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Abstract. Cross-modal hashing has received a lot of attention because
of its unique characteristic of low storage cost and high retrieval effi-
ciency. However, these existing cross-modal retrieval approaches often fail
to align effectively semantic information due to information asymmetry
between image and text modality. To address this issue, we propose Het-
erogeneous Interactive Learning Network(HILN) for unsupervised cross-
modal retrieval to alleviate the problem of the heterogeneous semantic
gap. Specifically, we introduce a multi-head self-attention mechanism to
capture the global dependencies of semantic features within the modality.
Moreover, since the semantic relations among object entities from differ-
ent modalities exist consistency, we perform heterogeneous feature fusion
through the heterogeneous feature interaction module, especially through
the cross attention in it to learn the interaction between different modal
features. Finally, to further maintain semantic consistency, we introduce
adversarial loss into network learning to generate more robust hash codes.
Extensive experiments demonstrate that the proposed HILN improves
the accuracy of T → I and I → T cross-modal retrieval tasks by 7.6%
and 5.5% over the best competitor DGCPN on the NUS-WIDE dataset,
respectively. Code is available at https://github.com/Z000204/HILN.

Keywords: Cross-modal hashing · Heterogeneous interactive · Adver-
sarial loss.

1 Introduction

With the explosive growth of data, cross-modal hashing retrieval has attracted
more and more attention. Cross-modal hashing (CMH) as a hot topic is to map
data of different modalities to the common binary hash space for matching,
which improves the efficiency of retrieval and storage consumption [19,7]. CMH
is divided into unsupervised and supervised methods, depending on whether
label information is used. At present, supervised hashing methods have achieved
good performance [9,1,5] due to a large amount of hand-labeled prior knowledge.
However, these methods based on supervised learning require a lot of manual
annotations and are often not suitable for the real world. Recently, more and
more attention has been paid to unsupervised cross-modal hashing [16,12,21,18],
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Fig. 1. An exemplar of semantic consistency within image-text pair. The red font in
text and red bounding box represents aligned semantic information between image and
text modality, the green ones denote semantic alignment failure.

which can reduce the dependence on data annotations in the training process
and has achieved significant progress.

However, due to the lack of artificial prior knowledge (label annotations), un-
supervised cross-modal hashing methods face the problem of the heterogeneous
semantic gap between image-text pairs, leading to the failure of cross-modal re-
trieval. How to model the semantic similarity between image modality and text
modality becomes the key to improving the performance of cross-modal retrieval.
Many recent unsupervised cross-modal hashing methods [16,12,21] proposed to
align local semantic entities for building the semantic similarity. However, these
methods do not take into account the information asymmetry between image-
text pairs, where the local semantic entities between image and text modality
often are unequal for cross-modal retrieval. As shown in Fig.1, there are many
“person" in image modality to respond to the “man" in-text modality, while “A
man sits in the grass" in image modality is corresponding to “A young man
wearing blue jeans and a t-shirt sits in the grass" with the similarity of semantic
relations. This means that it often does not unique or even unequal entities to
associate local semantics between image-text pairs, while there is a consistent
semantic relation for cross-modal retrieval.

Based on the above analysis, we propose Heterogeneous Interactive Learn-
ing Network(HILN) for unsupervised cross-modal retrieval from the view of the
similarity of semantic relations. First, we introduce a multi-head self-attention
mechanism to capture the global dependencies of semantic features within the
modality for modeling semantic relations among object entities. Secondly, we
perform heterogeneous feature fusion through the heterogeneous feature interac-
tion module, especially through cross attention to learn the interaction between
different modal features. Finally, to further maintain semantic consistency, we
introduce adversarial loss into network learning to generate more robust hash
codes. Our contributions can be summarized as follows:

– We propose a novel end-to-end cross-modal hashing method, named Hetero-
geneous Interactive Learning Network(HILN) for unsupervised cross-modal
retrieval, which models global semantic consistency between image and text
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modality from the view of similarity of semantic relations to generate high-
quality hash codes.

– We introduce a multi-head self-attention mechanism to capture the global
dependencies of semantic features within a single modality for modeling se-
mantic relations among object entities.

– HILN performs heterogeneous feature fusion through the heterogeneous fea-
ture interaction module, especially through the cross attention in it to learn
the interaction between different modal features, to better align the seman-
tic relation between modalities. Finally, to further maintain semantic consis-
tency, we introduce adversarial loss into network learning to generate more
robust hash codes.

– Extensive experiments demonstrate that the proposed HILN improves the
accuracy of T → I and I → T cross-modal retrieval tasks by 7.6% and
5.5% over the best competitor DGCPN [22] on the NUS-WIDE dataset,
respectively.

In the following sections, we present related work(Section 2), the proposed
method(Section 3), analytical experiments(Section 4), and conclusion(Section
5).

2 Related Work

2.1 Cross-modal Hashing

Cross-modal hash retrieval methods can be broadly divided into two categories:
supervised methods and unsupervised methods. The former is to explore seman-
tic information from manual labels to bridge the semantic gap between different
modalities for the generation of the hash codes, such as DCMH [9], DADH [1],
AGAH [5].

Compared with the supervised methods, unsupervised methods mainly use
co-occurrence information between images and texts to maximize the relation-
ship between similar data between modalities and bridge the heterogeneous se-
mantic gap between different modalities. Based on this, several unsupervised ap-
proaches have been proposed. DBRC [6] generates hash codes by reconstructing
the original data from binary representation. To preserve the similarity between
the original data, DJSRH [16] suggests a joint semantic similarity matrix and
the use of hash codes to rebuild the similarity values of features. Next, JDSH [12]
uses the characteristics of the data distribution to generate a better cross-modal
similarity matrix to supervise the generation of hash codes based on DJSRH. At
the same time, DSAH [21] builds on this by introducing semantic alignment loss
to enhance the interaction between different modalities.

Although these approaches have achieved promising performance, they do not
adequately align the global semantic relations between image and text modality,
and even the performance imbalance of cross-modal retrieval between retrieving
text from image and retrieving the image from text.
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Fig. 2. The structure of our approach. It consists of an image-text pair, feature ex-
action, heterogeneous feature interaction, and Network learning. The purple arrows
represent upsampling, and the red arrows represent dimensionality reduction and full
connected layer.

2.2 Attention Mechanism

Neural network-based attention mechanism has achieved great success and is
widely used in a variety of tasks, such as natural language processing [11,20] and
computer vision [4,27]. The self-attention mechanism [17] is a variant of the at-
tention mechanism, which can capture long-distance dependencies. A Structured
Self-attentive Sentence Embedding [11] uses self-attention for sentence embed-
ding to enhance the semantics of the sentence. Context-aware Self-Attention
Networks for Natural Language Processing [20] contextualize the representa-
tions with global information. Vision Transformer [4] represents the use of a
transformer with the self-attention mechanism for image, capturing the global
semantic information of the image, enhancing the ability of image feature char-
acterization. In this paper, we utilize a multi-head self-attention mechanism to
capture the global dependencies of semantic features within the single modal-
ity and introduce channel attention, spatial attention, and cross-attention to
enhance the context-aware similarity of semantic relations between image-text
pairs.

2.3 Generative Adversarial Network

Generative Adversarial Network, capable of modeling the distribution of data,
have now achieved great success. It has been widely used in cross-modal hash re-
trieval tasks [24,25,2]. Among them, SCH-GAN [25] makes the generative model
learn to fit the correlation distribution of unlabeled data, and tries to select
samples from the unlabeled data of one modality to get the query of another
modality, so as to better reflect the data of the unlabeled data distributed.
MGAH [24] utilizes the ability of generative adversarial network for unsuper-
vised representation learning to fully mine the underlying popular relationship
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of multimedia data, thereby improving retrieval performance. SAALDH [2] uti-
lizes self-attention mechanism to enhance hash expression and utilizes adversarial
loss to further maintain hash code consistency.

In this paper, we introduce adversarial loss into network learning, which uti-
lizes an adversarial loss to model the feature distribution of image and text data
on the basis of obtaining different modal attention enhancements to generate
more robust hash codes.

3 Proposed Approach

3.1 Probelm Definition

Assume that we haveM image-text pairs which can be denoted asO = {Xi, Gi}Mi=1.
Xi and Gi represent the i-th image and the i-th text in the instance respectively.
The structure of our method is shown in Figure 2. Given F I and F T , our ap-
proach aims to learn two effective hash functions and simultaneously generates
hash codes BI ∈ {−1,+1}M×K and BT ∈ {−1,+1}M×K for image and text
modalities respectively, where K is the length of the hash codes.

3.2 Feature Extraction

Multi-head Self-attention. Like vision Transformer [4], we use the multi-head
self-attention module to model the long-range relationships within the modali-
ties.

Specifically, give the 1D embedding sequence O ∈ RL×C as input through
the transformer-based encoder to learn feature representations, in which L is
the length of the sequence, C is the numbers of the channel. Transformer en-
coder consists of J layers of multi-head self-attention(MSA) and Multilayer
Perceptron(MLP ) blocks. Layernorm is applied before every block and MLP .
In each layer j, the query, key, and value computed from the input Oj−1 ∈ RL×C
with the corresponding weights are used as input for the self-attention as:

query = Oj−1W q, key = Oj−1W k, value = Oj−1W v, (1)

whereW q,W k,W v ∈ RC×d are the learnable weight parameter. Self-attention(SA)
is then formulated as:

SA
(
O

j−1
)

= O
j−1

+ softmax

(
Oj−1W q (OW k)

T

√
d

)(
O

j−1
W v

)
. (2)

MSA is an extension of SA in which contains n separate SA operations and
projects their concatenated outputs.

MSA(Oj−1) =
[
SA1

(
Oj−1

)
; · · ·;SAn

(
Oj−1

)]
Wmas, (3)

where Wmas ∈ Rnd×C and d is set to C/n. The output of the MSA is then fed
into the MLP and added to the MSA result by a residual.

Oj = MSA
(
Oj−1

)
+MLP

(
MSA

(
Oj−1

))
∈ RL×C , (4)
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which j = 1, 2, ·, ·, ·, J represents the transformer layers.
Image Modality. We denoted X ∈ RH×W×C to be a raw input image from the
image dataset, where (H,W ) is the resolution of the image and C is the number
of channels. We reshape the image into a sequence of flattened 2D patches Xp ∈
RN×P 2×C , where N =

(
H ×W/P 2

)
is the number of image patches and (P, P )

is the resolution of each patch. Then we generate an attentional image features
XJ
p ∈ RM×1024 by the MSA and MLP :

XJ
p = MSA (Xp) +MLP (MSA (Xp)) . (5)

Finally, we obtain the final feature Za by pooling the aggregated features XJ
p

on average.
Text Modality. Unlike most existing cross-modal hashing methods that only
use bag-of-words as input and fully connected layers as the encoder, we expect
the encoder can enhance the global connections of the text features. The word
vector of the bag-of-words Gv ∈ Rd (where d is the dimension of word vector) is
then turned into an attentional image features GJ

v ∈ RM×1024 by the MSA and
MLP :

GJv = MSA (Gv) +MLP (MSA (Gv)) , (6)

where GJv is the output of the last layer of the transformer and 1024 is the
number of the channel. Finally, we obtain the final feature Ea by pooling the
aggregated features GJ

v on average.

3.3 Heterogeneous Feature Interaction

Since the semantic relations among object entities from different modalities ex-
ist consistency, inspired by [23], as illustrated in Fig.3, we exploit a heteroge-
neous feature interaction(HFI) module to perform heterogeneous feature fusion,
especially through the cross attention in it to learn the interaction between
different modal features, so as to better align the semantic relation between
modalities. Specifically, we introduce channel attention, spatial attention, and
cross-attention to align the semantic relations between the different modalities.
We set the expanded attentional feature maps Za of the image and the atten-
tional feature maps Ea of the text as Z and E, with attentional feature shapes
of H ×W × C and H ×W × C.
Spatial Attention. In this work, we use spatial attention to enhance the
context-aware similarity of semantic relations of images and text by learning
the global contextual information from the images and text. Spatial attention is
used in space only with the self-attention mechanism. And spatial attention is
computed separately on the attentional image modality and the attentional text
modality.

Specifically, suppose the input attentional features areZ ∈ RH×W×C , we first
apply two separate convolution layers with 1× 1 kernels on Z to generate query
Q and V respectively, where Q, V ∈ RH×W×C′ and C ′ = 1

2C is the reduced
channel number. Then a average pooling with aggregate the feature expressions
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Fig. 3. The proposed heterogeneous feature interaction module, which includes spatial
attention, channel attention, and cross-attention. The output of the heterogeneous
feature interaction is computed simultaneously for adversarial loss and hashing loss.

is applied to the features Q to generate features Q̄ ∈ R1×1×C′ . Next the feature
is reshaped to Q̂ ∈ R1×C′ . The features V is reshaped to V̄ ∈ RHW×C′ . We
can generate a spatial attention map As ∈ RHW×1 via softmax operations and
matrix multiplication as:

As = softmax(Q̂)V̄ ∈ RHW×1. (7)

Then the attention map As is reshaped to As
s ∈ RH×W×1 and the sigmoid

function is used to keep all parameters between 0 and 1 to get Â
s

s:

Â
s

s = sigmoid(As
s),∈ RH×W×1. (8)

Finally, combining the Â
s

s and Z by element-wise multiplication and Z by
element-wise sum to get the final fused image features:

Zs
s = αÂ

s

s ·Z + Z ∈ RH×W×C , (9)

where α is a scalar parameter.
Channel Attention. The per-channel mapping of high-level semantic features
is typically responsive to a specific target category. Similarly, processing fea-
tures across all channels will hinder representation capabilities. Therefore, we
use channel attention to selectively enhance the features within each modality.
We can compute channel attention map Ac and the fused channel-featuresZc

c

in a similar manner. Likewise, channel attention is a self-attention mechanism
used only on channels. Notice the process, compare with the spatial attention
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8 Y. Zheng et al.

without average pooling and add a layer norm, 1 × 1 convolution layer after
matric multiplication.
Cross Attention. To enhance the context-aware similarity of semantic relations
between different modalities, we use the cross-attention to learn such mutual in-
formation from the image branch and text branch.

Specifically, we use Z ∈ RH×W×C and E ∈ RH×W×C to denote attentional
image features and attentional text features respectively. Taking the attentional
branch for example, we first apply a 1 × 1 convolution layers with a reshape
operation on E to generate query Q′, where Q′ ∈ RH×W×1 and reshape it to
Q̂
′
∈ RHW×1×1. Then we compute the cross-attention from the image branch

by performing similar operations as channel attention and the cross-attention
computed from the image branch is encoded into the text value V ′ as,

Ac = softmax(Q̂
′
)V ′ ∈ R1×1×C′ . (10)

Then the attention map Ac is applied to 1× 1 convolution layer with a reshape
operation, and layernorm getsAc

c ∈ R1×1×Cto improve model training speed and
accuracy. The next is to use sigmoid function to keep all parameters between 0
and 1 to get Âc

c:
Â
c

c = sigmoid(Ac
c),∈ R1×1×C . (11)

Combining the Â
c

c and E by element-wise multiplication and E by element-wise
sum to get the final fused image featuresZ̄c

c:

Z̄
c
c = ηÂ

c

c ·E + E ∈ RH×W×C , (12)

where η is a scalar parameter.
Finally, the spatial fused features Zs

s and channel fused features Zc
c , cross-

attentional features Z̄
c
c are simply combined with an element-wise sum, gener-

ating the fused features F I for image modality.

F I = Zs
s + Zc

c + Z̄
c
c. (13)

In the same way, the fused features F T for text modality is got.

F T = Es
s + Ec

c + Ē
c
c. (14)

3.4 Network Learning and Optimization

Adversarial Loss. To maintain modality invariance and semantic consistency
across modalities, we introduce adversarial loss to align the semantic relations
across modalities, and inspired by [5], we design a discriminator an as a classifier
to discriminate the modalities to which the unknown relations belong. In this
process, the semantic relations captured by self-attention in one modality and
the semantic relations after attentional enhancement are treated as true semantic
relations, while the semantic relations acquired in the other modality are treated
as false semantic relations.
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As the discriminator struggles to discriminate unknown relations, the cap-
tured semantic relations F I and F T struggle to confuse the discriminator. We
define the adversarial loss as Ladv. The adversarial loss in semantic relation
learning Ladv can be formulated as follows:

Ladv = − 1

n

∑
log
(
DF

(
F I ; θDF

))
− 1

n

∑
log
(

1−DF

(
F T ; θDF

))
(15)

Hash Loss. In order to better achieve a balanced state between modalities in the
generated similarity matrix, we obtain fusion features F I and F T with semantic
relations enhancement through the HFI module. After normalizing F I ,F T to
F I ,F T which have unit L2 norm each row, we can calculate the cosine similarity
matrices SFI ∈ [−1, 1]

M×M on F I and SFT ∈ [−1, 1]
M×M on F T to describe the

original neighborhood structure for the input image modality and text modality,
respectively. We calculate the similarity matrix SF ∈ [−1, 1]

M×M between the
modal features of two images and text. Meanwhile, we further integrate it with
image matrix SFI and text matrix SFT generated similarity matrix S, so as to
further bridge the heterogeneous semantic gap between modalities.

S = λSFI + βSFT + ωSF = {Sij}Mi,j=1 ,

s.t.λ, β, ω ≥ 0, λ+ β + ω = 1,Sij ∈ [−1,+1]
(16)

where Sij represents the pairwise similarity of an image text data pair. λ, β, ω are
the trade-off parameters that balance the similarity information from different
modalities.

To obtain a high-level semantic description of the image and text modalities,
we learn to obtain the hidden states using two functions HI = fI(F

I ; θI) and
HT = fT (F T ; θT ) respectively, where θI and θT are two learnable parameters.
In order to get the hash codes of the image and text, we adopt the sign function.

B∗ = sign(H∗), ∗ ∈ {I, T} . (17)

Inspired by DSAH [21], although the ways and contents of obtaining matrix S
in our method are different, in order to bridge the modal gap between different
modalities, we adopt hash loss, including intra-modal loss, inter-modal loss, and
symmetric loss function, just like them.

Lhl = min
BI ,BT

∑∣∣∣∣∣∣1− SB
∣∣∣∣∣∣2 + min

BI ,BT

∑∣∣∣∣∣∣γSF∗ − SB∗

∣∣∣∣∣∣2
+ min

BI ,BT

∑∣∣∣∣∣∣γS − SB∗

∣∣∣∣∣∣2 ∗ ∈ {I, T} , (18)

where after normalizing BI ,BT to BI ,BT which have unit L2 norm each row,
we can calculate the cosine similarity matrices SBI ∈ [−1, 1]

M×M on BI and
SBT ∈ [−1, 1]

M×M on F T to describe the original neighborhood structure for
the input images modality and texts modality respectively. And we calculate
the cosine distances between hash codes of image and text to generate similarity
matrices SB = BIB

T
T . And γ is a trade-off parameter.
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10 Y. Zheng et al.

We combine the losses of different modules into our final objective function,
as shown below:

Ltotal = Ladv + Lhl, (19)

where Ladv and Lhl include the adversarial loss, hash loss. The hash loss includes
inter-modal loss and symmetric loss. Since the sign function has the problem of
gradient zero for any non-zero input to human, we substitute the tanh function
for the sign function:

B∗ = tanh(ηH∗), ∗ ∈ {I, T} , (20)

where η>0 is a scaling parameter, when limη→∞ tanh(ηH∗) = sign(H∗).

4 Experiments and Evaluations

4.1 Datasets and Evaluation

We conducted experiments on three public cross-modal retrieval datasets, in-
cluding Wiki [14], MIRFlickr-25K [8] and NUS-WIDE [3], to verify the validity
of our method. In our experiments, we adopt mAP@50 to evaluate the retrieval
performance.

4.2 Implementation Details

In this section, we present the implementation details of our HILN in the ex-
periments. We implement the method HILN by pytorch [13], and workstation
configured with NVIDIA RTX 3090 GPU. We set the dimension of the feature
representation extracted by the transformer to 1024. After the heterogeneous
feature interaction, the feature representation obtained by dimensionality re-
duction is 1024 and set the dimension of the hash layer to be consistent with the
length of the hash code.

Moreover, we train the proposed HILN in a mini-batch way and set the
batch size as 32. For other comparison methods, we set the optimal experimental
parameter configuration provided by their authors for training. For fairness, for
all methods, we use the same dataset for performance comparison. The weight
decay rate is 0.0005 and the momentum is set to 0.9. When training on the Wiki
dataset, the learning rate of the network is set to 0.01, λ = 0.4, β = 0.4, ω =
0.2 when training on the MIRFlickr-25k and NUS-WIDE datasets, the learning
rate of the network is set to 0.001, λ = 0.45, β = 0.45, ω = 0.1. The training
epochs on the Wiki, MIRFLickr-25K, and NUS-WIDE datasets are set to 150,
100, and 80, respectively.

4.3 Performance

We compare our HILN with several representative deep unsupervised cross-
modal hashing retrieval methods including DBRC [6], UDCMH [18],DJSRH [16],
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Table 1. The mAP@50 values of Wiki, MIRFlickr-25k, and NUS-WIDE at various code
lengths. Bold data represent the best performance among all contrasting methods.

Task Method
Wiki MIRFlickr-25k NUS-WIDE

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

I→T

DBRC [6] 0.253 0.265 0.269 0.288 0.617 0.619 0.620 0.621 0.424 0.459 0.447 0.447
UDCMH [18] 0.309 0.318 0.329 0.346 0.689 0.698 0.714 0.717 0.511 0.519 0.524 0.558
DJSRH [16] 0.388 0.403 0.412 0.421 0.810 0.843 0.862 0.876 0.724 0.773 0.798 0.817
JDSH [12] 0.346 0.431 0.433 0.442 0.832 0.853 0.882 0.892 0.736 0.793 0.832 0.835
DSAH [21] 0.416 0.430 0.438 0.445 0.863 0.877 0.895 0.903 0.775 0.805 0.818 0.827
AGSH [15] 0.397 0.434 0.446 - 0.679 0.691 0.698 - 0.543 0.552 0.562 -

KDCMH [10] - - - - 0.713 0.716 0.724 0.728 0.615 0.628 0.637 0.642
DGCPN [22] 0.420 0.438 0.440 0.448 0.875 0.891 0.908 0.918 0.788 0.820 0.826 0.833
AGCH [26] 0.408 0.425 0.433 0.450 0.865 0.887 0.892 0.912 0.809 0.830 0.831 0.852

OURS 0.446 0.453 0.467 0.472 0.878 0.908 0.932 0.944 0.793 0.830 0.862 0.879

T→I

DBRC [6] 0.573 0.588 0.598 0.599 0.618 0.626 0.626 0.628 0.455 0.459 0.468 0.473
UDCMH [18] 0.622 0.633 0.645 0.658 0.692 0.704 0.718 0.733 0.637 0.653 0.695 0.716
DJSRH [16] 0.611 0.635 0.646 0.658 0.786 0.822 0.835 0.847 0.712 0.744 0.771 0.789
JDSH [12] 0.630 0.631 0.647 0.651 0.825 0.864 0.878 0.880 0.721 0.785 0.794 0.804
DSAH [21] 0.644 0.650 0.660 0.662 0.846 0.860 0.881 0.882 0.770 0.790 0.804 0.815
AGSH [15] 0.431 0.443 0.453 - 0.674 0.689 0.693 - 0.543 0.567 0.570 -

KDCMH [10] - - - - 0.711 0.715 0.731 0.733 0.623 0.636 0.647 0.651
DGCPN [22] 0.644 0.651 0.660 0.662 0.859 0.876 0.890 0.905 0.783 0.802 0.812 0.817
AGCH [26] 0.627 0.640 0.648 0.658 0.829 0.849 0.852 0.880 0.769 0.780 0.798 0.802

OURS 0.643 0.651 0.660 0.661 0.877 0.908 0.932 0.944 0.793 0.831 0.862 0.879

JDSH [12], DSAH [21], AGSH [15], KDCMH [10], AGCH [26] DGCPN [22]. Ta-
ble 1 shows the mAP@50 values of HILN and other comparison methods on
MIRFlickr-25k, NUS-WIDE, and Wiki in two cross-modal retrieval tasks for
four lengths of hash codes. And figure 4 shows the precision@top-K curves on
three datasets at 128 bits among five comparison methods. I → T means that
the query is image and text modality is the database. T → I is the opposite. It
can be seen that HILN is significantly better than the latest unsupervised cross-
modal hashing methods. Specifically, compared to DGCPN [22], for the Wiki, as
shown in the results, we achieve boosts of 5.3% in average mAP@50 for different
hash code lengths in the I → T task. Moreover, HILN achieves boosts of 1.9%
and 3.7% in average mAP@50 with different hash code lengths in I → T task
and T → I task on MIRFlickr-25k respectively, and achieves boosts of 2.9% and
4.6% in two retrieval tasks on NUS-WIDE.

The main reason for the performance improvement is the HFI proposed by
HILN. It also ensures that the performance of image retrieval for text and text
retrieval for images is essentially the same.

4.4 Ablation Study

We design several variants to validate the impact of our proposed modules and
to demonstrate the superiority of the original HILN.
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Table 2. The mAP@50 results at 128 bits of ablation study about MSA on MIRFlickr-
25k and NUS-WIDE. Bold data represent the best performance.

Model Configuration
MIRFlickr NUS-WIDE

I→T T→I I→T T→I
Baseline - 0.903 0.882 0.827 0.815
HILN-1 Baseline+IMSA 0.914 0.892 0.842 0.827
HILN-2 Baseline+TMSA 0.910 0.888 0.838 0.823
HILN-3 Baseline+I,TMSA 0.919 0.896 0.848 0.832

Table 3. The mAP@50 results at 128 bits of ablation study about HFI on MIRFlickr-
25k and NUS-WIDE. Bold data represent the best performance of the HILN method.

Model Configuration
MIRFlickr NUS-WIDE

I→T T→I I→T T→I
HFI-1 - 0.919 0.896 0.848 0.832
HFI-2 HFI-1+ATT 0.939 0.939 0.871 0.871
HFI-3 HFI-1+Ladv 0.931 0.928 0.862 0.853
HFI-4 HFI-2+ Ladv 0.944 0.944 0.879 0.879

The effectiveness of multi-head self-attention. As shown in Table 2,
several variants we designed to verify the effectiveness of the multi-head self-
attention module. HILN-1 extracts global semantic information from images
using only the multi-head self-attention mechanism. HILN-2 extracts global se-
mantic information from text using only the multi-head self-attention mecha-
nism. HILN-3 extracts global semantic information from images and texts using
the multi-head self-attention mechanism.

From the results of Baseline, HILN-1, HILN-2, and HILN-3, we find the
effectiveness of multi-head self-attention(MSA). HILN-1 improves mAP@50 by
1.1% and 1.5% over Baseline for the T → I task on both datasets MIRFlickr
and NUS-WIDE, respectively. HILN-1 improves mAP@50 by 1.2% and 1.8%
over Baseline for the I → T task on both datasets MIRFlickr and NUS-WIDE,
respectively. We find that the reason for the improved performance of HILN-
1 is due to the extraction of global semantic information of the image using
the MSA. HILN-2 improves mAP@50 by 0.7% and 1% over Baseline for the
T → I task on both datasets MIRFlickr and NUS-WIDE, respectively. HILN-2
improves mAP@50 by 0.7% and 1.3% over Baseline for the I → T task on both
datasets MIRFlickr and NUS-WIDE, respectively. We find that the reason for
the improved performance of HILN-2 is due to the extraction of global semantic
information of the text using the MSA. From the mAP@50 results of HILN-1,
HILN-2, and HILN-3, we find that the MSA can effectively capture the global
dependencies of semantic features within the modality for modeling semantic
relations among object entities. These results suggest that the MSA is more
effective for image modalities and performs better if used simultaneously.
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The effectiveness of heterogeneous feature interaction and adver-
sarial loss. Meanwhile, as shown in Table 3, there are several variants we de-
signed to verify the effectiveness of the heterogeneous feature interaction and
adversarial loss. HFI-1 stands for only using the MSA mechanism to capture
the global semantic information of image and text modalities. HFI-2 builds on
HFI-1 by adding only the heterogeneous feature interaction module. HFI-3 adds
only the adversarial loss to HFI-1. HFI-4 builds on HFI-2 by adding only the
adversarial loss.

Table 4. The mAP@50 results at 128 bits of ablation study about three of attention
on MIRFlickr-25k and NUS-WIDE.

Model Configuration MIRFlickr-25k NUS-WIDE
I→T T→I I→T T→I

HFI-a MSA+Ladv 0.919 0.896 0.848 0.832
HFI-b Baseline+Spatial attention 0.927 0.907 0.861 0.849
HFI-c Baseline+Spatial+Channel Attention 0.935 0.918 0.869 0.856
HFI-d Baseline+Spatial+Channel+Cross Attention 0.944 0.944 0.879 0.879

HFI-2 improves mAP@50 by 4.8% and 4.7% over HFI-1 for the T → I
task on both datasets, MIRFlickr and NUS-WIDE, respectively. HFI-2 improves
mAP@50 by 2.2% and 2.7% over HFI-1 for the I → T task on both datasets,
MIRFlickr and NUS-WIDE, respectively. The performance improvement of HFI-
2 attributes the attention from the heterogeneous feature interaction module,
which effectively aligns the global semantic similarity relations between differ-
ent modalities so that global semantic relations between modalities are consis-
tent. HFI-3 improves mAP@50 by 3.2% and 2.5% over HFI-1 for the T → I
task on both datasets, MIRFlickr and NUS-WIDE, respectively. HFI-3 improves
mAP@50 by 1.3% and 1.7% over HFI-1 for the I → T task on both datasets,
MIRFlickr and NUS-WIDE, respectively. And from themAP@50 results of HFI-
2 and HFI-4, the performance improvement of HFI-2 comes mainly from the
adversarial loss. Thus, it is shown that adversarial loss effectively maintains se-
mantic consistency.

Comparing HFI-2 and HFI-3, HFI-2 makes the performance of I → T and
T → I tasks comparable, while the performance of HFI-3 is stronger for I → T
tasks than for T → I tasks. Meanwhile, the performance of HFI-2 is better than
that of HFI-3. From the above comparative analysis, it can be found that if
the heterogeneous feature interaction or the adversarial loss is used alone, the
effect is not as good as the effect of using both simultaneously. Therefore, the
adversarial loss we introduce is effective for cross-modal hashing.

The effectiveness of spatial attention, channel attention, and cross
attention. As shown in Table 4, several variants we designed to verify the
effectiveness of spatial attention, channel attention, and cross attention. HFI-
a represents the use of MSA and adversarial loss. HFI-b builds on HFI-a by
adding only spatial attention. HFI-c builds on HFI-b by adding only the channel
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Fig. 4. Precision@top-K curves on three datasets at 128 bits.

attention. HFI-d builds on HFI-c by adding only the cross attention. From the
results of HFI-a, HFI-b, HFI-c, and HFI-d, we find the effectiveness of spatial
attention, channel attention, and cross attention. In particular, when three kinds
of attention are used simultaneously, the retrieval effect will be better.

5 Conclusion

In this paper, we propose a novel unsupervised cross-modal hashing method
called Heterogeneous Interactive Learning Network(HILN) for unsupervised cross-
modal retrieval. To bridge the heterogeneous semantic gap between different
modalities, we introduce a multi-head self-attention mechanism to capture the
global dependencies of semantic features within the modality for modeling se-
mantic relations among object entities. Meanwhile, we exploit a heterogeneous
feature interaction module for feature fusion to align the semantic relationships
between different modalities. Moreover, we introduce adversarial loss into net-
work learning to further maintain semantic consistency. Extensive experiments
have shown the effectiveness of our method.
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