
Training-free NAS for 3D Point Cloud Processing

Ping Zhao, Panyue Chen, and Guanming Liu

Tongji University, Shanghai, China
{zhaoping,chenpanyue,2130776}@tongji.edu.cn

Abstract. Deep neural networks for 3D point cloud processing have ex-
hibited superior performance on many tasks. However, the structure and
computational complexity of existing networks are relatively fixed, which
makes it difficult for them to be flexibly applied to devices with differ-
ent computational constraints. Instead of manually designing the net-
work structure for each specific device, in this paper, we propose a novel
training-free neural architecture search algorithm which can quickly sam-
ple network structures that satisfy the computational constraints of var-
ious devices. Specifically, we design a cell-based search space that con-
tains a large number of latent network structures. The computational
complexity of these structures varies within a wide range to meet the
needs of different devices. We also propose a multi-objective evolutionary
search algorithm. This algorithm scores the candidate network structures
in the search space based on multiple training-free proxies, encourages
high-scoring networks to evolve, and gradually eliminates low-scoring
networks, so as to search for the optimal network structure. Because
the calculation of training-free proxies is very efficient, the whole algo-
rithm can be completed in a short time. Experiments on 3D point cloud
classification and part segmentation demonstrate the effectiveness of our
method1.

Keywords: 3D Point Cloud Processing · Training-free Proxies · Neural
Architecture Search.

1 Introduction

Deep neural networks (DNNs) for 3D point cloud processing have achieved su-
perior performance on many tasks and have received more and more extensive
attention. However, most of the existing DNNs rely on researchers to manually
design the network structures, which places high demands on the researchers’ ex-
perience and expertise. In addition, the structure and computational complexity
of existing networks are relatively fixed, which makes it difficult for them to be
flexibly applied to devices with different computational constraints. For exam-
ple, complex networks [20,30] in academia often cannot be deployed on mobile
devices. This restriction creates a split between academia and industry, limit-
ing the development of downstream tasks such as autonomous driving [12,27]

1 Codes will be available.

2013

https://github.com/zhaopings/Training-free-NAS-for-3D-Point-Cloud-Processing

2 P. Zhao et al.

Table 1. Two categories of existing training-free proxies. We classify them according
to the properties that they can reflect.

Pruning-Based Proxies for
Network Trainability

Gradnorm [1]: Euclidean norm of the parameter gra-
dients.

Synflow [23]: absolute Hadamard product of the param-
eter gradients and parameters.

Linear-Region-Based Proxies
for Network Expressivity

Naswot [16]: Hamming distance of binary activation
patterns between mini-batch samples.

Zen-score [13]: gradients of deep layer feature maps to
mini-batch samples.

and robotics [22]. To address the above issues, some studies [9,8,14] proposed
to use one-shot neural architecture search (NAS) to quickly sample structures.
However, these methods require careful training of a relatively large supernet
and suffer from the degenerate search-evaluation correlation problem [8], i.e.,
the performance of the sampled network at search time does not match its per-
formance at evaluation time. This problem further limits the development of
one-shot NAS methods.

In this paper, we focus on bridging the gap between academia and indus-
try for different needs of deep neural networks. Specifically, we propose a novel
training-free neural architecture search algorithm which can quickly sample net-
work structures that satisfy the computational constraints of various devices. We
first design a cell-based search space in which the network structure has dynamic
layer number and feature dimensions. The computational complexity of struc-
tures in this search space varies within a wide range to meet the needs of different
devices, e.g., we can sample very complex structures for cloud device, relative
simple structures for mobile device. Then we propose a multi-objective evolution-
ary search algorithm. This algorithm scores the candidate network structures in
the search space based on multiple training-free proxies, encourages high-scoring
networks to evolve, and gradually eliminates low-scoring networks, so as to search
for the optimal network structure.

Training-free proxies are numerical metrics that can evaluate the performance
of a neural network before training. Previous studies [1,13,16] usually use a single
proxy to guide the search. However, a single proxy can only reflect a single
property2 of the network structure, cannot fully reflect different properties of a
complex network structure. Based on such single proxy, we can only encounter
a small part of network structures in the search space. Therefore, in this paper,
we propose to use multiple training-free proxies jointly. The objective of our
search algorithm is to find network structures that perform well across multiple
training-free proxies. We believe that in this way similar to ensemble learning, the
2 A network has various properties, e.g., trainability (how effective a network can be

optimized via gradient descent), expressivity (how complex the function a network
can represent).

2014

Training-free NAS for 3D Point Cloud Processing 3

search algorithm can sample more potential structures from the search space. To
jointly use proxies that reflect various properties, we divide them into different
categories, as shown in Table 1.

To sum up, there are two stages in our method. In the search stage, based
on multiple training-free proxies, we use an evolutionary search algorithm to
find the potential network structures under a specific computational constraints
in the designed search space. In the evaluation stage. We train these structures
from scratch on different tasks to obtain their final performance. Experiments on
3D point cloud classification and part segmentation show that, compared with
previous methods, our method can find better network structures under different
computational constraints, which makes our method widely applicable to various
devices. Furthermore, compared to traditional NAS methods, our search stage
only takes hours, which further reduces the usage bottleneck of our method.

Our contributions are as follows:

1. We design a novel search space adapted to training-free proxies for 3D point
cloud processing neural networks. This search space allows us to explore
potential structures with varying amounts of computation;

2. We propose a multi-objective evolutionary search algorithm, which enables
us to search with multiple proxies in an ensemble learning manner.

3. Our method largely bridges the gap between academia and industry, exper-
iments on 3D point cloud classification and part segmentation demonstrate
the effectiveness of our method.

2 Related Works

2.1 Point Cloud Processing

PointNet [18] first proposes to use a multi-layer perceptron with shared weights
to process each point and use a symmetric aggregation function to obtain the
global feature. PointNet++ [19] uses ball query for each point to obtain features
of its neighbor points. PointCNN [11] aligns the points in a certain order by
predicting the transformation matrix of the local point set. PCNN [2] proposes
a parameterized continuous convolution operation. DGCNN [28] uses features
from k-Nearest Neighbors (k-NN) and proposes an edge convolution operator
for feature extraction. AdaptConv [35] proposes to jointly use feature relation-
ship and coordinate relationship to achieve efficient graph convolution. These
studies have proved the effectiveness of deep neural networks in 3D point cloud
processing. However, they have relatively fixed network structures, which makes
them difficult to be flexibly applied to devices with different computational con-
straints.

2.2 Training-free Neural Architecture Search

Training-free neural architecture search algorithms first come from network prun-
ing. Some studies [7,26,23] try to prune networks in the initialization stage. SNIP

2015

4 P. Zhao et al.

[7] proposes an importance metric to approximate the change of network loss af-
ter a specific parameter is removed. SynFlow [23] proposes synflow metric that
can avoid layer collapse during pruning. Abdelfattah et al. [1] extend these indi-
cators to neural architecture search and use them to evaluate the performance of
the whole neural network. Other studies [16,13] are motivated by recent theory
advances in deep networks and can also be calculated before network train-
ing. NASWOT [16] calculates Hamming distance of binary activation patterns
between mini-batch samples to estimate linear regions of RELU networks. Zen-
NAS [13] proves that the expressivity of the network can be efficiently measured
by its expected Gaussian complexity. These works have achieved competitive
performance. However, few of them use multiple training-free proxies jointly.
In addition, they are all applied to 2D image classification and have not been
verified on more tasks such as 3D point cloud classification and segmentation.

2.3 Neural Architecture Search in 3D Point Cloud Processing

Some studies [9,14,24,24,8,17] apply one-shot NAS to 3D point cloud process-
ing and achieve relatively good performance. LC-NAS [9] implements a latency
constraint formulation to trade-off between accuracy and latency in 3D NAS.
PolyConv [14] introduces a poly-convolutional feature encoder that comprises
multiple feature aggregation functions. SPVNAS [24] implements a sparse point-
voxel convolution network to effectively process large-scale 3D scenes. SGAS [8]
proposes a greedy algorithm and designs multiple numerical metrics such as edge
importance for efficient structure selection. PointSeaNet [17] proposes a differ-
entiable convolution search paradigm to create a group of suitable convolutions
for 3D point cloud processing. In contrast to these one-shot NAS studies, our
training-free method does not require training a relatively large supernet and
does not suffer from the degenerate search-evaluation correlation problem.

3 Methods

3.1 Preliminaries and Notations

To quickly sample network structures that satisfy the computational constraints
of various devices, we propose a novel training-free neural architecture search
algorithm. In section 3.2, we analyze the existing training-free proxies and clas-
sify them based on the properties they can reflect. In section 3.3, we propose
a search space for 3D point cloud processing network. In section 3.4, we intro-
duce a novel multi-objective evolutionary search algorithm based on multiple
training-free proxies.

Let X = {xi}Ni=1 denote a minibatch point cloud data, xi ∈ R3×G denote a
point cloud with G points, θ denote network parameters which is initialized by
a Gaussian distribution N (0, 1), L(xi,θ) denote network loss to the input xi.

2016

Training-free NAS for 3D Point Cloud Processing 5

150 200 250
gradnorm

0.926

0.927

0.928

0.929

0.930

OA
(%

)

= 0.061

57.5 60.0 62.5 65.0 67.5
synflow

0.926

0.927

0.928

0.929

0.930

OA
(%

)

= 0.556

990 1000 1010 1020
naswot

0.926

0.927

0.928

0.929

0.930

OA
(%

)

= 0.663

23 24 25 26
zen score

0.926

0.927

0.928

0.929

0.930

OA
(%

)

= 0.518

Fig. 1. Correlation between the score of different training-free proxies (horizontal axis)
and the overall accuracy (vertical axis). ρ stands for the Pearson coefficient.

3.2 Training-free Proxies

We divide existing training-free proxies into two categories according to the
properties that they can reflect: (1) Pruning-based proxies for trainability of
neural networks. These kinds of proxies come from network pruning studies
and indicate the performance of the neural network by calculating an indicator
related to network parameter gradient at initialization; (2) Linear-region-based
proxies for the expressivity of neural network. The linear region [4,31] is an
essential indicator of the expressivity of the RELU neural network. These kinds
of proxies indicate the performance of the network by estimating the number of
linear regions of neural networks.

(1) Pruning-Based Proxies for Trainability
Gradnorm [1] is one of the simplest proxies. It sums the Euclidean norm of

the parameter gradients after a single backward of minibatch data and uses this
proxy to represent the trainability of a network.

gradnorm : Sgradnorm =
∑
θ

∥∥∥∥∂L(X,θ)

∂θ

∥∥∥∥ (1)

Synflow [23,1] proposes iterative magnitude pruning to avoid layer-collapse
in premature pruning. Formally, it is the absolute Hadamard product of the
gradient of loss to each parameter and the parameter itself in a single minibatch.
Following [1], when calculating synflow, we compute a loss which is simply the
product of all parameters in the network, and sum up synflow of each parameter
to represent the trainability of a network.

synflow : Ssynflow =
∑
θ

∣∣∣∣∂L(X,θ)

∂θ
⊙ θ

∣∣∣∣ (2)

(2) Linear-Region-Based Proxies for Expressivity
Naswot [16] estimates the linear regions of RELU networks by calculating

the Hamming distance of binary activation patterns between mini-batch samples.
Suppose there are M rectified linear units in the network. For a specific input xi,
we can arrange its activation patterns into a pattern string pi. In this way, the

2017

6 P. Zhao et al.

+

0

0

0

0

320

320

320

320

(c) 𝑏𝑎𝑠𝑖𝑐 𝑐𝑒𝑙𝑙

1 × 1 𝑐𝑜𝑛𝑣

1 × 1 𝑐𝑜𝑛𝑣

𝑛 × 𝑛 𝑐𝑜𝑛𝑣

1 × 1 𝑐𝑜𝑛𝑣

𝐿𝑖𝑛𝑒𝑎𝑟

𝑘-𝑁𝑁

𝐿𝑖𝑛𝑒𝑎𝑟

𝑀𝑎𝑥 𝑃𝑜𝑜𝑙

(b) 𝑛 × 𝑛 𝑐𝑜𝑛𝑣(a) 1 × 1 𝑐𝑜𝑛𝑣

𝐵 × 𝑁 × 𝐶

𝐵 × 𝑁 × 𝐶′

0 320𝐶′

𝐵 × 𝑁 × 𝐶

𝐵 × 𝑁 × 𝐶 × 𝐾

𝐵 × 𝑁 × 𝐶′ × 𝐾
3200 𝐶′

𝐵 × 𝑁 × 𝐶′

𝐵 × 𝑁 × 𝐶

𝐵 × 𝑁 × 𝐶′

𝐵 × 𝑁 × 𝐶′′

𝐵 × 𝑁 × 𝐶′′′

𝐵 × 𝑁 × 𝐶′′′

𝐶′

𝐶′′

𝐶′′′

𝐶′′′

Fig. 2. Illustration of 1 × 1 convolution (a), n × n convolution (b) and basic cell (c).
‘Linear’ means a linear layer shared by all points. Note that the output feature channels
of each ‘Linear’ layer are dynamic (The parts in solid lines mean they are chosen while
those in dashed lines are not.), leading to various basic cells.

number of linear regions can be estimated by calculating the Hamming distance
dH of different inputs in a minibatch.

naswot : Snaswot = log

∣∣∣∣∣∣∣
M − dH(p1 − p1) . . . M − dH(p1 − pN)

...
. . .

...
M − dH(pN − p1) . . . M − dH(pN − pN)

∣∣∣∣∣∣∣ (3)

Zen-score [13] calculates the change of deep layer feature maps f(X,θ) in
the network after adding disturbance to the input X. This result is equal to
the Gaussian complexity of the neural network, which considers not only the
distribution of linear regions but also the Gaussian complexity of the linear
classifier in each linear region.

zen-score : Szen-score = log

∥∥∥∥∂f(X,θ)

∂X

∥∥∥∥ (4)

Through the classification of existing training-free proxies, we can jointly use
proxies with different properties for neural architecture search. We believe that
NAS can achieve better performance through this ensemble learning-like way.
Experiments have also proved this view.

3.3 Point Cloud Search Space

Similar to many classical neural architecture search algorithms [36,34,21,3], we
design a cell-based search space, the macro architecture of the network is stacked

2018

Training-free NAS for 3D Point Cloud Processing 7

𝐵𝑎𝑠𝑖𝑐 𝑠𝑒𝑙𝑙 (3,64,64)

𝐵𝑎𝑠𝑖𝑐 𝑠𝑒𝑙𝑙 (64,128,128)

𝐿𝑖𝑛𝑒𝑎𝑟 (1024)

𝑃𝑜𝑜𝑙

𝐶𝐿𝑆 𝐷𝑒𝑐𝑜𝑑𝑒𝑟

1024 × 3

1024 × 64

1024 × 128

1024 × 1024

1024

40

Fig. 3. Exploring the effects of hyperparameter k on network performance and training-
free proxies. k stands for the number of neighbors obtaining in k-NN algorithm. The
left side shows the network structure used in this experiment, and the right side shows
the effects of k to overall accuracy and proxies. Except naswot, other proxies are not
sensitive to k.

by several basic cells, only the inner architecture of each cell needs to be searched.
In our paper, as shown in Figure 2, a basic cell is a bottleneck block[5] consisting
of two 1 × 1 convolutions and one n × n convolution. However, 3D point cloud
data is disordered, and it is difficult to use regular convolutions in 2D image
processing to process it, so we first define the convolutions for 3D point cloud
processing based on previous studies.

1 × 1 convolution comes from PointNet [18]. Considering the permutation
invariance of 3D point cloud data, PointNet first proposes to use a linear layer
with shared weights to process each point. This operation well maintains the
permutation invariance but can not mine the relationship between points. We
take this linear layer with shared weights as a basic component which corresponds
to 1× 1 convolution in 2D image processing.

n×n convolution comes from DGCNN [28]. During a n×n convolution, the k-
NN algorithm is firstly used to obtain the features of k neighbors of each point in
the point cloud based on the feature distance between points. Then a linear layer
with shared weights is used to deal with these features (maintaining permutation
invariance). Finally, a max pooling operation is used to aggregate features from
neighbors. We take these operations as a basic component which corresponds to
the convolution with a size greater than 1× 1 in 2D image processing.

It should be noted that in 2D image processing, the receptive field of n× n
convolution is determined by the size of n, while in 3D point cloud processing,
the receptive field of n × n convolution is determined by the size of k in k-NN.
In our experiments (Figure 3), we fix the network structure and the number
of feature channels, and only change the value of k in the n× n convolution to
observe the change of overall accuracy (training from scratch on ModelNet40 [29]
dataset) and proxies, we can find that except naswot, other training-free proxies
are not sensitive to the value of k. This may be because the parameter amount of
n× n convolution in 3D point cloud processing is completely determined by its

2019

8 P. Zhao et al.

Linear

KNN

Conv2d

Max pool

KNN

Conv2d

Conv2d

Matmul

Max pool

Dynamic
Graph Conv

Dynamic
Graph Conv

Linear Adapt ive
Conv Basic Block Bott leneck

Block

Adaptive
Conv

Linear

Adaptive
Conv

Linear

N×G×C

N×G×C'

N×G×C

N×G×C×K

N×G×C'×K

N×G×C'

N×G×C

N×G×C×K

N×G×C'×K

N×G×6C'×K

N×G×C'×K

N×G×C'

N×G×6×K

Add Add

N×G×C

N×G×C'

N×G×C''

N×G×C''

N×G×C

N×G×C'

N×G×C'

N×G×C''

N×G×C''

Basic
Cell 1

Input Points Basic
Cell 2

Basic
Cell 3

Basic
Cell 4

Basic
Cell 5

Basic
Cell 6

Basic
Cell 8

Basic
Cell 7

Basic
Cell 5 Linear Poo l MLP Concat

Linear Poo l

Repeating

MLP

Classification Segmentation

Search space
MEA-NAS Classification/Segmentation

Pareto optimal structures Performance

Search stage Train/val stage

Fig. 4. Examples of the network structure for classification with 5 basic cells and the
network structure for segmentation with 8 basic cells, respectively. Note that we only
search structures of network encoder, and the decoder part is a multi-layer perceptron.

linear layer. This operation is similar to 1× 1 convolution in the case of random
initialization. Therefore, in this paper, we fix the k value as the empirical value
of 20.

As shown in Figure 4, we stack multiple different basic cells to form the
encoder of the network, the decoder is a multi-layer perceptron. In the search
stage, The number of output feature channels of three convolutions in each cell
varies in [32,64..., 320], which means that there are 1000 different cells in our
search space.

We randomly sample 20 classification networks with 3 cells in this search
space, calculate their values on different training-free proxies, and train them
from scratch on ModelNet40 [29] dataset to obtain the overall accuracy. Then
we report the correlation between the proxies and the accuracy. As shown in
Figure 1, gradnorm does not perform well in this search space. Therefore, in the
subsequent experiments, we will not consider gradnorm. The other three proxies
can achieve high correlation coefficients.

3.4 Training-free NAS

We use the standard single-objective evolutionary algorithm in [13] as a base-
line. In this paper, we call it SE-NAS (Single-objective Evolutionary Neural
Architecture Search). It uses one single training-free proxy as objective to rank
candidate structures and randomly mutate structures in population. In [13], they
only use zen-score as objective. We also use synflow and naswot for compar-
ison. After multiple iterations of SE-NAS, we select the three highest-scoring
structures in the population and retrain these structures to report the optimal
performance they can achieve.

To use multiple proxies jointly in an ensemble learning way, we design ME-
NAS (Algorithm 1): a multi-objective evolutionary neural architecture search
algorithm. Different from SE-NAS, since each structure corresponds to multiple
proxies, it is difficult for us to compare two structures directly through the
value of proxies. Therefore, we introduce the concept of Pareto dominance, that
is, when the values of a structure A on all proxies are better than those of
structure B, then structure A dominates structure B, or structure A is better

2020

Training-free NAS for 3D Point Cloud Processing 9

Algorithm 1 ME-NAS
Require: Search space S, FLOPs constraint B, maximal depth L, total number of

iterations T , population size N , number of new individuals per iteration n.
Ensure: Optimal structures.
1: Randomly generate N structures {F0, . . . , FN} and calculate their training-free

proxies.
2: Initialize population P = {F0, . . . , FN}.
3: for t = 1, 2, · · · , T do
4: Devide P into M non-dominated fronts (R0,R1, . . . ,RM) by fast non-dominated

sort on training-free proxies and calculate crowding-distance in each non-
dominated front.

5: Define new population P̂.
6: for m = 0, 1, · · · ,M do
7: if |P̂|+ |Rm| > N then
8: break.
9: end if

10: Add all individuals in Rm to P̂.
11: end for
12: Fill P̂ to |P̂| = N by adding individuals from Rm according to crowding-

distance.
13: P = P̂.
14: Repeat steps 4 once.
15: Select n individuals and MUTATE (Algorithm 2) them to generate n new indi-

viduals.
16: Calculate training-free proxies of new individuals and add them to P.
17: end for
18: Return all architectures in R0.

than structure B. Through this method, we can divide all structures in the
population into multiple non-dominated fronts, the structure of the upper front
dominates the structure of the lower front, and there is no dominance relationship
between the structures of the same front. When the population evolves, we select
the structure to be mutated by its front. The higher the level, the more likely
it is to mutate. Finally, ME-NAS returns multiple top-front structures (usually
2 to 4), which we individually retrain and report the optimal performance they
can achieve.

4 Experiments

4.1 Implementation Details

Our experiments are mainly carried out on the 3D point cloud classification and
part segmentation task. First, we compare SE-NAS and ME-NAS under different
computation constraints and compare our results with existing methods on 3D
point cloud classification. Then, we give the quantitative and qualitative results
of 3D point cloud part segmentation.

2021

10 P. Zhao et al.

Algorithm 2 MUTATE
Require: Structure Ft, Cell number M of Ft, Search space S.
Ensure: Randomly mutated architecture F̂t.
1: Uniformly select an integer i from [0,M].
2: if i = M then
3: Generate a new cell b̂ from S.
4: Add b̂ to the end of Ft.
5: else
6: Uniformly alternate channel width of i-th cell in Ft within some range or even

delete this cell.
7: end if
8: Return the mutated architecture F̂t.

During neural architecture search, we set the maximum number of cells to
5 and 8 for classification and part segmentation, respectively. The number of
input channels of each cell is determined by the previous cell, and the number
of middle-layer channels and output channels are selected from [32, 64, ..., 320].
The population size of the evolutionary algorithm is 50, and the number of
iterations is 30000. To show that our algorithm can be flexibly applied to various
devices, we set several different computation constraints in the search process.
For classification tasks, we set the computation constraint to 0.5G MACs (Tiny),
1G (Small), 2G (Middle), 3G (Large), 4G (Huge). For segmentation tasks, we
set the computation constraint to 4G (Tiny), 8G (Small), 12G (Middle), 16G
(Large), 20G (Huge).

Our classification experiments are carried out on the ModelNet40 [29] dataset.
This dataset contains 12311 meshed CAD models from 40 categories, where 9843
models are used for training and 2468 models for testing. We randomly sample
1024 points from each object as network inputs and only use the (x,y, z) coor-
dinates of the sampled points as input. The training strategy is similar to [35]. It
should be noted that the randomness of 3D point cloud classification is relatively
large, so in all classification experiments, we train the same structure three times
with different seeds and report the average accuracy.

Table 2. SE-NAS and ME-NAS with different training-free proxies under different
computational constraints.

Method synflow naswot zen-score Tiny Small Middle Large Huge
SE-NAS ✓ 92.82 93.01 93.05 93.29 93.31
SE-NAS ✓ 92.92 93.06 93.22 93.33 93.46
SE-NAS [13] ✓ 92.85 92.99 93.12 93.24 93.37
ME-NAS ✓ ✓ 93.03 93.20 93.40 93.53 93.66
ME-NAS ✓ ✓ 93.00 93.07 93.27 93.38 93.49
ME-NAS ✓ ✓ 93.02 93.17 93.37 93.50 93.68
ME-NAS ✓ ✓ ✓ 93.08 93.19 93.38 93.53 93.71

2022

Training-free NAS for 3D Point Cloud Processing 11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
FLOPs(G MACs)

92.0

92.2

92.4

92.6

92.8

93.0

93.2

93.4

93.6

93.8

OA
(%

)

(a)

synflow
naswot
zen-score
random
synflow+naswot
naswot+zen-score
synflow+zen-score
synflow+naswot+zen-score

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
FLOPs(G MACs)

92.0

92.2

92.4

92.6

92.8

93.0

93.2

93.4

93.6

93.8

OA
(%

)

DGCNN

PointCNN
PCNN

AdaptConv
PointASNL

3D-GCN

(b)

synflow+naswot

Fig. 5. Exploring the relationships between computational constraints during NAS
(horizontal axis) and network performance (vertical axis) on the ModelNet40 dataset.
(a) shows the comparisons of SE-NAS and ME-NAS with different training-free proxies.
random means randomly selecting structures. (b) shows the comparisons of ME-NAS
(synflow+naswot) and other studies.

Our part segmentation experiments are carried out on the ShapeNetPart [33]
dataset. This dataset contains 16,881 shapes from 16 categories, with 14,006 for
training and 2,874 for testing. Each point is annotated with one label from 50
parts, and each point cloud contains 2-6 parts. We randomly sample 2048 points
from each shape for segmentation. The training strategy is similar to [35].

4.2 3D Point Cloud Classification

SE-NAS and ME-NAS under Different Computational Constraints We
report the results of SE-NAS and ME-NAS under different computational con-
straints and different training-free proxies in Table 2 and Figure 5 (a), where
random means randomly selecting structures within the computational con-
straints. As we can see, all training-free proxies can achieve better results than
random, and jointly using multiple proxies that reflect different properties in an
ensemble learning way can further improve performance.

Comparisons with Other Works
We compare the results3 reported by ME-NAS (synflow+naswot) with other
studies in 3D point cloud classification. In Figure 5 (b), we draw the FLOPs-OA
diagram4. In Table 3, we provide more comparison results. Experiments show
that with a large computational constraints, the performance of the proposed
ME-NAS surpasses existing manual methods and one-shot NAS methods, with
a small computational constraints, ME-NAS can also achieve relatively good
performance.
3 Note that we do not use the voting strategy during testing in all experiments.
4 We just test a few networks’ FLOPs, cause some papers are not source-opened.

2023

12 P. Zhao et al.

Table 3. Classification results of ME-NAS (synflow+naswot) and other studies on the
ModelNet40 dataset. ‘Design’ means how this work is designed, ‘MD’ means manual
design. ‘OS’ means one-shot NAS methods, ‘ZS’ means zero-shot NAS methods.

Method Design Input #points OA(%)
PointNet [18] MD xyz 1k 89.2
PointNet++ [19] MD xyz, normal 5k 91.9
3D-GCN [15] MD xyz, normal 1k 92.1
PointCNN [11] MD xyz 1k 92.2
PCNN [2] MD xyz 1k 92.3
LC-NAS [9] OS xyz 1k 92.8
DGCNN [28] MD xyz 1k 92.9
KPConv [25] MD xyz 6.8k 92.9
PointASNL [32] MD xyz, normal 1k 93.2
SGAS [8] OS xyz 1k 93.2
AdaptConv [35] MD xyz 1k 93.4
PolyConv [14] OS xyz 1k 93.5
ME-NAS (synflow+naswot)-Tiny ZS xyz 1k 93.03
ME-NAS (synflow+naswot)-Small ZS xyz 1k 93.20
ME-NAS (synflow+naswot)-Middle ZS xyz 1k 93.40
ME-NAS (synflow+naswot)-Large ZS xyz 1k 93.53
ME-NAS (synflow+naswot)-Huge ZS xyz 1k 93.66

4.3 3D Point Cloud Part Segmentation

Comparisions with Other Works
3D point cloud part segmentation is a more challenging task, we compare the re-
sults reported by ME-NAS (synflow+naswot) with other studies on the ShapeNet-
Part dataset in Table 4, the proposed ME-NAS (synflow+naswot) can also sur-
pass existing methods.

Visualization
Finally, we report the visualization results of ME-NAS (synflow+naswot)-Tiny
on the ShapeNetPart dataset. As shown in Figure 6, our model can achieve
results similar to ground truth annotations on multiple categories.

5 Conclusions

In this paper, we propose a novel training-free neural architecture search algo-
rithm for 3D point cloud processing. Our method can flexibly adjust the compu-
tation constraint of the searched structures to meet the needs of various devices.
Experiments on 3D point cloud classification and part segmentation show that
our method can achieve competitive results under different computation con-
straints, which will promote the development of downstream tasks. Futhermore,
our method is highly scalable, future research can add new cells to the search
space or come up with new training-free proxies for a better performance.

2024

Training-free NAS for 3D Point Cloud Processing 13

Table 4. Part segmentation results of ME-NAS (synflow+naswot) and other studies on
the ShapeNetPart dataset evaluated as the mean class IoU (mcIoU) and mean instance
IoU (mIoU).

Method mcIoU mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
plane phone bike board

Kd-Net [6] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 87.4 86.7 78.1 51.8 69.9 80.3
PointNet [18] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [19] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SO-Net [10] 81.0 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
DGCNN [28] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
PCNN [2] - 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PointCNN [11] - 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
PointASNL [32] - 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2
3D-GCN [15] 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
AdaptConv [35] 83.4 86.4 84.8 81.2 85.7 79.7 91.2 80.9 91.9 88.6 84.8 96.2 70.7 94.9 82.3 61.0 75.9 84.2
ME-NAS (synflow+naswot)-Tiny 83.1 85.9 84.1 84.4 88.0 79.2 91.1 74.7 91.5 88.2 85.7 96.0 69.8 94.0 82.0 59.5 76.2 83.3
ME-NAS (synflow+naswot)-Small 83.5 86.1 84.5 85.3 88.6 80.2 91.0 76.1 92.2 88.4 85.7 95.4 71.0 94.3 82.4 60.5 76.2 82.9
ME-NAS (synflow+naswot)-Middle 83.7 86.3 85.0 85.6 87.3 80.6 91.2 74.3 92.1 88.6 86.0 96.1 72.1 94.2 82.3 61.2 74.6 83.1
ME-NAS (synflow+naswot)-Large 83.9 86.5 85.1 86.0 88.3 80.4 91.2 77.6 91.3 88.6 85.4 96.1 71.6 94.6 82.2 62.1 75.4 83.6
ME-NAS (synflow+naswot)-Huge 84.1 86.6 85.3 86.2 88.6 80.5 91.5 77.8 91.7 88.7 86.0 96.0 71.8 94.4 82.3 62.6 75.4 83.3

Fig. 6. Segmentation results on the ShapeNetPart dataset. We select 8 categories for
visualization.

Acknowledgements The work is partially supported by the National Nature
Science Foundation of China (No. 61976160, 61906137, 61976158, 62076184,
62076182) and Shanghai Science and Technology Plan Project (No.21DZ1204800)
and Technology research plan project of Ministry of Public and Security (Grant
No.2020JSYJD01).

References

1. Abdelfattah, M.S., Mehrotra, A., Dudziak, Ł., Lane, N.D.: Zero-cost proxies for
lightweight nas. arXiv preprint arXiv:2101.08134 (2021)

2025

14 P. Zhao et al.

2. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by ex-
tension operators. arXiv preprint arXiv:1803.10091 (2018)

3. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081 (2018)

4. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: Interna-
tional Conference on Machine Learning. pp. 2596–2604. PMLR (2019)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

6. Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the recognition
of 3d point cloud models. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 863–872 (2017)

7. Lee, N., Ajanthan, T., Torr, P.H.: Snip: Single-shot network pruning based on
connection sensitivity. arXiv preprint arXiv:1810.02340 (2018)

8. Li, G., Qian, G., Delgadillo, I.C., Muller, M., Thabet, A., Ghanem, B.: Sgas: Se-
quential greedy architecture search. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1620–1630 (2020)

9. Li, G., Xu, M., Giancola, S., Thabet, A., Ghanem, B.: Lc-nas: Latency con-
strained neural architecture search for point cloud networks. arXiv preprint
arXiv:2008.10309 (2020)

10. Li, J., Chen, B.M., Lee, G.H.: So-net: Self-organizing network for point cloud anal-
ysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 9397–9406 (2018)

11. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
x-transformed points. vol. 31 (2018)

12. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor
3d object detection. In: Proceedings of the European Conference on Computer
Vision. pp. 641–656 (2018)

13. Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q., Li, H., Jin, R.: Zen-nas:
A zero-shot nas for high-performance image recognition. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 347–356 (2021)

14. Lin, X., Chen, K., Jia, K.: Object point cloud classification via poly-convolutional
architecture search. In: Proceedings of the 29th ACM International Conference on
Multimedia. pp. 807–815 (2021)

15. Lin, Z.H., Huang, S.Y., Wang, Y.C.F.: Convolution in the cloud: Learning de-
formable kernels in 3d graph convolution networks for point cloud analysis. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 1800–1809 (2020)

16. Mellor, J., Turner, J., Storkey, A., Crowley, E.J.: Neural architecture search with-
out training. In: International Conference on Machine Learning. pp. 7588–7598
(2021)

17. Nie, X., Liu, Y., Chen, S., Chang, J., Huo, C., Meng, G., Tian, Q., Hu, W., Pan, C.:
Differentiable convolution search for point cloud processing. In: 2021 IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 652–660 (2017)

19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. vol. 30 (2017)

2026

Training-free NAS for 3D Point Cloud Processing 15

20. Ran, H., Zhuo, W., Liu, J., Lu, L.: Learning inner-group relations on point clouds.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 15477–15487 (2021)

21. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Aging evolution for image classifier
architecture search. In: AAAI Conference on Artificial Intelligence. vol. 3 (2019)

22. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3d point
cloud based object maps for household environments. Robotics and Autonomous
Systems 56(11), 927–941 (2008)

23. Tanaka, H., Kunin, D., Yamins, D.L., Ganguli, S.: Pruning neural networks without
any data by iteratively conserving synaptic flow. vol. 33, pp. 6377–6389 (2020)

24. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching efficient
3d architectures with sparse point-voxel convolution. In: European Conference on
Computer Vision (2020)

25. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 6411–6420
(2019)

26. Wang, C., Zhang, G., Grosse, R.: Picking winning tickets before training by pre-
serving gradient flow. arXiv preprint arXiv:2002.07376 (2020)

27. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric con-
tinuous convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2589–2597 (2018)

28. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics 38(5), 1–12
(2019)

29. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1912–1920 (2015)

30. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: Learning curves
for point clouds shape analysis. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 915–924 (2021)

31. Xiong, H., Huang, L., Yu, M., Liu, L., Zhu, F., Shao, L.: On the number of linear
regions of convolutional neural networks. In: International Conference on Machine
Learning. pp. 10514–10523. PMLR (2020)

32. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: Pointasnl: Robust point clouds pro-
cessing using nonlocal neural networks with adaptive sampling. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
5589–5598 (2020)

33. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q.,
Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d
shape collections. ACM Transactions on Graphics 35(6), 1–12 (2016)

34. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network
architecture generation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2423–2432 (2018)

35. Zhou, H., Feng, Y., Fang, M., Wei, M., Qin, J., Lu, T.: Adaptive graph convo-
lution for point cloud analysis. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 4965–4974 (2021)

36. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 8697–8710 (2018)

2027

	Training-free NAS for 3D Point Cloud Processing

