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Abstract. Despite recent successes in 3D human mesh/pose recovery, the hu-
man mesh/pose reconstruction ambiguity is a challenging problem that can not
be avoided as lighting, occlusion or self-occlusion in scenes happens. We argue
that there could be multiple 3D human meshes corresponding a single image from
a view point, because we really do not know what happens in extreme lighting
or behind occlusion/self occlusion. In this paper, we address the problem using
Conditional Generative Adversarial Nets (CGANs) to generate multiple hypothe-
ses for 3D human mesh and pose from a single image under the condition of 2D
joints and relative depth of adjacent joints. The initial estimation of 2D human
skeletons, relative depth and features is taken as input of CGANs to train the
generator and discriminator in the first stage. Then the generator of CGANs is
used to generate multiple human meshes via different conditions which are con-
sistent with human silhouette and 2D joint points in the second stage. Selecting
and clustering are utilized to eliminate abnormal and redundant human meshes.
The number of hypothesis is not unified for each single image, and it is dependent
on 2D pose ambiguity. Unlike the existing end-to-end 3D human mesh recovery
methods, our approach consists of three task-specific deep networks trained sepa-
rately to mitigate the training burden in terms of time and datasets. Our approach
has been evaluated not only on the datasets of laboratory and real scenes but
also on Internet images qualitatively and quantitatively, and experimental results
demonstrate the effectiveness of our approach.

Keywords: Human mesh · CGAN · Multiple Hypotheses.

1 Introduction

Recovering 3D human mesh and pose from images is a fundamental problem in the
field of computer vision. It is challenging to reconstruct 3D human mesh accurately
and robustly from a single image, which has drawn a lot of attention from researchers.
Essentially this is an ill-posed problem whether using traditional 3D geometric methods
or using deep learning methods to restore. The number of geometric constraints is less
than the number of unknown variables, which causes the uncertainty of 3D human mesh
and pose reconstruction. Further, as extreme lighting, occlusion or self-occlusion in real
scenes happens, it exacerbates the uncertainty [51, 10]. Most of the existing methods
are only able to recover one plausible human mesh from a single image, however, there

1709



2 Xu Zheng et al.

Input Hypothesis 1 Hypothesis 2 3D poses

Fig. 1. Our approach takes a single image as input, and recovers multiple diverse hypotheses of
3D human mesh and pose. Here two hypotheses for human mesh are shown in the picture in two
different views. (Best view in color)

exists multiple possible reconstruction for a number of images, see the first column in
Fig. 1, that is one image leads to multiple reconstructions.

Generative Adversarial Nets are the popular frameworks to train generative model
in an alternative manner, however, they suffer from the mode collapse easily, and they
are hard to train. So Mirza and Osindero proposed CGANs, and conditioning could be
class labels, some part of data or even data from different modality [29]. CGANs have
many benefits. They can generate models under the control of condition, and speed the
convergence of model training. This property of CGANs is quite suitable to solve the
problem of multiple hypotheses reconstruction for human mesh and pose. In this paper,
we try to generate multiple hypotheses for reasonable 3D human mesh via CGANs
which are consistent with human silhouette and 2D joint points detected from images,
see Fig. 1.

Unlike the existing end-to-end methods for 3D human mesh reconstruction, we pro-
pose a two-stage approach to generate multiple hypotheses of 3D human mesh under
the CGANs framework. In the first stage, human silhouette, 2D joints and features are
detected automatically, and CGANs are trained to generate human mesh bases in an ad-
versarial manner. Since 2D joints and relative depth may be estimated incorrectly due
to the extreme light or occlusion/self-occlusion, so we expand the conditions to control
the generation of 3D human meshes and poses. So in the second stage, limited hypothe-
ses for 3D human mesh and pose are produced by varying the conditions of CGANs
due to being tolerant to detection ambiguity, then clustered in a cascade pipeline. Here,
the conditions include 2D joints and the relative depth of adjacent joints. One of the
benefits of our system is that the background influence is removed since only human
silhouette, 2D joints and relative depth of 2D joints are taken as input for CGANs, it is
easily generalized to different scenarios. Our contributions include:
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1) We propose a two-stage weakly-supervised approach to address the problem of
multiple hypotheses for human mesh and pose by CGANs, which only takes human
silhouette as input under the constraints of 2D joints and relative depth without any 3D
supervision.

2) We generate multiple 3D human body meshes by importing limited and discrete
hypotheses with varying conditions of CGANs and clustering, instead of sampling from
a probability distribution. In our approach, the number of conditions is limited and
discrete, since the hypotheses space is limited and discrete.

3) We evaluate throughout the experiments that our system is suitable for multi-
ple hypotheses generation for 3D human mesh and pose not only from image datasets
of the laboratory and real scenarios, but also from Internet images without networks
retraining.

2 Related work

3D mesh reconstruction The reconstruction methods of 3D human body mesh from
a single image have made great progress in recent years along with the development
of deep learning technique. These methods can be roughly divided into two categories:
one is the human body shape reconstruction method based on parametric models [2,
25, 37, 13], the other is the human body shape reconstruction methods based on non-
parameters [43, 19, 9, 51, 41]. The former methods try to encode a human mesh into a
parametric model. The advantage of this type of methods is that it is easy to reconstruct
the complete shape of human body from a single image, even if occlusion happens in
the image. The disadvantage is that parametric models suffer from the ability of limited
detail representation. A human shape is only represented as a linear combination of
10 shape bases, so details of the human shape may be recovered insufficiently. The
model-free methods describe the details better, but require to learn the large amount of
variables.

Model-based mesh reconstruction A number of human mesh models have been pro-
posed in the field, such as SCAPE [2], Skinned Multi-Person Linear model (SMPL)
[25], ADAM [13] and so on[31, 37, 52]. The most popular SMPL model [25] has 82-
dimensional parameters, including 10 shape base parameters and 24 × 3 joint rotation
parameters, and it has been extended into SMPL-H [37], SMPLify [3] and SMPLify-
X [31]. SMPLify, a multi-stage optimization method, was proposed in [3], which used
DeepCut [36] to estimate 2D pose first, and then optimized reconstruct results. HMR[14]
used an end-to-end CNN network to regress SMPL parameters from RGB images with
discriminator constraints. TexturePose [32] took texture information to enhance CNN
network ability. SPIN [18] combined a learning-based algorithm and optimization al-
gorithm into an iterative framework to obtain SMPL parameters, and achieved state-of-
the-art results among the methods of model-based human mesh recovering. SMPLify-X
[31] extended the SMPL-X model, which had a human mesh with hands and face, and
took 2D human pose to optimize with prior constraints and penalty of mesh collision.
MTC [48] optimized ADAM [13] by 3D pose direction vector and 2D pose estimating
by CNN-based network.
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Model-free mesh reconstruction The model-free shape recovery methods consider a
human body consisting of voxel volumes, and learn the body surface directly. BodyNet
[43] presented an end-to-end CNN based network to estimate volumetric representation
of human with 2D pose, depth and 3D pose. Kolotouros et al. proposed that taking CNN
and graph neural network was significantly easy to regress 3D location of human mesh
[19]. Gabeur et al. estimated the “visible” and “hidden” depth maps, and combined
into a full-body 3D point cloud [9]. Zhu et al. [51] proposed a hierarchical method to
capture the detailed human body. Tan et al. presented a self-supervised method to relax
the dependance on ground truth data from videos [41].

3D pose estimation While the problem of 2D human pose estimation has been well
solved, 3D human pose estimation is still challenging due to 3D reconstruction ambigu-
ity caused by the variation of viewpoint, human body and clothing. Deep learning tech-
nique is a popular way to estimate 3D pose from a single image, and these approaches
achieve good results. Pavlakos et al. [34] applied the stack hourglass network to esti-
mate every voxel likelihood for each joint. Mehta et al. [28] argued that the algorithm
generalizability constrained by available 3D pose datasets, and proposed a benchmark
“MPI-INF-3DHP” (MPII-3D for short in this paper) which covered outdoor and indoor
scenes. Zhou et al. explored the problem of 3D pose estimation in the wild, and pro-
posed a weakly-supervised transfer learning framework due to the lack of training data
[50]. Kacabas et al. proposed EpipolarPose to estimate 3D human poses and camera
matrix with the constraints of epipolar geometry [17]. Jahangiri and Yuille addressed
the problem to estimate multiple diverse 3D poses in [10], and started initial 3D pose
to generate multiple hypotheses according to prior sampling, while Li and Lee [21]
generated multiple hypotheses for 3D human pose based on a mixture density network.
As transformer technique arises, it is regarded as a powerful backbone in vision field.
Zheng et al. [49] and Li et al. [22] proposed to estimate human pose via transformer,
and achieve big approvement. However, transformer-based methods always have a big
model, which are resource-consuming and have high requirements on GPU, while our
approach has less training variables in weakly-supervised way.

3 The proposed approach

In this section, we introduce our proposed weakly-supervised approach in detail. We
give the work flow firstly, then explain how to estimate human mesh and pose using
CGANs, and how to generate the multiple hypotheses by CGANs by selecting and
clustering. Finally we give the implementation details of each parts.

3.1 Overview

We present a cascade framework to recover multiple hypotheses for 3D human shapes
that are consistent with the 2D human silhouette and 2D joints heat map extracted from
images. As shown in Fig. 2, there are two stages in our pipeline, consisting of three
parts N1,N2,N3:
N1: an encoder-decoder structure, takes the original image as input to regress 30 2D

joints heat map FJ and human silhouette S, and learns features F (Note that 30 joints
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Fig. 2. Schematic diagram of the proposed approach. There are two stages in our pipeline, con-
sisting of three parts: the encoder-decoder N1 to regress 2D human silhouette and 2D joint heat
map, the CNN N2 to estimate a relative depth vector, the CGANs N3 to generate human mesh.
Firstly 2D human joints, human silhouette learnt by N1, and the relative depth vector learnt by
N2 are taken as the inputs to train the generator and discriminator of CGANs N3. In the second
stage, multiple hypotheses for human mesh are generated by rationally expanding the relative
depth vectors {Ṽq} and 2D joints sets {J̃p}. Then abnormal 3D human meshes are removed
by selecting steps, and the close human meshes are clustered to output the final mesh and pose
hypotheses.

including 24 points of SMPL model, 5 points for one nose, two eyes, two ears, and 1
point on head).
N2: a CNN, takes 2D human silhouette S, joint heat map FJ and features F learnt

by N1 as input to estimate a relative depth matrix M. V is a binary vector form of M,
which only has the relative depth between adjacent joints.
N3: the CGANs, consisting of a conditional generator and a discriminator. The

generator takes feature maps of joints, heat mapFJ , human silhouette S and the relative
depth vector V to regress the parameters β and θ of SMPL model to generate human
mesh. The discriminator distinguishes meshes from β and θ of SMPL model as real or
fake.

In the first stage, 2D human joint heat map and human silhouette learnt by N1 and
the relative depth vector learnt by N2 are taken as inputs to train the generator and dis-
criminator of CGANs N3. In the second stage, multiple hypotheses for human meshes
are generated reasonably by expanding the relative depth vector and the 2D skeleton
set. And the optimization is following to make human meshes better. Then abnormal
3D human meshes are rejected by selecting step after discarding human meshes with
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crossing through parts, and the close human meshes are clustered to output the final
mesh hypotheses after detail refining. The whole pipeline is shown in Fig. 2.

Since 2D joints and silhouette for humans are well studied, and a number of 2D
skeleton and human segment datasets are published by different institutions, so it is
not difficult to learn N1 and N2. The implementation details of N1 and N2 will be
described in Section 3.5. Once N1 is trained to learn feature map of 2D joints FJ , the
silhouette image S, and a 2048D feature vector F , the location set of joints denoted
by J is derived by integrating over the corresponding feature map of joints FJ [39].
FJ , S and F are taken, as input, to train N2 to estimate the matrix M of relative
depths. Each element between [0, 1] in Mij , can be thought of as a probability of ith
joint farther than jth joint in the camera coordinate [33]. Let M′ij be a sparse binary
matrix, in which 0/1 represents that the ith joint farther/closer than the jth joint in the
camera coordinate. In the following subsections, the key parts are introduced, including
human mesh estimation via CGANs, multiple hypotheses generation, and human mesh
selecting and clustering.

3.2 Human mesh estimation using CGANs

In our CGANs, human mesh is encoded by SMPL parametric model, and the model
parameters – β (shape) and θ (pose) are learnt to represent human mesh from human
silhouette S constrained by J and M′. The discriminator distinguishes human meshes
from β and θ as real or fake. The modified objective function for CGANs is minimized
as follows,

min
G

max
D

L(D,G) = E[logD(β,θ)] + E[log(1−D(G(S|J,M′)))] (1)

In the formula, the generator G is conditioned by 2D joints J and the relative depth M′,
while D is a classifier learnt by taking samples from (β,θ) generated by G as negative
samples, and samples from Mosh dataset as positive ones. The reason that we do not
take condition constraint on discriminator D is because we found it is sufficient to take
(β,θ) for classifying real or fake one. The generator is built on ResNet-18, and the
discriminator is just a multi-layer perceptron net. Please refer the details in Section 3.5.
Then the generator G and the discriminator D are trained under the GANs framework
in an alternative manner. As the discriminator becomes stronger, the generator gets
stronger. The generator is trained under the control of J and M′ in weak supervision
of 2D joints J and the human silhouette S, and the generator enables us to generate
multiple hypotheses by varying the conditions.

Further, the loss for the conditional generator is minimized over β, θ as follows:

LG(β,θ) = L2D + Ldep + Lreg (2)

The LG consists of three terms, 2D constraint loss L2D, the relative depth constraint
loss Ldep, and the regularization term Lreg. They have to be balanced in the training.

1714



Generating Multiple Hypotheses for 3D Human Mesh and Pose using CGAN 7

Each term is defined as follows,

L2D = ||J(M(β,θ))− J2D||2 + ||S(M(β,θ))− S||2

Ldep =

|J2D|∑
l=1

∑
Jk∈N(Jl)

max((Jl − Jk) · (2 ·M′l,k − 1), 0)

Lreg = γβ||β||2 + γθ||θ||2 (3)

In which, M is an operation of recovering a mesh from (β,θ), J is an operation to
project 3D joints of mesh into 2D, and S is an operation to render a silhouette binary
image from the generated mesh [16]. N denotes the neighbourhood set of a joint, since
only the adjacent joints are considered in our approach. M′l,k in Ldep estimated in the
first stage, which is 1 or 0, would constrain the joint Jl is closer or farther than the joint
Jk. And γβ and γθ are the balance factors in Lreg. Once CGANs are trained in the first
stage, the generator is exploited to produce multiple possible human meshes and poses
in the second stage.

3.3 Condition expansion for multiple hypotheses

Now we explain how to generate multiple hypotheses for human mesh and pose from a
single image. We only care about the relative depth between adjacent joints, and trans-
form matrix M′ into a vector form V. Each element in V represents the relative depth
relationship between to adjacent joints, and a limited space is generated with the rela-
tive depth vector Vq (q = 1, 2, ..., Q) and 2D joints sets Jp (p = 1, 2, ..., P, P <= 4)
to help multiple human mesh and pose recovery. Since the relative depth estimation
and 2D joints detection are not always correct, so it should be tolerant reasonably. As
has been observed, each element in Mij describes an estimate confidence of ith joint
farther than jth joint in the camera coordinates. When Mij is close to 1, which means
the ith joint is more likely to be closer than the jth one, and when Mij is close to 0,
which means the ith joint is more likely to be farther than the jth one. When Mij is
near around 0.5, it is ambiguous to determine which one is closer. Let δ be an ambiguity
capacity factor, then we have

M̃ij =

0, Mij ∈ [0, 0.5− δ),
0 or 1,Mij ∈ [0.5− δ, 0.5 + δ],
1, Mij ∈ (0.5 + δ, 1].

(4)

M̃ is also transformed into a vector form V. Assume that M̃ has Q possible values
when Mij(∈ [0.5− δ, 0.5 + δ]), then it leads to Ṽq, q = 1, 2, ..., Q. Note that we only
care about the relative depth between the adjacent joints in the vector. In this way, a
single V in the first stage is expanded into a set space {Ṽ1, Ṽ2, ..., ṼQ}, which makes
the relative depth be tolerant to a certain estimation error.

Further, the initial estimation of 2D pose J shows much ambiguous as lighting,
occlusion or self-occlusion as well. The human mesh may be confused with the body
of the right and left parts due to the fact that a human body is a symmetrical object.
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There are three extra cases: 1) the right leg is confused with the left leg; 2) the right arm
is confused with the left arm; 3) the right body is confused with the left body. So the
initial estimation of 2D joints is expanded into a space of 4 cases, that is {J̃1, ..., J̃P }
and P = 4, 2D joints of right leg is flipped with ones of left leg, the right arm is
flipped with joints on the left arm. However, we know if a human to be recovered
is facing forward or unknown by the detection from the relative depth between eyes
and ears. If the human faces forward confidently, then one of four cases is ignored,
that is {J̃1, ..., J̃P } and P = 3. The expansions of relative depth and 2D skeleton are
taken as the reconstruction condition for the conditional generator to produce multiple
hypotheses for human mesh, which enable our approach be tolerant to the estimation
error and be resistant to the ambiguity of body structure.

All generated human meshes are optimized, and the objective function is the same
as Equ. 2, minimized over β and θ by gradient descend as follows,

min
β,θ

LG (5)

The optimized β and θ are used to generate more accurate human mesh.

3.4 Human mesh selecting and clustering

By varying {Ṽ1, ..., ṼQ} and {J̃1, ..., J̃P }, QP 3D human meshes (each one has 6890
3D points) are generated in the previous subsection. Obviously, besides of the positive
effect of withstanding generation ambiguity, the expansions may cause some redun-
dancy, and generate abnormal meshes.

The abnormal meshes include crossing through parts, abnormal posture and so on.
Crossing through parts would be rejected partially by body collision detection [31].
Also the rest meshes have to be classified by classifier in [4], and abnormal posture
would be rejected and removed from the human mesh set. Assume that N human body
meshes are passed through the selection as normal, and they are clustered using mean-
shift, each category has Nk human meshes, k = 1, 2, ...,K. K is the number of classes
from mean-shift clustering. Obviously, the method of mean-shift is not necessary to
cluster samples into a fixed number of class. Take the one with the least projection error
of 2D silhouette and 2D human joints to represent each class, the objective function is
as follows:

min
nk∈[1,...,Nk]

||J(Mnk
)− J ||2 + γ||S(Mnk

)− S||2 (6)

where γ is a balance number, and need to be set in advance. Once K human meshes are
clustered, they output the 3D human poses by determining 3D joints from human mesh.

3.5 Implementation details

Four different parts N1,N2,N3 are trained separately. The N1 takes the pre-trained
ResNet-50 as the encoder, and 9 layers of deconvolution as the decoder to regress the
2D silhouettes/segments S and feature maps of 2D human joints FJ . ResNet-18 is used
in the second CNNN2 to predict the relative depth of adjacent human joints V and the
distance from the camera T . The conditional generator, a modified ResNet, is a stack of
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ResNet-18 and four fully connected layers, and end up with a regressor like in [18]. The
discriminator, which is a multi-layer perceptron based network with 1024 neurons. The
generator and discriminator inN3 are trained alternatively by minimizing the objective
Equ. 2. In order to overcome the challenge of unbalanced laboratory and real scene
datasets, the similar number of images are sampled from the laboratory dataset and the
real scene dataset in each epoch as [6]. In the optimization step, each optimizing only
run ten times. δ is set as 0.2 through all experiments. The learning rate for conditional
generator is 1e−4, and learning rate for discriminator is 2e−4. All networks are trained
with GPU of RTX TITAN.

4 Experimental results

4.1 Datasets

A variety of datasets are assembled to train different deep networks in our experiments.
All 2D pose human datasets are all made to be consistent with our 30 points human
skeleton, the occlusion ones will be ignored. LSP [11] and LSPET [12] are 2D human
pose datasets of 14 joint points, while MPII [1] is a 2D human pose dataset of 16
joint points. The UP [20] and COCO [23] dataset consist of 2D human pose and 2D
segmentation. MTC [45] and MPII-3D [28] are laboratory multi-view 3D pose datasets,
while the former has a large range of viewing angle, and the latter has more than 1.3M
images in total. The Mosh [24] is a synthetic 3D human mesh dataset, while SURREAL
[44] renders the original human meshes in Mosh dataset into real scenes. 3DPW [26] is
a 3D pose dataset captured from real scenes. 2D pose datasets are utilized to train 2D
human skeleton detection. Because our method is a weakly-supervised algorithm, we
only use 2D pose and silhouette to weakly supervise the training process of N3.

LSP, LSPET, MPII, COCO, MPII-3D, MTC, SURREAL, 3DPW datasets are used
to train N1. MPII-3D, MTC, SURREAL, 3DPW datasets are used to train N2. The
datasets including LSP, LSPET, MPII-3D, SURREAL, 3DPW are used for N3. Al-
though MPII-3D, MTC, SURREAL, 3DPW are both 2D and 3D pose datasets, we do
not use 3D pose but 2D pose only through all experiments.

4.2 Qualitative results

We not only reconstruct multiple human meshes from a single image, but also recover
multiple 3D human poses. Fig. 3 shows more qualitative results on challenging images
from the laboratory dataset (MPII-3D), real scene datasets (LSP, LSPET, MPII), and
Fig. 4 shows more results on Internet images. The first column shows the original input
images, the second column shows an example of 2D projection of 3D human mesh and
detected 2D pose. Four hypotheses of human meshes in two different view generated
from our approach are shown from the third to tenth column. The last two columns
show all 3D human poses in the same coordinates to compare the difference between
poses in two different views. The dash line represents the right part of a human body,
the solid line represents the left part of a human body.
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Input 2D pose and silhouette  H1 H3 All 3D posesH2 H4

Fig. 3. Results from images of laboratory and real scenes dataset. The first column shows the
original input images, the second column shows an example of 2D projection of 3D human mesh
and 2D pose. The hypotheses for human mesh and 3D pose generated from our approach are
shown from the third to tenth column in two different view. The last two columns show all 3D
human poses in the same coordinates to compare the difference between poses in two different
views. The first image has four hypotheses generation of human mesh, the third image has three
hypotheses generation, while the second, fourth and fifth have two hypotheses generation.

4.3 Statistic analysis of multiple hypotheses

We also do statistic analysis on LSP, MPII-3D and 3DPW datasets, and count the num-
ber of generation hypotheses for all images in these datasets. Statistic analysis is re-
ported in Fig. 5. Most of images have 2 human mesh hypotheses generated by our
method on all datasets. More than 85% images have 1− 3 hypotheses, and few images
(about 2% or less) have more than 5 hypotheses. In order to show the statistic figure
better, the number of images in MPII-3D and 3DPW is reduced to one tenth just for
better viewing. We investigate that these images with more than 5 hypotheses are often
caused by the low-quality generation for human mesh results from the generator, which
have extreme large 2D projection error.

4.4 Quantitative comparison

Our approach is evaluated quantitatively with respect to errors of human mesh repro-
jection and 3D joints location on three datasets, which are popular ways in the field.
Since our method has generated multiple human meshes and 3D poses, the best one
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Input 2D pose and silhouette  H1 H3 All 3D posesH2 H4

Fig. 4. Results from Internet images. The first column shows the original input images, the second
column shows an example of 2D projection of 3D human mesh and 2D pose. The hypotheses for
human mesh and 3D pose generated from our approach are shown from the third to tenth column
in two different view. The last two columns show all 3D human poses in the same coordinates to
compare the difference between poses in two different views. The first image has two hypotheses
generation of human mesh, the second image has three hypotheses generation, while the third
and fourth images have four hypotheses generation. The dash line represents the right part of a
human body, the solid line represents the left part of a human body.

1H 2Hs 3Hs 4Hs 5Hs >5Hs
0
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400
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MPII-3D
3DPW

Fig. 5. Statistic analysis of hypotheses generation after selecting and clustering by our approach
on three datasets. The number is the number of images with different generation hypotheses in
each dataset.
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is selected to compare with the ground truth. The test dataset of LSP has 972 images,
MPII-3D has 24111 test images, while 3DPW has 26549 test images totally, we use all
test images to do a quantitative evaluation.

We compare with SMPLify and its variations [3, 20, 35], HMR [14] and SPIN [18]
in terms of the silhouette Intersection over Union (sil-IoU) on LSP test dataset, which
measures the matching rate of the projected silhouette of the predicted 3D human mesh
and image human segment, and report the results in Table 1. Our method shows best
results in both accuracy and F1 measurement on foreground-background and part seg-
mentation on LSP dataset, and increases about 2% compared with SPIN in terms of ac-
curacy. We also compare with PoseNet3D [42], HMR[14], HMR-Video[15], CMR[19],
HM-LGD [38], SPIN [18], PARE [5], ROMP [47], ProHMR [30] and [40, 7], with re-
spect to 3D joint error on 3DPW in Table 2. And we report the comparison results
on MPII-3D datasets in Table 3 with PoseNet3D [42], HMR[14], SPIN[18], Vnect[8],
DenseRaC[46] and [27]. 3D joint error is measured by the least mean per joint position
error (MPJPE) between the generated 3D poses and the ground truth before and after
rigid alignment. Because our method is a weakly-supervised algorithm, we do not use
3D human pose in training process, and all data are unpaired through our pipeline.

Table 1. Evaluation on foreground-background and six-part segmentation on LSP test set.

Methods
FB Segments Part Segments

Acc F1 Acc F1
SMPLify [3] 91.89 0.88 87.71 0.64
SMPLify oracle [20] 92.17 0.88 88.82 0.67
SMPLify+anchor [35] 92.17 0.88 88.24 0.64
HMR [14] 91.67 0.87 87.12 0.60
SPIN [18] 91.83 0.87 89.41 0.68
Our-Stage1 92.01 0.87 89.16 0.67
Ours-es1 93.83 0.90 91.00 0.72
Ours-es2 93.75 0.90 90.78 0.71
Ours 93.94 0.91 91.92 0.72

Ablative analysis We examine that if we only have the generator to produce human
meshes in the first stage. And the key point of our method is that multiple hypotheses
Jp and Vq are used to guide the generator to create multiple human meshes and poses,
which help to improve the human mesh accuracy. Here we try to study how multiple
2D joints Jp and multiple relative depth Vq are helpful to generate human meshes. 2D
human joints, the relative depth and 2D silhouette are all needed as the inputs for the
generator, so we fix one when examining the other. They are denoted by two experi-
mental setups as follows,

Experimental setup 1 (es1): When the effect of multiple hypotheses of V is tested, J
is fixed to the initial estimation of J ′, which is the estimation from the encoder-decoder
network N1.
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Table 2. Evaluation on 3DPW dataset. The numbers are MPJPE after rigid alignment.

Supervision Methods 3D data PAMPJPE

Strong

HMR [14] paired, with 3D 81.3
HM-LGD [38] paired, with 3D 55.9
SPIN-static fits [18] with {β,θ} 66.3
SPIN in the loop [18] with {β,θ} 59.2
Doersch et al. [7] with 3D 74.7
HMR-Video [15] with 3D 72.6
CMR [19] with 3D 70.2
Sun et al. [40] with 3D 66.3
PARE [5] with 3D and {β,θ} 57.1
ROMP [47] with 3D and {β,θ} 56.8
ProHMR [30] with 3D and {β,θ} 59.8

Weak

PoseNet3D [42] No 63.2
Our-stage1 No 64.35
Ours-es1 No 61.48
Ours-es2 No 64.73
Ours No 59.78

Experimental setup 2 (es2): When the effect of multiple hypotheses of J is tested,
V is fixed to V′, which is the original estimation from N2.

The quantitative results are reported in Table 1, Table 2 and Table 3 on different
datasets as well. It can be seen that the space expansion of 2D skeleton and relative
depth are helpful for generating more accurate human segments and 3D joints.

4.5 Failure case

Fig. 6 shows two failure examples. Most of failure cases happen for these special im-
ages. The human in these two images makes some unusual pose, which is less learnt
by CGANs from the dataset, and even it is difficult for 2D human joints detection.
Then the generator is not able to generate an reasonable initial human mesh. So train-
ing better networks for 2D joint detection and CGANs with more various data is still a
fundamental task.

5 Conclusion

We propose a two-stage weakly-supervised pipeline to generate multiple hypotheses
via CGANs for 3D human mesh and pose in this paper. The CGANs are trained to
generate a single human mesh by taking 2D silhouette as input under the control of 2D
joints and relative depth without any 3D supervision. With a reasonable assumption, the
conditions of inputs are expanded into a bigger discrete space for generating multiple
hypotheses. Then the generated abnormal meshes are rejected by collision detection
and classifier, redundant human meshes are clustered. The benefit of our system is that
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Table 3. Evaluation on MPII-3D dataset. The numbers are 3D Percentage of Correct Keypoints
(PCK) and mean per joint position error (MPJPE) before and after rigid alignment.

Supervision Methods 3D data
Absolute Rigid alignment

PCK MPJPE PCK PAMPJPE

Strong

HMR[14] paired,with 3D,{β,θ} 72.9 124.2 86.3 89.8
SPIN paired, with {β,θ} 76.4 105.2 92.5 67.5
DenseRaC[46] with 3D – – 89.0 83.5
Mehta et al. [27] with 3D 75.7 117.6 – –

Weak

HMR[14] unpaired, with 3D,{β,θ} 59.6 169.5 77.1 113.2
Vnect [8] No (but video) 76.6 124.7 83.9 98
PoseNet3D [42] No – – 81.9 102.4
Our-stage1 No 64.68 148.51 84.45 92.58
Ours-es1 No 68.68 140.96 87.24 87.32
Ours-es2 No 58.84 163.2 79.72 104.14
Ours No 70.81 133.91 88.58 84.88

Fig. 6. Failure cases in our experiments.

the background influence is removed, and it is easy to generalize to Internet images.
The main limitation is that, it generates multiple hypotheses for human mesh and pose,
but the details of meshes are still not sufficient, and some unusual meshes and poses
are still hard to reconstruct. This is our future work to discover more elaborate human
meshes.

Acknowledgement This work is supported by the National Natural Science Founda-
tion of China (NSFC No. 61971106). Authors would like to thank all reviewers for their
valuable and meticulous comments.

References

1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New bench-
mark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014)

2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape com-
pletion and animation of people. In: ACM SIGGRAPH 2005 Papers (2005)

1722



Generating Multiple Hypotheses for 3D Human Mesh and Pose using CGAN 15

3. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it smpl: Auto-
matic estimation of 3d human pose and shape from a single image. In: European Conference
on Computer Vision (ECCV) (2016)

4. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3d morphable
models: Spiral convolutional networks for 3d shape representation learning and generation.
In: International Conference on Computer Vision (ICCV) (2019)

5. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Pare: Part attention
regressor for 3d human body estimation. In: International Conference on Computer Vision
(ICCV) (2021)

6. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person
2D pose estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence 43(1), 172–186 (2021)

7. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3d human pose estimation: motion
to the rescue. In: Advances in Neural Information Processing Systems (NIPS) (2019)

8. Dushyant, M., Srinath, S., Oleksandr, S., Helge, R., Mohammad, S., Hans-Peter, S., Weipeng,
X., Dan, C., , Christian, T.: Vnect: Real-time 3d human pose estimation with a single rgb
camera. ACM Transactions on Graphics (TOG) 36(4), 33–51 (2017)

9. Gabeur, V., Franco, J.S., Martin, X., Schmid, C., Rogez, G.: Moulding humans: Non-
parametric 3d human shape estimation from single images. In: IEEE International Confer-
ence on Computer Vision (ICCV) (2019)

10. Jahangiri, E., Yuille, A.L.: Generating multiple diverse hypotheses for human 3d pose consis-
tent with 2d joint detections. In: IEEE International Conference on Computer Vision (ICCV)
(2017)

11. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human
pose estimation. In: The British Machine Vision Conference (BMVC) (2010)

12. Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate an-
notation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

13. Joo, H., Simon, T., Sheikh, Y.: Total capture: A 3d deformation model for tracking faces,
hands, and bodies. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

14. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape
and pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

15. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

16. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

17. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3d human pose using multi-
view geometry. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

18. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human
pose and shape via model-fitting in the loop. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2019)

19. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image
human shape reconstruction. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2019)

20. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people:
Closing the loop between 3d and 2d human representations. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2017)

21. Li, C., Lee, G.H.: Generating multiple hypotheses for 3d human pose estimation with mixture
density network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

1723



16 Xu Zheng et al.

22. Li, W., Liu, H., Tang, H., Wang, P., Gool, L.V.: Mhformer: Multi-hypothesis transformer for
3d human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2022)

23. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft coco: Common objects in context. In: European Conference on Computer
Vision (ECCV) (2014)

24. Loper, M., Mahmood, N., Black, M.J.: Mosh: Motion and shape capture from sparse markers.
ACM Transactions on Graphics (TOG) 33(6), 1–13 (2014)

25. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG) 34(6), 1–16 (2015)

26. Marcard, V.T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accu-
rate 3d human pose in the wild using imus and a moving camera. In: European Conference
on Computer Vision (ECCV) (2018)

27. Mehta, D., Rhodin, H., Casas, D., Fua, P., Sotnychenko, O., Xu, W., , Theobalt, C.: Monoc-
ular 3d human pose estimation in the wild using improved cnn supervision. In: International
Conference on 3D vision (3DV) (2017)

28. Mehta, D., Rhodin, H., Casas, D., Fua, P., Sotnychenko, O., Xu, W., Theobalt, C.: Monocular
3d human pose estimation in the wild using improved cnn supervision. In: International
Conference on 3D Vision (3DV) (2017)

29. Mirza, M., S., O.: Conditional generative adversarial nets. In: https://arxiv.org/abs/1411.1784
(2014)

30. Nikos Kolotouros, Georgios Pavlakos, D.J., Daniilidis, K.: Probabilistic modeling for human
mesh recovery. In: International Conference on Computer Vision (ICCV) (2021)

31. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A., Tzionas, D., Black, M.J.:
Expressive body capture: 3d hands, face, and body from a single image. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2019)

32. Pavlakos, G., Kolotouros, N., Daniilidis, K.: Texturepose: Supervising human mesh estima-
tion with texture consistency. In: IEEE International Conference on Computer Vision (ICCV)
(2019)

33. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3d human pose estima-
tion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

34. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric predic-
tion for single-image 3d human pose. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

35. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3d human pose and
shape from a single color image. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2018)

36. Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V., Schiele,
B.: Deepcut: Joint subset partition and labeling for multi person pose estimation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

37. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: Modeling and capturing hands and
bodies together. ACM Transactions on Graphics (ToG) 36(6), 245 (2017)

38. Song, J., Chen, X., Hilliges, O.: Human body model fitting by learned gradient descent. In:
European Conference on Computer Vision (ECCV) (2020)

39. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: European
Conference on Computer Vision (ECCV) (2018)

40. Sun, Y., Ye, Y., Liu, W., Gao, W., Fu, Y., Mei, T.: Human mesh recovery from monocular
images via a skeleton disentangled representation. In: International Conference on Computer
Vision (ICCV) (2019)

1724



Generating Multiple Hypotheses for 3D Human Mesh and Pose using CGAN 17

41. Tan, F., Zhu, H., Cui, Z., Zhu, S., Pollefeys, M., Tan, P.: Self-supervised human depth estima-
tion from monocular videos. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2020)

42. Tripathi, S., Ranade1, S., Tyagi, A., Agrawal, A.: Posenet3d: Learning temporally consis-
tent 3d human pose via knowledge distillation. In: International Conference on 3D Vision
(IC3DV) (2020)

43. Varol, G., Ceylan, D., Russell, B., Yang, J., Yumer, E., Laptev, I., Schmid, C.: Bodynet: Vol-
umetric inference of 3d human body shapes. In: European Conference on Computer Vision
(ECCV) (2018)

44. Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid, C.: Learn-
ing from synthetic humans. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2017)

45. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and hands in the
wild. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

46. Xu, Y., Zhu, S.C., Tung, T.: Denserac: Joint 3d pose and shape estimation by dense render-
and-compare. In: IEEE International Conference on Computer Vision (ICCV) (2019)

47. Yu Sun, Qian Bao, W.L.Y.F.M.J.B., Mei, T.: Monocular, one-stage, regression of multiple 3d
people. In: International Conference on Computer Vision (ICCV) (2021)

48. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3d pose and shape estimation of mul-
tiple people in natural scenes-the importance of multiple scene constraints. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2018)

49. Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3d human pose estimation
with spatial and temporal transformers. In: International Conference on Computer Vision
(ICCV) (2021)

50. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3d human pose estimation in the
wild: a weakly-supervised approach. In: IEEE International Conference on Computer Vision
(ICCV) (2017)

51. Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a
single image by hierarchical mesh deformation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2019)

52. Zuffi, S., Black, M.J.: The stitched puppet: A graphical model of 3d human shape and pose.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

1725


