented by hash codes from two modal-
ities, we need to restrict the reconstruction in the manner of intro-modal and
inter-modal. Specifically, we employ QII and QTT as the intro-modal recon-
struction for image modal and text modal respectively, and QIT is engaged as
inter-modal reconstruction. Finally, the consistency loss between binary hash
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code and continues original features can be summarized as:

LB =LBII + η1LBTT + η2LBIT = min
BI

∥∥αU −Z(BI
i ,B

I
j )
∥∥2
F

+ η1 min
BT

∥∥αU −Z(BT
i ,B

T
j )
∥∥2
F
+ η2 min

BI ,BT

∥∥αU −Z(BI
i ,B

I
j )
∥∥2
F
,

(13)

where η1 and η2 are the trade-off parameters to balance the reconstruction of
inter-modal and intro-modal in latent hash space.

To avoid wasting bits and align representation distributions, it is worth gen-
erating mutually independent hash codes as the constraintBT

g Bg = mI in Eq. 1.
However, the above loss cannot tackle this problem. Following [19], we regularize
the latent discrete features with axuiliary discriminator d(·, ζ). To be concrete, we
assume the each row in B comes from a distribution D = 2Y − 1,Y ∼ B(1, 0.5),
which maximizes the code entropy. We suppose that each binary code is proiored
by a binomial distribution which is D. Then, to adversarially regularize the latent
variables, we utilize auxiliary discriminator d which involves two fully-connected
layers successively with ReLu and sigmoid non-linearities. In a word, it is to
balance the amount of zeros and ones in each binary code and further maximize
the code entropy. In this end, we can employ the following discriminator d to
balance -1 and +1 in a binary hash code:

d(Bi, ζ) ∈ (−1,+1); d(yBi , ζ) ∈ (−1,+1), (14)

where yBi obeys the same distribution as Bi for implicit regularizing Bi. There-
fore, our final loss can be written as:

L = LA + LB − η4
b

∑
H∈I,T

b∑
i=1

(log(1− d(Bi, ζ)) + log d(yBi , ζ))). (15)

2.5 Optimization

In this method, the global sparse graph is employed to solve the problem of
missing label information and we first need to optimize Eq. 7.

Sparse Affinity Graph. In this stage, we basically refer to the alternating
rules used in [22] to optimize Eq. 7. As there are four variables in total and
are coupled with each other, the problem is split into four step. It is beneficial
to get detailed information from the above method. Here, we directly give the
close-form solution of the variables Z,S,D,wH :

step1 : Fix Z,D and wH , update SH . When Z,D and wH fixed, the last
item of Eq. 7 is constant and accordingly original problem is translated into
following pattern:

min
SH

∑
H∈{I,T}

m∑
i,j=1

∥∥FH
i − FH

j

∥∥2
2
SHij + λ1

∑
H∈{I,T}

m∑
i

∥∥SHi ∥∥22
+

∑
H∈{I,T}

wH
∥∥Z − SH

∥∥2
F
, s.t.SHii = 1,SHij ≥ 0,1TSHi = 1,

(16)
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Updating both two view is independent, we update each SH in the following
way:

min
SH

m∑
i,j=1

∥∥FH
i − FH

j

∥∥2
2
SHij + λ1

m∑
i

∥∥SHi ∥∥22 + wH
∥∥Z − SH

∥∥2
F
,

s.t.SHii = 1,SHij ≥ 0,1TSHi = 1,

(17)

For simplicity, we suppose that a feature of sample is similar to its neighbours
and accordingly can update the representation using its p neighbor data points,
where p is the number of neighbors. We employ the solution from [22] and give
the final solution as follows:

SHij
∗
=


bi,p+1 − bij + 2wHZij − 2wHZi,p+1

pbi,p+1,−
∑p
h=1 bih − 2pwHZi,p+1 + 2

∑p
h=1 w

HZih
j ≤ p,

0 j > p,

(18)

step2 : Fix Z,D and SH , update wH . In this step, fixing problem 7 is the
same way to solve the problem (5).

Theorem. If the weights wH are fixed, solving problem 5 is equivalent to
solving the following probelm:

min
Z

∑
H∈{I,T}

√
‖Z − SH‖2F , s.t.Zij ≥ 0,1TZi = 1, (19)

Proof. The Lagrange function of Eq (19) is:∑
H∈{I,T}

√
‖Z − SH‖2F +Θ (Λ,Z) , s.t.Zij ≥ 0,1TZi = 1, (20)

where Λ is the Lagrange multiplier, and Θ (Λ,Z) is the formalized term derived
from constraints. Taking the derivative of Eq. (20) with respect to Z and setting
the derivative to zero, we get the following equation:

wH
∗
=

1

2

√
‖Z − SH‖2F

. (21)

step3 : Fix all the other variables except Z, and it can be proved that solving
Eq. 7 is equivalent to solving the following problem:

min
Zi

∑
H∈{H,I}

∥∥∥∥Zi − SHi +
λ1
4wH

di

∥∥∥∥2
2

, s.t.Zij ≥ 0,1TZi = 1, (22)

where Zi means the i-th row in Z and dij means the similarity score between
SH
i and Zi. The problem in Eq. 22 can be solved with Lagrange Multiplier
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Method as proved in [22] with several steps:

qH = SHi −
λ1
4wH

di, p =

∑
H∈{I,T} q

H

2
+

1

m
− 1TqH1

2m
,

f(t) =
1

m

m∑
j=1

(t− pj)+ − t, Zij
∗ = (pj − t∗)+,

(23)

where t∗ makes f(t∗) = 0 and (·)+ = max(·, 0).In summary, the produce for
solving the proposed problem in Eq. 7 can be found in the supplementary ma-
terial.

step4 :Fix all the other variables except D, optimizing problem (7) is equiv-
alent to problem (6), which is formed by the c eigenvectors of L corresponding
to the c smallest eigenvalues.

Deep hash learning. In traditional hash methods [5,19], the process of
mapping continuous features to discrete space causes huge quantization loss stem
from the fact that the sign function, which outputs +1 for positive number and
-1 for negative number, can not be derived. To handle this problem, we follow
[21] to adopt a scaled tanh function:

B = tanh(βY ) ∈ [−1,+1]m×d, β ∈ R+, (24)

where Y represent that final output of Convolutional Neural Network. It is
noticed that β is kept increasing during deep training stage. To be noted that it
is motivated by a crucial fact that limα→∞ tanh(βy) = sgn(y).

3 Experiments

3.1 Datasets

Four datasets, including Wiki [16], NUS-WIDE [2], MIRFlickr-25K [9] and
MSCOCO [13], are employed to evaluate the proposed methods, more details
about the four datasets can be found in the supplementary material.

3.2 Implementation Details

For all of our experiments, we follow previous methods to employ the VGG-16
fc7 to extract the 4,096-dimensional deep features XI ∈ Rn×4096 from original
images, while for original textual features we utilize the universal sentence en-
coder [1] to represent final textual features XT whose dimension is 512. Besides,
considering the computational burden in the solution process of Z, we randomly
pick up 20,000 instances from NUS-WIDE and MSCOCO dataset. It is worth
noting that to calculate the consistency loss as the manner of Eq. 2, we need
to force the items in the ranges. However, the cosine similarity ranges -1 from
+1 while the affinity value elements in Z are non-negative, which can be ob-
tained by Eq. 23. Therefore, as A is the batch-input of Z, we preprocess the
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Table 1. The mAP@all results on image query text (I → T ) and text query image
(T → I) retrieval at various encoding lengths and datasets. The best performances are
shown in bold.

Task Method WIKI MIRFlicker-25K MSCOCO NUS-WIDE
16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit

I → T

CMFH 0.173 0.169 0.184 0.580 0.572 0.554 0.442 0.423 0.492 0.381 0.429 0.416
PDH 0.196 0.168 0.184 0.544 0.544 0.545 0.442 0.423 0.492 0.368 0.368 0.368
IMH 0.151 0.145 0.133 0.557 0.565 0.559 0.416 0.435 0.442 0.349 0.356 0.370
QCH 0.159 0.143 0.131 0.579 0.565 0.554 0.496 0.470 0.441 0.401 0.382 0.370

DJSRH 0.274 0.304 0.350 0.649 0.662 0.669 0.561 0.585 0.585 0.496 0.529 0.528
DGCPN 0.226 0.326 0.410 0.651 0.670 0.702 0.469 0.586 0.630 0.517 0.553 0.567
DSAH 0.249 0.333 0.381 0.654 0.693 0.700 0.518 0.595 0.632 0.539 0.566 0.576
JDSH 0.253 0.289 0.325 0.665 0.681 0.697 0.571 0.613 0.624 0.545 0.553 0.572
SGEH 0.396 0.422 0.441 0.665 0.695 0.703 0.578 0.617 0.634 0.565 0.584 0.579

T → I

CMFH 0.176 0.170 0.179 0.583 0.566 0.556 0.453 0.435 0.499 0.394 0.451 0.447
PDH 0.344 0.293 0.251 0.544 0.544 0.546 0.437 0.440 0.440 0.366 0.366 0.367
IMH 0.236 0.237 0.218 0.560 0.569 0.563 0.560 0.561 0.520 0.350 0.356 0.371
QCH 0.341 0.289 0.246 0.585 0.567 0.556 0.505 0.478 0.445 0.405 0.385 0.372

DJSRH 0.246 0.287 0.333 0.658 0.660 0.665 0.563 0.577 0.572 0.499 0.530 0.536
DGCPN 0.186 0.297 0.522 0.648 0.676 0.703 0.474 0.594 0.634 0.509 0.556 0.574
DSAH 0.249 0.315 0.393 0.678 0.700 0.708 0.533 0.590 0.630 0.546 0.572 0.578
JDSH 0.256 0.303 0.320 0.660 0.692 0.710 0.565 0.619 0.632 0.545 0.566 0.576
SGEH 0.452 0.510 0.530 0.687 0.706 0.711 0.578 0.626 0.635 0.570 0.588 0.595

A with A ← 2A − 1. Additionally, we fix the batch size as 8 and employ the
SGD optimizer with 0.9 momentum and 0.0005 weight decay. We experimen-
tally take α = 1.5 and λ3 = 0.4 for all four datasets. Then we set c = 5, p =
10000, λ4 = 0.6, η1 = η2 = 0.1 for NUM-WIDE, c = 5, p = 3000, λ4 = 0.9,
η1 = η2 = 0.1 for MIRFlicker, c = 5, p = 1000, λ4 = 0.3, η1 = η2 = 0.3 for Wiki
and c = 5, p = 3000, λ4 = 0.6, η1 = η2 = 0.1 for MSCOCO.

3.3 Retrieval Performance

Baselines. Previous methods can be categorized into two kinds according to
whether takes the whole retrieved points into consideration or not. Hence, in
order to prove that our method has superior performance under different eval-
uation indicators, we conduct experiments on two aspects. Specifically, on the
one hand, we compare the mAP results with IMH [20], CMFH [3], PDH [17],
QCH[24], DJSRH [21], DSAH [29], JDSH [14], DGCPN [31] conducted on Wi-
ki, MIRFlicker, MSCOCO and NUS-WIDE datasets, with the whole retrieved
points occupied (i.e., mAP@all), and the results are shown in Tab. 1. All the
compared method are conducted according to their released codes or description
in their original papers. The retrieval performance on mAP@50 can be found in
the supplementary material.
Quantitative Results. It can be observed that the proposed SGEH outper-
forms all of other unsupervised cross-modal hashing methods in Tab. 1 on all
four datasets regardless of the cross-modal retrieval tasks and code lengths, which
demonstrates the effectiveness of the proposed methods. Specifically, our image

206



Title Suppressed Due to Excessive Length 13

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

iso
n

Image query text on WIKI
OURS
JDSH
DGCPN
DSAH
DJSRH
CVH
CMFH
PDH
ACQ
IMH

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

iso
n

Image query text on MIRFlickr-25K
OURS
JDSH
DGCPN
DSAH
DJSRH
CVH
CMFH
PDH
ACQ
IMH

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

iso
n

Image query text on NUSWIDE
OURS
JDSH
DGCPN
DSAH
DJSRH
CVH
CMFH
PDH
ACQ
IMH

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

iso
n

Image query text on MSCOCO
OURS
JDSH
DGCPN
DSAH
DJSRH
CVH
CMFH
PDH
ACQ
IMH

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

iso
n

Text query image on MIRFlickr-25K
OURS
JDSH
DGCPN
DSAH
DJSRH
CMFH
PDH
ACQ
IMH

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

iso
n

Text query image on NUSWIDE
OURS
JDSH
DGCPN
DSAH
DJSRH
CMFH
PDH
ACQ
IMH

0.0 0.2 0.4 0.6 0.8 1.0
Recall @ 32 bits

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

iso
n

Text query image on MSCOCO
OURS
JDSH
DGCPN
DSAH
DJSRH
CMFH
PDH
ACQ
IMH

Fig. 3. Results of Precision VS Recall Curves of various unsupervised hashing methods
on datasets WIKI, MIRFLickr-25K, MSCOCO and NUS-WIDE with 32-bit codes.

query for text retrieval performance on Wiki dataset improves a lot compared
with other deep methods on three kinds of hash codes, especially on 16 bits
and 32 bits , while the text query for image retrieval performance outperforms
them more than 10.8%, 19.5%, 0.8% on 16 bits, 32 bits, and 64 bits respectively.
While improvements on NUS-WIDE and MSCOCO are related lower, which is
stemmed from that we only using 20,000 samples as training set. The corre-
sponding Precision-Recall (P-R) curves of represented methods are also retorted
in Fig. 3, which can further prove the effectiveness of our method. In particular,
our curves for Wiki are all located above those of the other methods, which
means that the precision of our approach can significantly surpass that of the
other works at the same recall rates. As for the multi-label datasets, Our P-R
curves on MSCOCO and NUS-WIDE are also higher than the other, but not as
obviously as the curves on Wiki. On the MIRFlickr-25K, we can obtain that the
results are slightly worse than DSAH for 32 bits when the recall rate is higher
than 0.14 when image queries text and 0.12 when text queries image. However,
taking text query image for instance, it can be seen that our curve get (recall =
0.05, precision = 0.81), which means that our method can obtain images with
81% accuracy among the 0.05× 20, 000 = 1000 return images.

3.4 Ablation Study

To further demonstrate the effectiveness of each part in SGEH, we design several
variants to evaluate the performance when adding the proposed each compo-
nents. Following the introduction order in Section 2, SGEH-1 and SGEH-2 are
the basic variants which respectively only employ A as similarity matrix and on-
ly employ SI with ST as similarity matrix. SGEH is the variant that merges the
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Table 2. The mAP@all on MIRFlickr-25K to evaluate the value of each component.

Model Configuration 32bits 64bits
I → T T → I I → T T → I

SGEH-1 U = A 0.658 0.679 0.650 0.678
SGEH-2 U = λ4S

I + (1− λ4)S
T 0.684 0.695 0.680 0.701

SGEH-3 U = G1(A,SI ,ST ) 0.685 0.694 0.692 0.699
SGEH-4 U = G2(A,SI ,ST ) 0.688 0.692 0.693 0.702
SGEH η4 = 0.001 0.695 0.706 0.703 0.711

affinity metrics in the manner of G(A,SI ,ST ) = (1− λ3)[λ4SI + (1− λ4)ST ] +
λ3A. SGEH is the variant based on SGEH-4 which further supplements the loss
of discriminator. The results are shown in Tab. 2, and from which we can discover
that each component of our proposed method has its own effect. Tab. 2 suggest-
s that removing any component of our final framework leads to performance
degradation. Specially, compared with the results of SGEH-1 and SGEH-2, the
better performance of SGEH-3 and SGEH-4 shows illustrate the effectiveness of
the proposed fusion strategy Eq. (9). The combination of clustering information
from total dataset and neighborhood information in each mini-batch can much
more accurately define the similarity relationship, impelling to learn more con-
sistent hash codes and accordingly achieving better performance. What’s more,
SGEH demonstrate the important role of hashcode regularization. It facilitates
the proposed method for the end-to-end batch-wise training which better refine
the similarity relationship by combining the clustering results and mini-batch
neighborhood information than previous mini-batch pattern.

4 Conclusion

This paper proposed Semantic Graph Evolutionary Hashing (SGEH) for un-
supervised cross-modal retrieval. SGEH first employs sparse affinity graph to
update the unified sparse affinity graph, which is shared by both visual modal
and textual modal. And subsequently the sparse graph is evolved from sparse
to dense by fusing code-driven similarity information. Consequently, the sparse
graph extends to the Hybrid Semantic Graph which is utilized to restrict hash
code learning. The key novelty of this method is the graph evolution scheme.
Then hash code can be learned via construction consistence loss with a more ef-
fective feature space. Extensive experiments demonstrate the superiority of our
proposed method and detailed ablation study shows the effect of each module
utilized in our method.
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