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Abstract. In recent years, generative Zero-Shot Learning (ZSL) has at-
tracted much attention due to its better performance than traditional
embedding methods. Most generative ZSL methods exploit category se-
mantic plus Gaussian noise to generate visual features. However, there
is a contradiction between the unity of category semantic and the di-
versity of visual features. The semantic of a single category cannot ac-
curately correspond to different individuals in the same category. This
is due to the different visual expression of the same category. There-
fore, to solve the above mentioned problem we propose a novel seman-
tic augmentation method, which expands a single semantic to multi-
ple internal sub-semantics by learning expanded categories, so that the
generated visual features are more in line with the real visual feature
distribution. At the same time, according to the theory of Convergent
Evolution, the sub-semantics of unseen classes are obtained on the basis
of the expanded semantic of their similar seen classes. Four benchmark
datasets are employed to verify the effectiveness of the proposed method.
In addition, the category expansion is also applied to three generative
methods, and the results demonstrate that category expansion can im-
prove the performance of other generative methods. Code is available at:
https://github.com/njzxj/EC-GZSL.

Keywords: Generative Zero-shot Learning · Category Expansion · Se-
mantic Augmentation · Convergent Evolution.

1 Introduction

Deep learning has driven the rapid development of classification, retrieval, posi-
tioning and other fields. However, this development depends on a large number of
manually labeled datasets, which are often labor-intensive and time-consuming.
In order to mitigate this problem, Zero-Shot Learning (ZSL) [20,29] has been
proposed to recognize unseen classes. ZSL makes the training model suitable for
unseen classes that do not exist in the training set through category semantics.
With the popularity of generative network in the field of image, an increasing
number of generative ZSL methods emerge in recent years. Generative ZSL [40]
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Fig. 1. The motivation of our method. Green and yellow represent moose and mouse
respectively.

uses semantics and seen classes to train a generator, and then generates samples
of unseen classes with the learned generator to make up for missing samples of
unseen classes in the classifier training process. However, the semantic of each
class is unique, which leads to the lack of diversity of visual features generated
by traditional methods using a single semantic.

The semantic of a category is the summary of the attributes of all individ-
uals in the category, and it is equivalent to a mathematical description of the
characteristics of a specific category. From the macro point of view, this descrip-
tion is reasonable for the whole category, but from the micro point of view, it is
unreasonable for individuals that it is a biased description. For example, there
are three kinds of mouse hair colors: black, white and yellow, so these three
color dimensions are marked in the semantic of mouse, and the dimension value
representing these attributes is not 0. If we use the semantic that is not 0 in
the white attribute dimension to represent the black mouse, then it is wrong.
Similarly, the male deer has antlers while the female deer has no antlers, but the
semantic of deer is not 0 in the dimension of antlers, so that of deer cannot be
used to describe the female deer.

Different individuals in the same category have relativity in the performance
of characters, that is, Biological Relative Character. The semantic of a catego-
ry includes all the characters of the category, but it cannot accurately describe
a single individual. Generative ZSL generally generates visual features through
category semantics. Because category semantics cannot accurately describe in-
dividuals with different relative characters, there must be differences in the dis-
tribution of generated visual features and real visual features. We know that
the more the generated samples match the real samples, the more beneficial it
is to the training of the final classifier. In Figure 1, a category has three inter-
nal classes, and the visual feature distribution generated by a single semantic
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cannot fully fit the distribution of real visual features. This can lead to inac-
curate classification boundaries. Therefore, traditional methods using a single
category semantic to generate visual features are unreasonable. That is to say,
category semantics cannot reflect the relative characteristics of organisms, and
the generated visual features do not accord with the real distribution of visual
features.

In order to make the semantic description correct for specific individuals,
so as to generate visual features in line with the real distribution, an obvious
idea is to recombine the attributes of category semantics to obtain multiple
extended category semantics, so that the new semantics can correctly refer to the
performance of different relative characteristics of the same category. However,
this reorganization is technically difficult if no additional manual annotation is
introduced. In terms of solving this problem, we aim to diversify single semantics
and obtain the semantics corresponding to the specific expression of relative
characteristics. This process can be seen as a more detailed division of a class, and
then obtain the semantics of each internal class. A simplified example is to obtain
the mouse semantics expressed by different color traits. For example, the other
color dimensions of white mouse semantics are 0. Of course, the actual situation
is more complicated, because relative characteristics cannot only appear in color.

The problem is transformed into obtaining the semantics of the internal class,
that is, obtaining the semantics that can represent white mouse in the mouse
category. An effective method is to divide a single class into internal categories,
that is, to expand categories for each class. Specifically, firstly, clustering the
visual features of each category separately, so that we can obtain the visual
prototypes of the internal categories. Then we use a trained mapper to map the
visual prototype of the internal classes to the semantic space. In this way, we
get the semantics of the internal category.

The method of obtaining the internal class semantics of seen classes is not
applicable to unseen classes. In biology, there is the concept of Convergent Evo-
lution [36], that is, different species change their overall or partial morphological
structures in the same direction due to similar lifestyles. Figure 1 shows this.
Hamster and mouse have the same characteristic expression in hair color. Moose
and deer also have similar character expression on antlers. We believe that the
characteristics of internal classes of similar species are also similar. Based on this
assumption, we propose a method based on semantic similarity, which transfer
the semantic expanded results of seen classes to obtain the internal class seman-
tics of unseen classes.

Replace the original category semantics with the expanded semantics to
achieve the purpose of generating more real visual features, that is, the generat-
ed visual features are more in line with the distribution of real visual features.
At the same time, the semantic attributes mapped by visual features are clev-
erly used in the process of final classification. The reconstructed visual features
are obtained from the mapped semantics through the trained generator, and
the visual features before mapping are concatenated with reconstructed visual
features for the training of the final classifier. This method effectively improves
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the performance, because the reconstructed visual features eliminate irrelevant
information for classification. In summary, our main contributions are as follows:

– Based on the principle of Relative Character, we propose a category expan-
sion method to learning internal semantics of seen class. In addition, inspired
by the thought of Convergent Evolution, the expanded semantics of unseen
classes are also learned from those of seen classes.

– Concatenation of synthesized features and reconstructed features is employed
to train the final classifier, which can effectively eliminate irrelevant infor-
mation for classification, thereby improving the performance of the classifier.

– The proposed model is evaluated on four popular datasets and obtains com-
peting results. Furthermore, for the category expansion part, we verified its
effectiveness on three classical generative models.

2 Related Work

2.1 Zero-Shot Learning

The whole sample dataset is divided into seen and unseen parts in Zero-Shot
Learning. The unseen classes are used in the training phase, and the unseen class
is only used in the testing phase. According to whether the test sample contains
seen classes, ZSL can be further categorized as conventional ZSL (CZSL) and
generalized ZSL (GZSL) [3]. CZSL contains only unseen class samples in the test
phase, while GZSL includes both unseen and seen class samples in the test phase.
Since in more practical situations, the trained model needs to be applicable to
both seen and unseen classes, GZSL has become the mainstream research point.
Besides, according to whether to generate unseen visual features to convert ZSL
into a fully supervised task, ZSL can also be divided into non-generative methods
and generative methods.

Non-generative methods mainly exploits embedding strategies to associate
visual features and semantics. Early methods train a projector to map visual
features to semantic space [30,33]. However, later researchers consider that pro-
jecting visual features into semantic space will cause the serious hubness problem
[45,2], so the way of mapping semantics to visual space is adopted to construct
visual prototypes. For example, [4,18] project visual features and semantics to
public space for classification. [10,1,25] uses a hybrid model based on mapping
both semantic and visual features to hidden space. They mainly adopt the joint
embedding method of multiple visual features and multiple text representations
to connect the attributes with different areas of the image. In recent years, non-
generative methods have begun to introduce attention mechanisms [17,42] to
strengthen the semantics learning. Furthermore, knowledge graph has also been
used to train classifier parameters [37,11], e.g., MSDN [5] adopts the method
of knowledge distillation to collaboratively learn attribute-based visual features
and visual-based attribute features .

Generative ZSL trains a generator that can generate corresponding visual
features according to its class semantics, and then uses the generator to generate
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samples of unseen classes to make up for the missing samples of unseen classes. f-
CLSWGAN [40] exploits the Generative Adversarial Networks (GAN) [12] plus
a classifier to train the generative network. [28,13,14] optimizes the model on
this basis by adding more constraints for feature alignment. Cycle-CLSWGAN
[9] introduces cyclic consistency loss for feature generator. F-VAEGAN-D2 [41]
employs Variational Auto-Encoder (VAE) and uses the distribution obtained
by the encoder to replace the Gaussian noise as the input for GAN. Some also
directly utilizes VAE to generate visual features [34,26,23]. Besides, IZF [35]
adopts the generative flow model instead of generative adversarial network to
circumvent the fixed format of Gaussian noise.

2.2 Single Attribute and Relative Character

There is only one semantic for a single category, but the visual features of the
same category are diverse. Semantics can be regarded as mathematical descrip-
tion of categories, and they include all the possible characteristics of categories.
Even in the same category, the expression of a visual semantic, that is, the theory
of relative character in biology, is different. Relative Character refers to that the
same species often have different performances in characters. Therefore, a single
semantic cannot well represent each individual in a category. Most non genera-
tive methods map visual features to semantic space. In this case, the mapping
is biased. Some non generative method [22,24,37] has put forward this problem
and alleviated this problem to a certain extent.

Most generative methods generate visual features by means of a single se-
mantic and Gaussian noise, so as to enrich visual features for unseen classes.
However, the semantic description of visual features generated in this way is
still less diverse, because they are all generated under the same semantic de-
scription. This method cannot generate visual features that conform to the real
distribution, because the expression of different individual characters in the same
category is different, so the corresponding semantics should also be different. In
order to solve the problem that a single semantic cannot correctly correspond to
the representation of different visual features, we propose a category expansion
based feature generation method.

2.3 Convergent Evolution

Convergent Evolution means that different species show the same or similar
characteristics under the influence of specific conditions. For example, mouse and
hamster are two different categories, and they have similarities in the expression
of hair color. Moose and deer are different species, and they have similarities
in the expression of antlers. If we can expand the semantics of seen classes, we
can expand the semantics of similar unseen classes according to the theory of
Convergent Evolution.
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Fig. 2. The architecture of our proposed method. Category Expansion module shows
how we can get the internal classes of seen and unseen classes.

3 Methodology

3.1 Problem Definition

Suppose there are S seen classes for training and U unseen classes for testing.
We use Cs to represent seen classes and Cu to represent unseen classes, where
Cs ∩ Cu = ∅. Xs =

{
xs1, x

s
2, x

s
3, · · · , xsNs

}
⊂ Rdx×Ns are the visual features of

seen classes, where dx is the dimension of visual features and Ns is the number
of instances of seen classes. And the corresponding sample class labels are Y s ={
ys1, y

s
2, y

s
3, · · · , ysNs

}
. Xu =

{
xu1 , x

u
2 , x

u
3 , ..., x

u
Nu

}
⊂ Rdx×Nu is the visual feature

of the sample in unseen classes, where Nu is the number of instances with unseen
classes. And the corresponding sample class label is Y u =

{
yu1 , y

u
2 , y

u
3 , · · · , yuNu

}
.

A =
{
a1, a2, ...as, aS+1, ..., aS+U

}
⊂ Rda×(S+U) represents category semantics,

where da is the dimension of semantics. The first S vectors are seen classes and
the last U are unseen classes. Our goal is to learn a classifier f : x → C to
classify the visual feature x in the category space. For CZSL x only belongs to
unseen classes and C = Cs∪Cu, while x belongs to both seen and unseen classes
and C = Cu for GZSL.

3.2 Overall Idea

In order to diversify the generated visual features, traditional generative GZSL
methods mostly use a single semantic plus Gaussian noise to generate synthe-
sized unseen samples. However, the visual features obtained in this way do not
match the feature distribution of real samples. This is because the category se-
mantic corresponding to the generated visual features are single, while the real
semantics corresponding to the real sample features are diverse. In order to make
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the semantics corresponding to the generated visual features more diverse, we
propose a method to augment the semantics by expanding categories of seen
classes based on the theory of species Relative Character. In this method, the
samples will be clustered in the visual space. Then, the clustering centers are
mapped to the semantic space and will replace the original semantics. Next,
in order to augment the semantics of unseen classes, we propose a method to
extend the diversified semantics of seen classes to unseen classes based on the
theory of Convergent Evolution. This method uses the similarity between seen
classes and unseen class to augment the semantics of unseen class. Last, we use
the augmented semantics to replace the original single semantic of the catego-
ry for the training of Generative Adversarial Network, and introduce a simple
reconstructed visual feature to improve the performance of the final classifier.
Figure 2 shows the overall model framework.

3.3 Category Expansion

Category semantics are determined according to the character expression of the
categories. It can be regarded as the attribute description of the category. For
example, if a category has characters such as angle and claw, the corresponding
semantic dimension will have numerical value. In order to uniformly describe a
class, as long as any individual of the class has a specific character expression, its
corresponding semantic dimension exists and is a fixed value. A typical example
is that male deer have antlers and female deer have no antlers, but the dimension
of antlers in deer semantics is fixed.

A single category semantic is the sum of the expression of all characters in
the category, while different individuals in the same category have different per-
formance of relative characters, which leads to the inability of a single semantic
to generate true and accurate visual features. We cannot generate white mouse
with the semantics of non-zero values in the dimensions corresponding to black,
white and yellow. Of course, black mouse cannot be generated. Similarly, using
the semantics of deer can generate male deer with antlers, but not female deer.
Obviously, traditional generative methods that using this strategy are unreason-
able. For a category, the visual features generated using a single semantic are
inaccurate, such as mice of different colors, and incomplete, such as female deer
without antlers. In Generative ZSL, the closer the generated visual features are
to the real visual features, the better the performance of the generator, and it is
more beneficial to downstream tasks. In order to solve this problem, we need to
obtain the semantics of individuals expressing different characters in the same
category. Therefore, we need to expand category, in other words, to obtain the
internal semantics of different categories of mouse.

In order to obtain the semantics of different characters of the same category,
that is, the semantics of internal categories, we use the method of clustering the
samples of each category in visual space and then mapping them to the semantic
space. We assume that the number of internal classes in a category is k, in other
words, we assume that the number of clusters of each class in the visual space is
k. Let Di =

{
xi1, x

i
2, x

i
3, · · · , xiNi

}
represent the features of the samples belonging
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the ith class, and use the k-means algorithm to minimize the square error of the
visual cluster division Ci =

{
Ci1, C

i
2, C

i
3, · · · , Cik

}
of this class:

L =

k∑
j=1

∑
xi∈Ci

j

∥∥xi − µij∥∥22 , (1)

where µij = 1

|Ci
j|
∑
xi∈Ci

j
xi is the mean vector of cluster Cij . The clustering center

of each internal class is regarded as the visual prototype of the internal class.
We use µS to represent all µij for seen classes.

Then, we need a mapper to map visual prototypes to semantic space. The
semantic information of visual features is extracted by a mapper E. We use
a′ = E (xs) to represent the semantic of extracted visual features. In order to
make the mapped semantics correct, we use the category semantics to constrain
the mapper. The loss function is as follows:

Losse =
1

NS

NS∑
i=1

‖a′i − ai‖
2
F , (2)

where ai is the category semantics corresponding to the feature xsi . When the
mapper E is obtained, we map the visual prototype µS of the seen category to
the semantic space:

ηS = E
(
µS
)
, (3)

where ηS represents the semantics of internal seen classes. In this way, we expand
the category of each seen class and obtain the semantics expressed by different
characters of the same class.

3.4 Augmentation Transfer

Because unseen class samples are not available in the training stage, we can-
not obtain the semantics of their internal classes by using the method which
used in seen classes. However, the hair color difference of mice is also reflected
in hamsters, and the antler difference of deer is also reflected in moose. This
phenomenon is called Convergent Evolution, that is, different species evolve in-
to phenomena with similar morphological features or structures due to similar
environment and other factors. Based on Convergent Evolution, we can transfer
the semantics of seen classes through the similarity measurement between seen
and unseen classes, so as to obtain the semantics of the expanded categories of
unseen classes.

In order to migrate the differences between the internal classes of seen class to
unseen class, we first need to obtain the differences between the internal classes
of the seen class. We use Z =

{
z11 , · · · , z1k, z21 , · · · , z2k, · · · , zij , · · · zsk

}
to represent

the distance between the jth internal class of the ith seen class and the original
semantic ai:

zij = ai − ηij . (4)
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Based on the theory of Convergent Evolution, similar categories have similar
character expression. In order to transfer the expanded semantics, we need to
obtain the seen class that is most similar to each unseen class. We calculate
category similarity based on category semantics. For the semantic ap of each
unseen class, we calculate its semantic similarity with each seen class:

hpq =
ap · aq

‖ap‖ ‖aq‖
(S + 1 ≤ p ≤ S + U, 1 ≤ q ≤ S) , (5)

where hpq represents the semantic similarity between pth unseen class and qth
seen class. We define the tags:

τp = argmaxq∈(1,2,...,S)hpq. (6)

We think that seen class τp and unseen class p are the most similar in charac-
ter expression. Obviously, their internal class distribution also have similarities
according to class semantics. Therefore, we can get the internal class semantics
of unseen classes:

ηp = {ηp1 , η
p
2 , · · · , η

p
k} =

{
ap − αhpτpz

τp
1 , · · · , ap − αhpτpz

τp
k

}
, (7)

where α is a hyper-parameter to reduce the deviation caused by the semantic
transfer process.

3.5 Feature Generation

When we have got the semantics of the internal classes, we will use them to
replace the original semantic of each sample. We use the replaced semantics to
train the Generative Adversarial Networks. The internal class semantics η and
Gaussian noise z are employed to generate visual feature through generator G:

x̃ = G (η, z) , (8)

where z ∼ N (0, 1) is the Gaussian noise. The generated visual features and the
real visual features are discriminated by discriminator D, which is optimized
with WGAN [27]. The total loss is as follows:

Lossgan = E [D (x, η)]− E [D (x̃, η)]− λE
[
(‖∇x̂D (x̂, η)‖2 − 1)

2
]
, (9)

where η is the internal class semantics of the generated sample x̃, and it is also
the internal class semantic corresponding to the real visual feature x. The last
one is the gradient penalty, where x̂ = αx+ (1− α) x̃ with α ∼ U (0; 1) and λ is
the penalty coefficient.

At the same time, in order to make the generated samples more authentic,
we follow f-CLSWGAN [40] to constrain the classification loss:

Losscls = −E [logP (y|x̃; θ)] , (10)
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where y is the real class of x̃, not the internal class. θ is the parameter of the
pre-trained classifier on the seen class. It is worthy noted that we do not use
internal category tags for classification. Then the total loss is:

Losstotal = Lossgan + βLosscls, (11)

where β is the balancing coefficient.

3.6 Remove Irrelevant Features

The trained mapper can map the visual features to the semantic space. This
mapping eliminates irrelevant information which is useless or even harmful to
the final classification in a certain extent. We know that the generator can gen-
erate visual features for the corresponding semantics. Therefore, the mapped
semantics and the reconstructed visual features obtained by the generator are
free of irrelevant information. Based on this, we get reconstructed visual features:

x̌ = G (E (x) ; 0) , (12)

where x contains the features of seen class and the generated features of unseen
class. It is noted that the Gaussian noise during generation is set to 0.

3.7 Classification

Now we have obtained the visual features of seen classes, the visual features of the
generated unseen class and the reconstructed visual features of both. Considering
the bias of the mapper to the seen class, in order to prevent the generated
unseen reconstructed visual features from losing classification information in the
process of reconstruction, we concatenate the reconstructed visual features with
the original visual features for the training of the final classifier. Figure 2 shows
the overall process. Let x̄ represent the features after concatenating as x̄ = x⊕ x̌,
where ⊕ represent the feature concatenation, the finally classifier loss is:

Lossfinal = −E [logP (y|x̄, θf )] , (13)

where θf is classifier parameters. Note that in the process of classification, we
use the original category label. In other words, we classify each visual feature
into corresponding category instead of internal category.

4 Experiments

4.1 Datasets and Setting

We evaluated our method on four datasets. AWA2 [39] contains 37322 instances
of 50 classes, and aPY [8] has 32 classes with a total of 15339 instances. The
fine-grained dataset CUB [38] contains 11788 bird instances of 200 classes, and
SUN [31] contains 14340 instances of 717 classes. For all datasets, we use 2048
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dimensional visual features extracted with ResNet-101 [15]. It should be not-
ed that we use the newly extracted 1024 dimensional semantic attribute for
CUB [32]. There are three hyper-parameters. We set α = 0.5 for coarse-grained
datasets, α = 0.2 for fine-grained datasets, and β = 0.01 for all. It is worthy not-
ed that all hyper-parameters are obtained with cross validation. To be specific,
we separate a certain number of the seen classes as the validational unseen. For
example, we randomly divide 40 seen classes in AWA2 into 30 seen classes and
10 validational unseen classes multiple times, and select the hyper-parameters
that can achieve the best mean performance for final training. Although this
operation is a bit different from k-fold cross-validation, it is an effective way
for ZSL hyper-parameter selection. In addition, to increase the generalization
ability, L2 regularization is added to train the generator.

4.2 Comparison with Baselines

Table 1 shows the performance comparison of our proposed method with other
methods. It can be seen that on the coarse-grained datasets, the results we have
obtained are higher than the models proposed in recent years, achieving the
state-of-the-art performance, and our result is 70.3% for AWA2 and 45.4% for
aPY. For fine-grained datasets, we obtained quite good results on CUB, which
is 65.4%. For SUN, the result is not the best, but it remains at the average level.

It should be noted that the internal categories of unseen classes are obtained
based on the principle of Convergent Evolution, which is biological. SUN and
aPY do not belong to the biological category datasets. This shows that our
proposed category expansion method is still effective on a non-biological dataset,
which means that the internal categories between similar categories also have the
same characteristic on non-biological datasets.

4.3 Verification on Other Generative Models

In order to verify that the Category Expansion we proposed is generally applica-
ble, we use the semantics of expanded categories to replace the original semantics,
and then apply them to other generative models. We verify this strategy on three
classical generative models, including F-VAEGAN-D2 [41], RFF-GZSL [14] and
CE-GZSL [13].

In order to fairly compare the impact of using the new semantics and original
semantics on the performance of different models, we reproduce the above three
models. We follow the parameters provided in the three articles, but because
some parameters are not provided and the experimental platform is different,
the reproduced results are a bit different from the original reported results.

For f-VAEGAN-D2, we use 1024 dimensional semantic attributes in the CUB
dataset, and other settings follow the parameters given in the paper. For RFF-
GZSL, we set batch size to 512. For CE-GZSL, because its batch size has a great
impact on performance and has high requirements for GPU card, we cannot set
the same batch size given in the paper, which makes the deviation of reproduction
results too large. We set the batch size to 128.
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Table 1. The results on four datasets. U represents the accuracy of the unseen class,
S represents the accuracy of the seen class, and H represents the harmonic mean. The
best value of each column is in bold, and ‘-’ means not reported.

Method AWA2 aPY SUN CUB
U S H U S H U S H U S H

f-CLSWGAN [40] - - - 32.9 61.7 42.9 42.6 36.6 39.4 43.7 57.7 49.7
RFF-GZSL [14] - - - - - - 45.7 38.6 41.9 52.6 56.6 54.6
cycle-CLSWGAN [9] - - - - - - 49.4 33.6 40.0 45.7 61.0 52.3
IZF [35] 60.6 77.5 68.0 - - - 52.7 57.0 54.8 52.7 68.0 59.4
GDAN [16] 32.1 67.5 43.5 30.4 75.0 43.4 38.1 89.9 53.4 39.3 66.7 49.5
CE-GZSL [13] 63.1 78.6 70.0 - - - 48.8 38.6 43.1 63.9 66.8 65.3
GCM-CF [44] 60.4 75.1 67.0 37.1 56.8 44.9 47.9 37.8 42.2 61.0 59.7 60.3
LisGAN [22] - - - - - - 42.9 37.8 40.2 46.5 57.9 51.6
FREE [6] 60.4 75.4 67.1 - - - 47.4 37.2 41.7 55.7 59.9 57.7
SE-GZSL [19] 80.7 59.9 68.8 - - - 40.7 45.8 43.1 60.3 53.1 56.4
HSVA [7] 59.3 76.6 66.8 - - - 48.6 39.0 43.3 52.7 58.3 55.3
E-PGN [43] 52.6 86.5 64.6 - - - - - - 52.0 61.1 56.2
Disentangled-VAE [23] 56.9 80.2 66.6 - - - 36.6 47.6 41.4 54.1 58.2 54.4
Ours 67.0 73.9 70.3 33.5 70.3 45.4 48.5 36.6 41.7 68.3 62.8 65.4

Table 2. The results of expanded categories on three baseline models. The upper part
is the result obtained by using the original semantics, and the lower part is the result
obtained using the internal class semantics. ‘EC’ stands for Expanded Categories.

Method AWA2 aPY SUN CUB
U S H U S H U S H U S H

f-VAEGAN-D2 57.5 68.7 62.6 32.9 61.7 42.9 44.0 39.8 41.8 64.0 67.0 65.5
f-VAEGAN-D2+EC 59.8 68.5 63.8 31.7 67.2 43.1 49.0 37.3 42.4 69.0 64.9 66.9
CE-GZSL 57.0 74.9 64.7 9.85 88.4 17.3 40.9 35.4 37.9 66.3 66.6 66.4
CE-GZSL+EC 62.5 75.1 68.2 35.0 57.3 43.5 49.7 32.3 39.5 67.6 66.3 66.9
RFF-GZSL 54.1 77.7 63.8 21.0 87.5 33.8 42.6 37.8 40.0 66.3 63.1 64.7
RFF-GZSL+EC 60.1 72.2 65.6 31.6 71.8 43.9 47.4 36.4 41.2 67.3 63.3 65.2

However, the above parameter settings do not affect our verification because
we follow the method of fixed variables. After replacing the original semantics,
the parameters of the model are not changed, and the experimental results are
compared only on the basis of modifying semantics.

Table 2 shows our experimental results. It can be seen that for coarse-grained
datasets AWA2 [21] and aPY, the performance has been significantly improved
after replacing semantics. For fine-grained datasets, although the performance is
also improved, the effect is not as obvious as that of coarse-grained datasets. The
classification on fine-grained datasets is meticulous, if each class is divided into
new internal classes, the semantic difference of internal classes is also limited.
For this reason, we think the result is reasonable. The experimental results fully
prove that our proposed Category Expansion method can be applied to different
generation models as a general method and improve the performance of the
model.
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Fig. 3. t-SNE illustration of visual features generated by traditional single attribute
generation method and attribute diversity method.
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Fig. 4. Results under different number of internal classes.

4.4 Feature Generation

In order to verify that the generated visual features are more consistent with the
real visual feature distribution, we visualize the generated visual features. Figure
3 (a) shows the distribution of real unseen visual features under t-SNE. Figure 3
(b) shows the unseen visual features generated by traditional single semantics, to
be noted that here we use the classical f-CLSWGAN model. Figure 3 (c) shows
the visual features generated by our proposed method. It can be seen that for
the visual features generated by a single semantic, each category is close to a
regular ellipse. The visual features generated by our category expansion method
are more irregular, which is in line with the irregular distribution of real visual
feature shown in Figure 3 (a).

4.5 Number of Internal Classes

Different clustering centers also have different impact on final performance. Fig-
ure 4 shows the experimental results for different numbers of internal classes.
We can see that the best results are k = 3 on AWA2, k = 4 on aPY, k = 3
on CUB and k = 3 on SUN. It can seen that after the accuracy H reaches the
highest point, the influence of the value of k on the coarse-grained datasets begin
to decrease and tend to be stable. But it has a negative impact on fine-grained
datasets. Coarse-grained datasets have higher tolerance for the division of in-
ternal classes, because coarse-grained datasets have more space for the division
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Fig. 5. Results of generating different numbers of unseen visual features.

of internal classes, while the fine-grained datasets have less space for class di-
vision, and the wrong internal class division will have a certain impact on the
performance of the final classifier.

4.6 Number of Features Generated

The number of unseen visual features generated has an impact on the final
experimental results. Figure 5 shows the comparison of results under different
numbers of visual features generated. We can see that with the increase of the
generated number, the accuracy of seen classes shows a downward trend, and
the accuracy of unseen classes shows an upward trend. When the number of
visual features generated is 3000 on AWA2, 500 on aPY, 70 on SUN and 75 on
CUB, the highest accuracy is achieved due to the balance between the number
of unseen and seen classes.

5 Conclusion

In this paper, we have discussed the problem of generating diverse feature with
a single semantic in generative ZSL. The visual features generated by traditional
semantics do not accord with the distribution of real visual features. Therefore,
we have proposed a category expansion method based on Relative Character,
and extend the results of semantic augmentation of seen classes to unseen class-
es based on Convergent Evolution. At the same time, we have employed a sim-
ple and efficient way to eliminate irrelevant information of visual features. Our
method has achieved good performance on four benchmark datasets. On this
basis, we have tested the semantic augmentation module as a general method
on three generative ZSL methods, and verified that this semantic augmentation
is generally applicable and can improve the performance of generative ZSL.
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