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Abstract. An action contains rich multi-modal information, and cur-
rent methods generally map the action class to a digital number as su-
pervised information to train models. However, numerical labels can-
not describe the semantic content contained in the action. This paper
proposes PromptLearner-CLIP for action recognition, where the text
pathway uses PromptLearner to automatically learn the text content
of prompt as the input and calculates the semantic features of actions,
and the vision pathway takes video data as the input to learn the vi-
sual features of actions. To strengthen the interaction between features
of different modalities, this paper proposes a multi-modal information
interaction module that utilizes Graph Neural Network(GNN) to pro-
cess both the semantic features of text content and the visual features
of a video. In addition, the single-modal video classification problem
is transformed into a multi-modal video-text matching problem. Multi-
modal contrastive learning is used to disclose the feature distance of the
same but different modalities samples. The experimental results showed
that PromptLearner-CLIP could utilize the textual semantic informa-
tion to significantly improve the performance of various single-modal
backbone networks on action recognition and achieved top-tier results
on Kinetics400, UCF101, and HMDB51 datasets. Code is available at
https://github.com/ZhenxingZheng/PromptLearner.

1 Introduction

With the development of mobile devices and communication networks, video has
become the main carrier of information. It is of great practical significance to
understand and analyze human actions in the video. As an essential branch of
video understanding, action recognition aims to analyze and recognize human
actions in videos by analyzing video data and using specific algorithms.
⋆ Corresponding author
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2 Z. Zheng et al.

Different from image processing tasks, action recognition needs to analyze
not only the appearance information but also the semantics of an action. How to
effectively encode the feature of an action remains a fundamental problem to be
solved. An action contains rich multi-modal information, and current methods
generally map the action class to a digital number as supervised information to
train models. However, numerical labels cannot describe the semantic content
contained in the action. The sample playing tennis on Youtube provides the
corresponding text description of A 12-year-old boy playing tennis, which
not only describes the class of the action but also includes the action subject.
Therefore, the text provides rich semantic information and the visual feature
can be enhanced by relevant text content.

Although some samples on Youtube are accompanied by detailed text de-
scriptions, most samples contain a lot of information unrelated to the video con-
tent. Recently, in the field of natural language processing, researchers proposed a
new paradigm: “pretrain, prompt, predict”, where according to the downstream
task, a template is designed such that the model can fit the task of pre-training
when predicting. Based on this, CLIP [29] constructed the text input by de-
signing a variety of natural language description templates and filled the image
label text into the blank positions of templates. The experiments showed that
different prompts have an important impact on the model, and subtle differences
may lead to changes in performance. CoOp [52] used continuous representations
to represent prompt whose parameters are optimized in an end-to-end fashion.

Based on the above analyses, this paper proposes a multi-modal semantic-
guided network PromptLearner-CLIP for action recognition. In the training
phase, the text labels of the samples in a batch are filled in the prompt tem-
plate and then processed by the text encoder to extract text features. At the
same time, the visual features of the videos in the batch are extracted by the
visual encoder. Finally, the similarities of visual features and text features are
computed, resulting in the similarity matrix that is used for optimization. In
the inference phase, all labels are filled in the prompt template and the feature
similarity scores between each video in the test dataset and all prompts are com-
puted. The label with the highest similarity score is assigned to the video. Our
contributions are summarized as follows: (1) PromptLearner is used to learn the
text content of prompt as the input to the text pathway and its parameters are
optimized together with the backbone network; (2) GNN is used to process both
the semantic features of text content and the visual features of the video and
strengthen the interaction between semantic features and visual features; (3)
Finally, the Kullback-Leibler(KL) loss and supervised contrastive loss are used
to disclose the feature distance of the same but different modalities samples.

2 Related Work

Single-Modal Action Recognition. C3D [33] stacked 3D convolutional lay-
ers to learn spatial-temporal features. ARTNet [37] designed appearance and
relation branches to perform spatial modeling and relation modeling in a paral-
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PromptLearner-CLIP 3

lel way. R(2+1)D [34] decomposed the 3D convolution kernel into a 2D spatial
convolution kernel and a 1D temporal convolution kernel. Because action recog-
nition needs to process multiple frames of a video, it has large computational
complexity. Based on the fact that adjacent frames of a video have redundant
information, TSN [39] proposed a sparse sampling strategy and a feature aggre-
gation module to model long-term temporal relationships of an action. AdaScan
[15] pooled the video frames containing important information and discarded
the video frames with less information. To complete effective temporal modeling
for actions, TSM [24] shifted the feature map by a position along the temporal
dimension, so that the convolutional feature map of the current frame obtains
the information of adjacent frames.

Cross-Modal Action Recognition. PoTion [5] encoded the displacement
of key points of the human body on a color image that was then processed
by CNN to obtain action features containing pose motion information. Multi-
stream network [43] used three streams to process an RGB image, multiple
optical flow images, and spectrograms to model appearance features, short-term
motion features, and sound features of actions respectively. In addition to sound
information, the text as a rich expression can describe the semantic content of a
video. CLIPBERT [19] fused the feature of each video clip and the feature of text
to model the multi-modal feature by Transformer [36]. ActBERT [53] learned
joint video-text feature representations to capture global and local visual cues
from each pair of the video clip and text description.

Contrastive Learning. Contrastive learning as an unsupervised represen-
tation learning method has been successfully applied in the field of computer
vision. MoCo [12] built a dynamic dictionary with a queue composed of pre-
vious sample features and set an instance discrimination task for contrastive
unsupervised learning. VideoMoCo [28] built a generator to mask partial video
frames and used a discriminator to distinguish the full video sequence features
from the masked video sequence features. Inspired by the mask prediction task,
MaskCo [50] masked a specific region of an enhanced image while keeping the
other enhanced image unchanged, and then calculated the region-level feature
contrastive loss of two images to implement the contrastive mask prediction
task for visual representation learning. In the training of a network, a batch of
samples may contain multiple samples belonging to the same class. SupCon [17]
incorporated the label information into contrastive loss, which considers multi-
ple positive samples of the same class for each anchor point so that the features
from the same class are closer than the features of different classes.

3 Method

This paper proposes a multi-modal semantic-guided action recognition network
PromptLearner-CLIP for action recognition, as shown in Fig. 1. The vision path-
way uses ViT [7] as the backbone network to process video frames and obtains
frame features and video features. The text pathway uses Transformer to process
text content and obtains word features and sentence features. To construct valid
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text input, PromptLearner is used to automatically learn text content as the
input to the text pathway. After extracting text features and visual features, a
multi-modal information interaction module is used to interact with text fea-
tures and visual features. Finally, multi-modal contrastive learning is used to
disclose the feature distance of the videos belonging to the same class.
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Fig. 1. Illustration of PromptLearner-CLIP consisting of vision feature extraction, text
feature extraction, multi-modal information interaction, and contrastive learning.

3.1 Text Pathway

Multi-modal learning aims to use specific algorithms to learn the complementar-
ity and eliminate the redundancy between different modalities. However, most
of the datasets for action recognition only provide action classes without corre-
sponding text descriptions. Recently, a new paradigm of prompt has been pro-
posed in the field of natural language processing. By setting different fill-in-the-
blank templates, the downstream task is adjusted to the form similar to the pre-
training task, which can effectively solve the downstream task. PromptLearner
proposed in this paper uses a text template to process action label text by ex-
panding the label text into the sentence with certain semantic content as text
descriptions of a video, which is used as the input to the text pathway to extract
semantic information. PromptLearner uses a continuous vector to represent the
content of text, and its parameters are updated together with the backbone
network in an end-to-end fashion, represented as follows:

ti = [V i
1 ][V

i
2 ][V

i
3 ]...[V

i
M ][CLASSi], (1)

where [Vm](m ∈ [1,M ]) represents the context token, [CLASSi] is the i-th label
text of the action, ti is the learnable text content, i ∈ [1, I], and M and I
represent the number of context tokens and action classes respectively. Class-
specific context token is used in this paper.
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After the learnable prompt is constructed, Transformer is used to process
the text content. Transformer adopts an encoder-decoder structure and the text
pathway only uses the Transformer encoder to extract the features of text con-
tent. The encoder consists of multiple encoding layers consisting of the self-
attention layer, LayerNorm layer, and feed-forward layer. The structure of an
encoder is shown in Fig. 2.
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Fig. 2. Structure of Transformer encoder consisting of the self-attention layer, Layer-
Norm layer, and feed-forward layer.

The overall process of the Transformer encoder extracting text features is
represented as follows:

y0 = [V1 + PE1, . . . , VM + PEM , Vclass + PEclass] , (2)

ql = kl = vl = LayerNorm(yl−1), (3)

y′l = MSA(ql, kl, vl) + yl−1, (4)

yl = FFN(LayerNorm(y′l)) + y′l, l = 1, . . . , L (5)

[s1, s2, . . . , sM , sclass] = yL, (6)

where l denotes the l-th encode layer, Vm and PEm denote the m-th context to-
ken and positional embedding, MSA denotes the multi-head self-attention layer,
FFN denotes the feed-forward layer, and L is the number of Transformer encoder
layers. Transformer uses the self-attention layer to effectively capture dependen-
cies between features at any location and learn text features. After the text con-
tent is processed by the Transformer encoder, the word features S = {sm}M+1

m=1

and sentence features s0 are obtained.

3.2 Vision Pathway

The original input to Transformer is a sequence of tokens. To satisfy the require-
ments of Transformer, ViT first pre-processes the frame to obtain the input token
sequence. Given a frame x ∈ RH×W×C , ViT first splits the frame into many non-
overlapped patches of the same size, and then these frame patches are flattened
into the 1D vectors composed of pixel values, denoted as xp ∈ RN×(P 2·C):

xp = [x1
p, x

2
p, . . . , x

N
p ], (7)
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where H and W denote the height and width of the frame respectively, C is
the number of channels, (P, P ) is the resolution of a patch, xn

p represents the
flatten vector from the n-th patch, and N = H · W/P 2 is the number of split
patches. Through linear projection E consisting of fully-connected layers, the
vector consisting of pixels is transformed to the patch embedding feature with the
dimension of dmodel. At the start of the patch sequence, we prepend a learnable
embedding zcls and its state at the output layer denotes the frame feature. A
learnable 1D position embedding is used to retrain the position information of
each patch and is added to the patch embedding feature, as shown as follows:

z0 = [zcls,Ex1
p,Ex2

p, . . . ,ExN
p ] + p, (8)

The overall process of ViT extracting the frame feature is summarized as
follows:

ql = kl = vl = LayerNorm(zl−1), (9)

z′l = MSA(ql, kl, vl) + zl−1, (10)

zl = FFN(LayerNorm(z′l)) + z′l. l = 1, . . . , L (11)

Finally, Transformer is used to process the video frame by frame and we ob-
tained the sequence of frame features V = {vk}Kk=1. These features are averaged
as the video-level feature v0.

3.3 Multi-Modal Information Interaction Module

After extracting vision features and text features, the model obtains frame-
level features V = {vk}Kk=1, the video-level feature v0, word-level features S =
{sm}M+1

m=1 , and the sentence-level feature s0. Inspired by Dynamic Graph Atten-
tion Network [47], the multi-modal information interaction module represents
the sentence as multiple soft distributions over words and parses the language
structure of the sentence gradually. Firstly, the sentence-level feature s0 is lin-
early projected to the question feature qt at the t-th step and is concatenated
with the results of the previous step, resulting in ut:

qt = W t × s0 + bt, (12)

ut = [qt, yt−1], (13)

where W t and bt denote the learnable parameters, yt−1 denotes the results at
the (t− 1)-th step. Then, the semantic parsing module computes the similarity
between ut and each word-level feature to predict the visual reasoning processing,
obtaining the soft distribution over all words Rt = {rtm}M+1

m=1 :

st = δ(Wu × ut + bu), (14)

atm = Ws2 × [tanh(Ws0 × st +Ws1 × sm)], (15)

rtm =
exp(atm)

M+1∑
m=1

exp(atm)

, (16)
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where Wu, bu, Ws0, Ws1, and Ws2 are parameter matrices and are shared at
different visual reasoning steps, and δ denotes ReLU. Finally, the output at the
t-step is calculated as follows:

yt =

M+1∑
m=1

rtm · sm. (17)

Then, the semantic parsing feature yt and the frame-level features V =
{vk}Kk=1 are jointly fed into GNN for multi-modal feature interaction. To effec-
tively embed textual semantic information into visual features, a question-guided
graph attention mechanism is used to dynamically assign higher weights to frame
features related to textual content. In this paper, and all frame features are con-
catenated with the output of the semantic parsing module as the vertices of
the graph. The edges connecting the vertices represent the relationship between
frames, and the vertex features are represented as follows:

v
′

k = [vk, y
t], for k = 1, ...,K. (18)

Next, the self-attention layer is used to calculate the correlation between the
feature of any vertex in the graph and the features of all neighboring vertices,
the neighboring vertex information is aggregated to update the vertex feature.
Feature correlation is calculated as follows:

αv
ij = (Wq × v

′

i)× (Wk × v
′

j)
T , (19)

where Wq and Wk are parameter matrices used for projecting the vertex fea-
ture into the feature subspace in which the correlations between all other vertex
features and the i-th vertex feature are computed. The correlation αv is normal-
ized by the softmax function as a weight to aggregate the information of other
vertices:

αij =
exp(αv

ij)

K∑
j=1,j ̸=i

exp(αv
ij)

, (20)

v∗i = δ(v
′

i +
∑
j,j ̸=i

αij · v
′

j), (21)

where αij denotes the weight between the i-th and j-th vertex features.
Finally, the multi-modal fusion method BUTD [1] is used to obtain the multi-

modal representation:

J = f(v∗, yt;Wfuse), (22)

where Wfuse denotes the parameter of the fusion method, and J is the resulted
multi-modal feature.
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3.4 Cross-Modal Contrastive Learning

Cross-modal contrastive learning plays an important role in image retrieval by
learning a shared feature space for image-text matching. Therefore, the matching
loss between the multi-modal feature similarity matrix and the label matrix in
ActionCLIP [40] is used to pull the pairwise text and visual features close to
each other:

LKL =
1

2
E(s,v)∼D[KL(ps2v (s), qs2v (s)) + KL(pv2s(v), qv2s(v))], (23)

where qs2v (s) and qv2s(v) are label matrices where the position of pairwise
video and text is set to 1 and other positions are set to 0. ps2v (s) and pv2s(v)
are multi-modal feature similarity matrices where cosine distance is used to
measure the feature similarity.

Although KL loss can disclose the difference between the multi-modal feature
similarity matrix and the label matrix, there may be multiple positive sample
pairs belonging to the same class in a batch of samples. If the label information
is included in contrastive learning, the feature encoder will produce the features
at a closer distance. The supervised contrastive learning is calculated as follows:

Lsup =
∑
i∈D

Lsup
i =

∑
i∈D

−1

|P (i)|
∑

p∈P (i)

log
exp(J i × sp0/τ)∑

a∈A(i)

exp(J i × sa0/τ)
, (24)

where P (i) ≡ {p ∈ P (i) : yp = yi} is the set of indices of all positives to the i-th
sample in a batch, |P (i)| is its cardinality, A(i) ≡ I \ {i}, and D denotes a batch
of samples. The overall loss is represented as follows:

L = LKL + Lsup. (25)

4 Experiments

4.1 Datasets

The training set of Kinetics400 [16] has 240K videos and the validation set has
20K videos. Kinetics400 is divided into 400 categories, each of which contains
at least 400 samples. Each sample is obtained by cropping Youtube videos and
lasts about 10 seconds.

Mini-Kinetics-200 [44] is a subset of the Kinetics400 dataset and contains
200 categories. There are 400 samples and 25 samples for each category in the
training set and the validation set respectively.

The UCF101 [31] dataset contains 13 320 videos with a total of 101 action
categories. The HMDB51 [18] dataset contains 51 categories of daily actions
with a total of 6 766 videos. UCF101 and HMDB51 datasets provide three splits
of training sets and testing sets, and researchers need to compare the average
accuracy of the three splits to verify the effectiveness of the method.
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4.2 Implementation Details

The text encoder adopts Transformer with 12 layers, where the self-attention
layer contains 8 heads and the number of neurons in the hidden layer is set to
512. For the visual feature encoder, this paper uses ViT that also has a 12-layer
Transformer. Two types of feature encoders are initialized from CLIP [29]. The
number of learnable context tokens of PromptLearner is set to 16. The initial
template is “a video of action X”, where X represents the label text of the action
and the context vector is randomly initialized with mean 0 and variance 0.02. For
the multi-modal information interaction module, the number of neurons in the
hidden layer of GNN is set to 512, and the dimension of the output composite
feature is set to 512.

The AdamW optimizer is used to optimize the model’s parameters, where
the initial learning rates of the encoders and the remaining module parameters
are set to 5e-6 and 5e-5 respectively, and the weight decay is set to 0.2. The
batch size is set to 64, and the total training epoch is set to 50. The first 5
epochs use the warm-up strategy and the remaining 45 epochs use the half-
cosine decay strategy. RandAugment is used to crop the region with 224 × 224
size from each frame. This paper adopts a sampling method to randomly sample
8 or 16 frames from a video. During the testing, 10 groups of frame sequences
were randomly sampled from each video, and the average of the 10 groups of
similarity scores is calculated to predict the action category. After the model
is trained on Kinetics400, PromptLearner-CLIP is transferred to UCF101 and
HMDB51 datasets, keeping the training and testing strategies unchanged.

4.3 Ablation Study

The loss function mainly consists of three parts, the video-text supervised con-
trastive loss, the video-text KL loss, and the text-video KL loss. The numbers
in the first column of Table 1 represent the coefficients of corresponding loss
functions, and the second and third columns report Top-1 and Top-5 accuracies
on mini-Kinetics-200 respectively.

Table 1. Analysis of loss functions on mini-Kinetics-200 (%)

contrastive loss:video-text loss:text-video loss Top-1 Top-5
1:0:1 67.15 88.89
1:1:0 84.70 97.29
0:1:1 85.10 97.39
1:1:1 85.34 97.15

The experimental results in Table 1 show that when three loss functions
are used to optimize parameters, PromptLearner-CLIP achieves the best exper-
imental results on mini-Kinetics-200, and the Top-1 accuracy is 85.34%. When
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the video-text KL loss is removed, the Top-1 accuracy drops to 67.15%. At the
same time, it can be seen from the third row of the table that when the text-
video KL loss is removed, the Top-1 accuracy of the model drops to 84.70%.
Finally, observing the experimental results in the fourth row when removing
the multi-modal supervised contrastive loss, the model has a little drop in the
Top-1 accuracy, which confirms that the multi-modal supervised contrastive loss
can further increase the similarity of samples belonging to the same class and
improve the performance of the model.

Table 2 builds multiple models to study the influence of different semantic
information on the multi-modal information interaction module. The average
feature in the first column means that the average vector of word features en-
coded by Transformer is used as the input, and the Transformer feature means
that the output at [EOS] position of the highest layer is used as the input.
The models from the fourth row to the seventh row represent the text semantic
parsing features with different semantic parsing steps.

Table 2. Analysis of the multi-modal information interaction module on mini-Kinetics-
200 (%)

Textual Information Top-1 Top-5
average feature 85.16 97.11

Transformer feature 85.04 97.49
one-step semantic parse 84.74 97.27
two-step semantic parse 85.02 97.17

three-step semantic parse 85.26 97.05
four-step semantic parse 85.06 97.19

Table 2 shows that when the average feature and Transformer feature are used
as the inputs, the model achieves similar performance, which demonstrates that
both features can effectively represent the input without parsing text semantics.
The experimental results in the fourth row to the seventh row processed by
different semantic parsing steps show that the accuracy of the model is gradually
increased, and the model with three parsing steps achieves the highest value,
rising from 84.74% to 85.26%, which indicates that parsing the text content
can provide more detailed semantic information to guide the learning process of
visual features.

Table 3 conducts ablation analyses of PromptLearner-CLIP on mini-Kinetics-
200. For a fair comparison, a baseline model was set up to use ViT to process
visual input. ActionCLIP uses the single-modal model ViT as the backbone
network for visual feature extraction and builds a multi-modal learning frame-
work to process visual data and text data simultaneously. The fourth, fifth, and
sixth rows of Table 3 represent the results removing the multi-modal informa-
tion interaction module, PromptLearner initialization, and video-text supervised
contrastive loss respectively.
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Table 3. Ablation study of PromptLearner-CLIP on mini-Kinetics-200 (%)

Interaction Module Prompt Initializaiton Contrastive Learning Top-1 Top-5
- - - 83.70 96.53
- - - 84.02 96.85
- ✓ ✓ 84.78 97.41
✓ - ✓ 84.82 97.27
✓ ✓ - 85.10 97.39
✓ ✓ ✓ 85.26 97.05

When textual information is incorporated, ActionCLIP improves the classifi-
cation results of ViT on mini-Kinetics-200, which demonstrates that text content
can provide semantic clues for action recognition. From the fourth to seventh
rows in the table, when the main modules in PromptLearner-CLIP are removed
one by one, the performance decreases to different degrees, indicating that each
module in the model has a certain contribution to improving the performance.
When the model removes the multi-modal information interaction module, the
accuracy in Top-1 drops to 84.78%. Compared with the experimental results of
the fifth and sixth rows, the performance drops the most.

4.4 Pathway Finetune

PromptLearner-CLIP contains text and vision pathways to extract features of
different modalities. Table 4 summarizes the results of fine-tuning the backbone
network parameters of different pathways on mini-Kinetics-200. Table 4 shows
that the model finetuning two pathways(the fifth row) is significantly higher
than the model freezing the parameters of two pathways(the second row) in the
Top-1 accuracy, and the Top-1 and Top-5 accuracies are increased by 3.71% and
0.86% respectively, which demonstrates that it is still necessary to finetune the
model parameters on the target dataset and learn the dataset-specific features.

Table 4. Analysis of finetuning different pathways on mini-Kinetics-200 (%)

Text Pathway Vision Pathway Top-1 Top-5
- - 81.55 96.19
✓ - 81.73 95.93
- ✓ 85.04 97.29
✓ ✓ 85.26 97.05

4.5 Different Backbone Networks

In this section, the visual backbone networks have completed the training on Ki-
netics400 and the parameters of them are frozen. Table 5 shows the accuracies
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of PromptLearner-CLIP using three visual backbone networks on Kinetics400.
In the comparison of each group of the same backbone network, PromptLearner-
CLIP achieves performance improvement on ActionCLIP. The experimental re-
sults in the third and fifth rows of the table show that reducing the size of frame
patches will bring more computation, but the model will learn more detailed re-
lationships between frame regions and discriminative features. The experimental
results in the fifth and seventh rows show that more video frames can help the
model to obtain more complete action information and improve the accuracy of
the model.

Table 5. Analysis of different visual backbone networks on Kinetics400 (%)

Model Top-1 Top-5
ActionCLIP(ViT-32-8f) 77.49 93.88

PromptLearner-CLIP(ViT-32-8f) 77.92 94.51
ActionCLIP(ViT-16-8f) 80.32 95.41

PromptLearner-CLIP(ViT-16-8f) 80.86 95.61
ActionCLIP(ViT-16-16f) 81.12 95.73

PromptLearner-CLIP(ViT-16-16f) 81.60 95.86

4.6 Comparison with State-of-the-Art Methods

Finally, PromptLearner-CLIP and current state-of-the-art methods are com-
pared on the Kinetics400 dataset. Table 6 summarizes Top-1 and Top-5 ac-
curacies on Kinetics400 of different methods.

First, the classification accuracies of Transformer-based methods in the ta-
ble, such as MViT-B [8], TimeSformer-L [42], and ViT-B-VTN [27] on Kinet-
ics400 are higher than 2D CNN-based [23] and 3D CNN-based [10] methods.
PromptLearner-CLIP uses the same backbone network and achieves higher ex-
perimental results, although the number of input frames to the model is less
than these three models. ViViT-L [2] uses a deeper ViT as the backbone net-
work and achieves 80.6% Top-1 accuracy on Kinetics400, which is lower than
our model by 1.0%. When ViViT-L initializes ViT-B/16 parameters with the
model pre-trained on the large-scale dataset JFT, ViViT-L achieves the best ex-
perimental results in the table. Deeper models, more video frames, larger image
resolutions, and larger pre-training datasets will stimulate the potential of the
model to achieve a higher action recognition accuracy.

4.7 Finetune on Small Datasets

Finally, the PromptLearner-CLIP pre-trained on Kinetics400 is transferred to
HMDB51 and UCF101, the results are shown in Table 7. MSM-ResNets [54]
takes RGB images, optical flow images, and action saliency images as inputs,
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Table 6. Comparison with state-of-the-art methods on Kinetics400 (%)

Model Source Top-1 Top-5
TEA-ResNet50 [23] CVPR2020 76.1 92.5

TEINet [25] AAAI2020 76.2 92.5
SmallBigNet [22] CVPR2020 77.4 93.3

SVT [30] CVPR2022 78.1 -
TPN-R101 [46] CVPR2020 78.9 93.9

TANet [26] ICCV2021 79.3 94.1
TDN [38] CVPR2021 79.4 93.9

SlowFast [11] ICCV2019 79.8 93.9
ViT-B-VTN [27] ICCV2021 79.8 94.2
X3D-XXL [10] CVPR2020 80.4 94.7
TokenShift [48] ACM2021 80.4 94.5

BEVT [41] CVPR2022 80.6 -
ViViT-L [2] ICCV2021 80.6 94.7

TimeSformer-L [3] ICML2021 80.7 94.7
MViT-B [8] ICCV2021 81.2 95.1

DirecFormer[35] CVPR2022 82.8 94.9
ViViT-L(JFT) [2] ICCV2021 82.8 95.3

PromptLearner-CLIP - 81.6 95.9

which obtains 66.7% on HMDB51 and 93.5% on UCF101. Since MSM-ResNets
is not pre-trained on large-scale video datasets, the performance of the model is
significantly lower than the current state-of-the-art methods. PoTion [5] extracts
the motion information of human pose from the video to learn pose motion fea-
tures. Two-stream I3D [4] extracts appearance features and action features from
RGB images and optical flow images respectively. When the spatial-temporal fea-
tures of I3D are fused with the PoTion features, the accuracies are improved by
0.7% on HMDB51 and 0.3% on UCF101. However, I3D+PoTion is lower than
PromptLearner-CLIP+I3D(Flow) on both datasets, revealing that the multi-
modal learning framework proposed in this paper can effectively utilize the ac-
tion clues contained in other modal information to improve the performance. The
comparison results of different methods in the table show that PromptLearner-
CLIP achieves competitive results with state-of-the-art methods.

5 Conclusion

This paper proposes a multi-modal semantic-guided action recognition network
PromptLearner-CLIP that utilizes textual information to enhance the represen-
tation ability of features. Experiments on Kinetics400, UCF101, and HMDB51
demonstrate that PromptLearner can automatically learn the text content of
prompt and provide semantic clues for action recognition. Besides, by multi-
modal information interaction module, features of different modalities pass in-
formation and disclose the difference of multi-modal features effectively. And
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Table 7. Comparison with state-of-the-art methods on HMDB51 and UCF101 (%)

Model HMDB51 UCF101
MSM-ResNets [54] 66.7 93.5

SVT [30] 67.2 93.7
two-stream TSN [39] 68.5 94.0

Temporal Squeeze Network[13] 71.5 95.2
TVNet+IDT [9] 72.6 95.4
TokenShift [48] - 96.8

TEA-ResNet50 [23] 73.3 96.9
VidTr [49] 74.4 96.7

Dense Dilated Network [45] 74.5 96.9
Dynamic Network [51] 75.5 96.8

ActionCLIP[40] 76.2 97.1
BQN[14] 77.6 97.6

S3D-G [44] 78.2 96.8
MARS+RGB [6] 79.5 97.6

SIFP+SlowFast [20] 80.1 96.9
two-stream I3D [4] 80.2 97.9
PoTion+I3D [5] 80.9 98.2

STRM [32] 81.3 98.1
STA-MARS [21] 81.4 98.4

PromptLearner-CLIP+I3D(Flow) 81.3 98.5

the supervised contrastive loss is used to further reduce the feature distance be-
tween samples of the same class but different modalities. PromptLearner-CLIP
achieves highly competitive accuracies on these three action recognition datasets
with state-of-the-art methods. In future work, we will study the methods that
incorporate the visual content of a video into prompt to better learn semantic
information.
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